
Week 12
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

5 Quantum Simulations

We have seen that solving quantum many-body problems almost always requires smart approxi-
mations (h ̂i ⇡ �, h ̂ ̂i ⇡ �) or validity of perturbation theory. In principle, we could use a brute
force approach
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and solve the

Many-body SE in the Fock-state representation
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• Exercise: derive this from i~|  ̇(t) i = Ĥ| i.

However, even if we allow at most N particles in M modes (single particle basis states), we have

Dimension of Fock space d: Fock-space dimension for max N bosons in M modes

d = (N + 1)M (5.3)

• e.g 9 particles, 10 modes ) d = 1010 !
This very quickly cannot fit into a computer. )
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Quantum simulation concept: (Richard Feynman)
Find an experimentally accessible system, with the same Hamiltonian (mathematically) but
on which we can do easier measurements and where parameters in the Hamiltonian are ex-
perimentally controllable.

• Disambiguation: the term “quantum simulation” can also refer to numerical simulation of
any quantum problem.

• We now will sketch two examples using cold degenerate gases.

• Before that, let us revisit atomic interactions.

5.1 Fano-Feshbach Resonances

• So far, we have ignored electron spin dependence of atomic interactions (we had only looked
at symmetry (boson/fermion)).

• In reality, interactions depend slightly on electron-spin.

• Careful: In chapter 4, when discussing atomic spin, we referred to two selected Hyperfine-states
e.g
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The states entering scattering properties are (pair) electron spin singlet |S i = | s = 0,ms = 0 i
and triplet |T i = | s = 1,ms = +1, 0,�1 i.

• Due to unspecified nuclear spin, both | "" i, | #" i may contain both |S i, |T i.
• Energy of |S i, |T i depends di↵erently on magnetic field through Zeeman-shift (see PHY402,

pg. 25) of the Hyperfine structure.
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Multi-channel scattering: (channel “=” certain choice of initial/final state quantum
numbers) We can have the following picture: To find scattering length as (| "# i):

• Consider two incoming scattering partners in | "# i with energy E & 0 (ultra-cold regime)

• Calculate 2nd order perturbation theory (in (r), spin-flip Hamiltonian) energy correction to
scattering state
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(see QM lecture).

• Schematically here

|n(0) i ⇠ | "# i ⌦ |E ⇡ 0 i, E(0)
n ⇡ 0

| k(0) i ⇠ | "" i ⌦ | bound state i, E(0)
k ⇡ �E
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Three cases: If
�E ! 0 (Resonance), E(2)

n ! 1
�E < 0, E(2)

n > 0 ) (more) repulsive interactions

�E > 0, E(2)
n < 0 ) (more) attractive interaction

• Since �E depends on magnetic field B:
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Scattering length near Feshbach resonance

as(B) = abg
⇣

1� �B

B �B0

⌘

(5.5)

abg = background scattering length,
B0 = position of resonance,
�B = width of resonance.

Example: Scattering length with 2 Feshbach resonances
⇥

6Li: B(1)
0 = 543 G, B(2)

0 = 834
G

⇤

• Feshbach resonances e↵ectively make the interaction strength an experimentally controllable
parameter.

• We can reach as = 0, as > 0, as < 0 and (almost) as = 1.

5.2 BEC-BCS Crossover

• Using Feshbach resonances, we can now realize DFG with interactions ranging from repulsive
to attractive (see week 10 vs week 11).

• Let us reconsider the repulsive as > 0 side: Do we get a Fermi-liquid as ground state as in
section 4.40?

• Answer: when considering the scenario with a Feshbach resonance, that would be only a
meta-stable (excited) state/phase, since the scattering state with E ⇡ 0 for which we found
as > 0 in section 5.1 has higher energy than a bound state in the closed channel.
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• Bound-states and Cooper pairs are related (the latter are a type of weak bound state). It
turns out, with rigorous renormalization we can actually apply BCS theory all the way from
U0 = �1 to U0 = 1. The gap-equation (4.75) then can be solved for U0 < 0.

5.2.1 From Cooper-pairs to Molecules

Let us again look at the pair creation operator
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We can show (see steps on page 95) that
P

k

|'
k

|2 = 1 due to normalization of our starting pair
state '0(x� y).

Thus when acting on states with few fermions “per momentum mode”, we have
⇥

Ĉ, Ĉ†⇤ = 1,

and our pair behaves like a boson. (You can show
⇥

Ĉ, Ĉ
⇤

=
⇥

Ĉ†, Ĉ†⇤ = 0 also).

For this we require a broad Fourier transform '̃0(k) ! tightly bound pairs in position space. This
corresponds to molecules with spacing d � orbital radius r,

In other limit, where r � d, we will have high occupations of all momentum modes (n̂ ⇠ 1), and
we talk of Cooper-pairs (that are not quite bosons, but have some “bosonic-character”).
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Through this change of the interpretation/details of the many-body paired state, we are able
to smoothly interpolate between a BEC of bosonic molecules (made of two fermionic atoms)
at as > 0 and a BCS-superfluid due to Cooper-pairing at as < 0.

5.2.2 Crossover phase diagram

Altogether we have the following phase diagram:

• Very close to resonance, interactions are very large, such that rrange ⌧ k�1
F ⌧ as. This is

called unitary case (for non-obvious reasons), here the only scale is kF (physics universal).
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5.3 Quantum-simulation aspects of BEC-BCS crossover

High TC superconductivity
While not being directly related, these share several features with the crossover region:

• Pair size ⇠ average distance (see p. 89)

• Normal state (above TC) not ordinary Fermi-liquid

Neutron stars/ Quark matter
Particularly in the unitary limit, there is only one scale in the interacting fermion problem (details
don’t matter). It should thus also apply to other DFG systems than ultra-cold gases, such as
neutron stars (see section 4.4.2). This is particularly useful, since calculations in this strongly
interacting regime are very challenging.
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