Week 13

PHY 635 Many-body Quantum Mechanics of Degenerate Gases Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correctness, please contact me if you spot a mistake.

5.4 Lattice Models

We have mentioned few times, the similarities between an electron gas in a crystal lattice and a cold atomic gas in an optical lattice. Now few more details on the latter:

5.4.1 Optical lattices

Consider a coherent laser beam which is back-reflected on itself to form a standing wave in

Optical lattice:

- We obtain an intensity pattern for the light that can be written as,

$$
\begin{equation*}
I(x)=I_{0} \cos ^{2}\left(k_{L} x\right) \tag{5.8}
\end{equation*}
$$

where $d=\frac{\lambda_{L}}{2}$ is the distance between adjacent sites, λ_{L} is laser wavelength and $k_{L}=\frac{2 \pi}{\lambda_{L}}$.

We can calculate the energy shift of an atom due to exposure to the rapidly varying E-field of the laser (AC Stark shift). This shifts turns I(x) into a spatial potential

$$
V(x)=-\frac{1}{2} \alpha(\omega) \underbrace{\left\langle\epsilon(t)^{2}\right\rangle_{t}}_{\begin{array}{c}
\text { time avg of } \tag{5.9}\\
\text { light intensity }
\end{array}}
$$

where α is the atomic polarizability and ω is the laser frequency.

We find $\alpha(\omega)<0$, just above an atomic resonance (blue detuned) $\Longrightarrow V>0$.
$\ldots \ldots \alpha(\omega)>0$, just below $\cdots \ldots \ldots$.
(See PHY 402, Assignment 4, also c.f. section 5.1 and Mid-sem exam). We thus have an

Optical lattice potential

$$
\begin{equation*}
V(x)=V_{0} \cos ^{2}\left(k_{L} x\right) \tag{5.10}
\end{equation*}
$$

where V_{0} can be positive or negative dependent on light detuning.

5.4.2 Bose-Hubbard Model

You had shown in the mid-term exam how starting from Eq. (3.37) [\hat{H} for Bose gas in form with $\hat{\Psi}]$, we can derive

Bose-Hubbard Hamiltonian

$$
\begin{equation*}
\hat{K}=\hat{H}-\mu \hat{N}=\sum_{m}\left[J\left(\hat{a}_{m+1}^{\dagger} \hat{a}_{m}+\hat{a}_{m-1}^{\dagger} \hat{a}_{m}\right)+\frac{U}{2} \hat{n}_{m}\left(\hat{n}_{m}-1\right)-\tilde{\mu} \hat{n}_{m}\right] \tag{5.11}
\end{equation*}
$$

- \hat{a}_{m}^{\dagger} creates an atom "on site m ".

- J allows tunneling/hopping from site to site.
- U are repulsive on-site interactions $\hat{n}_{m}=\hat{a}_{m}^{\dagger} \hat{a}_{m}$
- $\tilde{\mu}=\mu-E(E \rightarrow$ on site energy $)$ is the chemical potential.
$\underline{\text { Let us try to find ground-states of } \hat{K} \text { in two simple cases }}$
[A] $J=0$, no tunelling:
No tunneling, $\left[\hat{K}, \hat{n}_{m}\right]=0 \Longrightarrow$ We can write eigenstates as Fock-states $|\mathbf{N}\rangle$. Since all sites are equivalent, we pick $\left|\mathbf{N}_{0}\right\rangle=|M, M, \cdots, M\rangle$, i.e. a state with exactly M bosons per site. Its energy is

$$
\begin{equation*}
\left\langle\mathbf{N}_{0}\right| \mathbf{K}\left|\mathbf{N}_{0}\right\rangle=N_{\text {sites }}\left[\frac{U}{2} M(M-1)-\tilde{\mu} M\right] \tag{5.12}
\end{equation*}
$$

This is minimized by $M=\frac{\tilde{\mu}}{U}+\frac{1}{2}$. Since M has to be an integer, for parameters $\tilde{\mu}, U$ in the range $M-1<\frac{\tilde{\mu}}{U}<M$ we have exactly M bosons per site. This is called the

Mott-insulating state

$$
\begin{equation*}
\left|\psi_{\text {Mott }}\right\rangle=\sum_{m} \frac{\left(\hat{a}_{m}^{\dagger}\right)^{M}}{\sqrt{M!}}|0\rangle, \tag{5.13}
\end{equation*}
$$

- The sum here runs over the lattice sites.
- Mott-insulator in condensed matter: A material that should conduct from band-theory (i.e. based on single particle physics), but does not due to $e^{-}-e^{-}$interactions (i.e. due to many-body physics).
[B] $\underline{U=0}$ no interactions: This becomes a single particle problem
Find eigen-states of the single-particle Hamiltonian, lowest state

$$
\begin{equation*}
\left|\varphi_{0}\right\rangle=\frac{1}{\sqrt{N_{\text {states }}}} \sum_{m} \hat{a}_{m}^{\dagger}|0\rangle \tag{5.14}
\end{equation*}
$$

(particle fully de-localized on lattice)

- We know at $T=0$ we will have a $\underline{B E C}$ condensed in $\left|\varphi_{0}\right\rangle$ and can use mean-field theory.

Super-fluid state

$$
\begin{equation*}
\left|\psi_{\mathrm{BEC}}\right\rangle=\mathcal{N}\left(\sum_{m} \hat{a}_{m}^{\dagger}\right)^{M}|0\rangle \quad \mathcal{N} \text { is a Normalization factor, } \tag{5.15}
\end{equation*}
$$

[C] For both, non-vanishing interactions and hopping, $U \neq 0, J=0$, we require a more complicated analysis. The result of that would be:

Phase-diagram for superfluid/Mott-insulator Quantum phase transition:

left:

- Mott insulating phase is shown in green.
- Transitions between green and white are called quantum phase transition, because they can happen due to change of parameters in the Hamiltonian, but at zero temperature $T=0$.

From Eq. (5.13) and Eq. (5.15) we can calculate the inter-site coherence

$$
\begin{equation*}
g_{m, m+1}=\left\langle\hat{a}_{m}^{\dagger} \hat{a}_{m+1}\right\rangle \tag{5.16}
\end{equation*}
$$

We find $g=0$ for the Mott insulator (5.13) and $g \neq 0$ for the superfluid (5.15) (Exercise).

This means atoms from different sites interfere in a superfluid state after time-of-flight expansion, but not in the Mott-insulator \Longrightarrow clear experimental signature, see Greiner et. al, Nature 41539 (2002).

$\mathfrak{T y} \mathbb{C l n o}$

Acknowledgements:

Thanks to Chakradhar R, Parth Sunilkumar Nayak, Aritra Mishra and Siddhartha Poddar for helping to type-set the handwritten lecture notes into Latex.

