
Week 4

PHY 635 Many-body Quantum Mechanics of Degenerate Gases

Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

2.4 Coherent states

Coherent states are a very useful concept in many areas of quantum physics. We discuss two types,
which are mathematically/algebraically identical but conceptually subtly di↵erent:

2.4.1 Coherent Harmonic Oscillator States

• Question: What is the “most classical” type of oscillation we can get in the quantum harmonic
oscillator:

• Answer: Define
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We can write this also as: |↵i = D(↵)|0i, where D(↵) = e↵â
†�↵⇤â is the

displacement operator.

• Here b̂† is a ladder operator from (1.12).

• Coherent states are not necessarily eigenstates of the harmonic oscillator Hamiltonian ĤSHO

in (1.13), since they have an uncertain energy/number of oscillator quanta.
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Properties of coherent states
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• Coherent state is a right-eigenstate of destruction operator

• Two di↵erent coherent states are typically not orthogonal, unless |↵ � ↵0
| is very large (and

even then only approxiately).
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(Rest follows from the product rule.)
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Example: Oscillation of coherent state: What is the meaning of ↵? Let ↵0 2 R
Convert the equation b̂|↵0i = ↵0|↵0i to the position basis:

hx|b̂|↵0i = ↵0 hx|↵0i| {z }
⌘↵̃0(x)
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where � =
q

~
m! and ↵0

0 =
p
2�↵0. Thus the position space representation of a coherent

state has a Gaussian shape, with center location governed by ↵0
0.

We now want to find the time evolution of the coherent state |↵0 i. The latter is assembled
from oscillator eigen states that obey:
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Since the Hamiltonian is time-independent, we can us the standard rules for time evolution
to find
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Can show after some fiddling:
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We thus always have a ground-state shaped Gaussian oscillating in the potential with
amplitude ↵0

0.

top: Coherent state Gaussian oscillating
in a harmonic trap

top: Coherent state in phase space, rep-
resented by Wigner function (see below)
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2.4.2 Wigner function

In the example above, bottom right, we also wanted to show a phase space representation of a
quantum harmonic oscillator in a coherent state.

Classically we have the idea of phase-space (x, p). Quantum mechanically �x�p � ~/2 ! particle
cannot have a fixed phase-space coordinate. We can still represent a quantum state '(x) in phase-
space, using the

Wigner distribution

W (x, p) =
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• Properties Z 1

�1
dp W (x, p) = |'(x)|2 (position-space distribution),

Z 1

�1
dxW (x, p) = |'̃(p)|2 (momentum-space distribution).

• W (x, p) is a quasi-probability distribution (means we can get some expectation values by
integrating over it, but it may have regions with W (x, p) < 0)

• The interpretation is that when drawing W (x, p), non-zero regions show the location of a
quantum-state in phase-space. This was used in the figure of the example above.

We can alternatively define the

Wigner function from the number-state representation

�W (�,�⇤) = Tr{⇢̂e�â
†��⇤â
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• The above gives the same as (2.47) for harmonic oscillator ladder operators â ! b̂.

• It directly generalizes to Fock states (2.2), when â are many-body creation and destruction
opertors.
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Example, Laser:

Consider a single-mode photon field at frequency !:

Ĥ = ~!â†â, just as for oscillator

Electric field (c.f. Example C page 19)

Ê(x, t) = E(x, t)â+ h.c.

Taking expectation value in the coherent state |↵(t)i, we can show (exercise)

h↵(t)|Ê(x, t)|↵(t)i = 2Re{E(x, t)↵0e
�i!t

| {z }
↵(t)

}

Thus here, the complex number ↵(t) characterizes amplitude and phase of the oscillating
electric field.

2.4.3 Coherent many-body states

Due to identical properties of ladder b̂ operators and â, ĉ, we can equally define a

Many-body coherent state (Bosons):

|↵i = exp[â†m↵]|0i = e�
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where |ni is a Fock-state that represents the occupation of mode |�mi.

• this now describes a superposition of di↵erent occupation numbers (Fock-states) of single-
body mode |'mi
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• all properties of (2.43)-(2.46) apply

We can combine states (2.50) for multiple single-particles states (modes) into

Many-mode coherent state (Bosons):

âk|↵i = ↵k|↵i, ↵ = {↵1...↵N}, ↵k 2 C (2.51)

which exhibit one coherent amplitude ↵k for each single-particle basis state k

• The slightly messy formal decomposition of (2.51) into Fock-states is
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2.4.4 Fermionic coherent states (not used here)

If we assume a definition like (2.51) for fermionic operators we run into trouble:

{âk, âl}|↵i = (↵k↵l + ↵l↵k)|↵i
!
= 0 (since{âk, âl} = 0)

For two non-zero complex numbers ↵k↵l + ↵l↵k = 2↵k↵l 6= 0 of course.

Solution: We use

Grassmann-numbers Defined as an anti-commuting set of complex numbers

• Based on this we can also use the coherent state concept for fermions. Mainly useful for
fermionic path integrals

• Not further used in this lecture
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