Week (4)

PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wiister, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-

ness, please contact me if you spot a mistake.

2.4 Coherent states

Coherent states are a very useful concept in many areas of quantum physics. We discuss two types,

which are mathematically/algebraically identical but conceptually subtly different:

2.4.1 Coherent Harmonic Oscillator States

e Question: What is the “most classical” type of oscillation we can get in the quantum harmonic

oscillator:

e Answer: Define

Coherent State

lo? - o o= ™
a) =e 2 explabl]|0) = e 2~ — , aeC
) p[ab']]0) ;mw
We can write this also as: |a) = D(a)|0), where D(a) = e —o"a

displacement operator.

(2.42)

is the

e Here b is a ladder operator from (1.12).

e Coherent states are not necessarily eigenstates of the harmonic oscillator Hamiltonian H SHO

in (1.13), since they have an uncertain energy/number of oscillator quanta.
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Properties of coherent states

~ A 0 o* N

bo) =ala),  Bla) ( 9.9 )|a>, (ofp' = (afa”,  (2.43)
o?  |o/]?

{ala) = exp [a*o/ ) ] (Not orthogonal), (2.44)

(a]a)y =1, (2.45)

1= i/da|a><a\. (2.46)

e Coherent state is a right-eigenstate of destruction operator

e Two different coherent states are typically not orthogonal, unless |« — | is very large (and
even then only approxiately).

o 2
Proof of (2.43): Let @) = e 7 |a)

1 1 0 .4 — — 0 o'l
= " 1 n n
Z\/ﬁnjtlﬁ “ n+ dent) —~ da (n+1)||90 +1)
) o™ 0 = a” )

(Rest follows from the product rule.)
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Example: Oscillation of coherent state: What is the meaning of a? Let ap € R
Convert the equation blag) = aglag) to the position basis:

Using 25[()— _% i 2mw ~()
(1.4) gz O\ = n V R A

Solve ~ (33 - a6)2
Sp Gol@)=C e"p[‘zaz !

where ¢ = ,/% and o) = V20ag. Thus the position space representation of a coherent
state has a Gaussian shape, with center location governed by «,.

We now want to find the time evolution of the coherent state | oy ). The latter is assembled
from oscillator eigen states that obey:

] 1

Since the Hamiltonian is time-independent, we can us the standard rules for time evolution

to find
agf —iw(n+i
= |a<t>>=27%e (42t
1 —iwt\n ,—1%
= 3 s laoe e )

_ e—i%t|aoe—iwt> )

Can show after some fiddling:

a(x, 1)]? = Clexp [ G aé:;)s(wt»?}

We thus always have a ground-state shaped Gaussian oscillating in the potential with
amplitude «.

g et B

Por.’ﬁa'n(’arwf
Mmoo nkv?
Z “Uncertainly A 6[06

¢ £ 6?; L n,"/i;, t)t -.,ﬁ,.:\ terwsl abierm
i op: Coherent state in phase space, rep-
top: Coherent state Gaussian oscillating P . ph pace, Tep

) . resented by Wigner function (see below)
in a harmonic trap
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2.4.2 Wigner function

In the example above, bottom right, we also wanted to show a phase space representation of a
quantum harmonic oscillator in a coherent state.

Classically we have the idea of phase-space (z,p). Quantum mechanically AxAp > h/2 — particle
cannot have a fixed phase-space coordinate. We can still represent a quantum state ¢(x) in phase-
space, using the

Wigner distribution

1 [ .
W(z,p) = s / ¢ (x +y)p(x — y)e? P/ dy (2.47)

e Properties

oo
/ dp W (z,p) = |¢(x)|?* (position-space distribution),
—00

/ dx W(z,p) = |@(p)|* (momentum-space distribution).

—00

e W(x,p) is a quasi-probability distribution (means we can get some expectation values by
integrating over it, but it may have regions with W (z,p) < 0)

e The interpretation is that when drawing W (z,p), non-zero regions show the location of a
quantum-state in phase-space. This was used in the figure of the example above.

We can alternatively define the

Wigner function from the number-state representation
Xw (A N) = Tr{per =2} (2.48)
1 * *
W(e,a*) = — /d%m A (A, A (2.49)
0

e The above gives the same as (2.47) for harmonic oscillator ladder operators ¢ — b.

e It directly generalizes to Fock states (2.2), when G are many-body creation and destruction
opertors.
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Example, Laser:
€69
: . L
Consider a single-mode photon field at frequency w:

H = hwata, just as for oscillator
Electric field (c.f. Example C page 19)
E(z,t) = E(x,t)a + h.c.
Taking expectation value in the coherent state |«(t)), we can show (exercise)

<a(t)\E(x, t)a(t)) = 2 Re{&(x,t) age ™'}
a(t)

Thus here, the complex number «(t) characterizes amplitude and phase of the oscillating
electric field.

Ml

2.4.3 Coherent many-body states

Due to identical properties of ladder b operators and a, ¢, we can equally define a

Many-body coherent state (Bosons):

la) = explal,a]|0) = e~ Z i ,aeC (2.50)

n

where |n) is a Fock-state that represents the occupation of mode |@y,).

e this now describes a superposition of different occupation numbers (Fock-states) of single-
body mode |¢p,)
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e all properties of (2.43)-(2.46) apply

We can combine states (2.50) for multiple single-particles states (modes) into

Many-mode coherent state (Bosons):

arla) = agla), a={ay...any}, ap€C (2.51)
which exhibit one coherent amplitude «y for each single-particle basis state k
e The slightly messy formal decomposition of (2.51) into Fock-states is
log |2 aPtad?...aN
o) = e 2k 5 L2 "N (2.52)

NNV Lt

ning..nN

2.4.4 Fermionic coherent states (not used here)

If we assume a definition like (2.51) for fermionic operators we run into trouble:

A A ! . A A
{ag, a1} |a) = (apay + aqag)|a) =0 (since{ag,a;} = 0)
For two non-zero complex numbers aia; + oy = 2aa; # 0 of course.

Solution: We use

[ Grassmann-numbers Defined as an anti-commuting set of complex numbers

e Based on this we can also use the coherent state concept for fermions. Mainly useful for

fermionic path integrals

e Not further used in this lecture
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