
Week 11
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

4.10 Attractive interactions, pairing

Lots of credit: Gora Shlyapnikov “Ultracold quantum gases, Degenerate Fermi gases”.
Part-II (internet).

• On first sight our previous discussion should be equally valid for weak attractive interactions
(U0 < 0 in Eq. (4.33)).

• However, another phenomenon precludes this, by making a filled Fermi-sea up to EF , a bad
starting point: Superfluid pairing.

4.10.1 Two-body Cooper-pairing

• The same pairing phenomenon gives rise to superconductivity in condensed matter systems
(example D in section 2.3.1, free electron gas), we will discuss the condensed matter case
here, not the cold-atom case, for a reason given at end of this section.

Assume a degenerate Fermi system at T = 0 =) all momentum states filled up to kF . We
assume for simplicity that these particles don’t interact, but importantly Pauli-block all states up
to |k| = kF . (see section 2.2.2):

Now we add two interacting particles on top of this Fermi-sea, with Hamiltonian

Ĥ = � ~2
2m

�r2
x

1

+r2
x

2

�

+ V (x1 � x2
| {z }

⌘ r

). (4.41)
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We make the Ansatz

 0(x1,x2) =
1p
2⇡

3

Z

d3k
g
kpV cos(k · (x1 � x2))
| {z }

symmetric

1p
2

⇥ | "#i � | #"i
| {z }

anti-symmetric

⇤

(4.42)

for the complete wavefunction including relative motion and spin, but ignoring the irrelevant
center-of-mass co-ordinate. Note that the Ansatz has the correct symmetry for Fermions.

Insertion into relative-motion Schrödinger equation following from (4.41):

Z

d3k
~2k2

m
| {z }

⌘ 2✏
k

g
k

cos(k·(x1�x2))+V (x1�x2)

Z

d3k g
k

cos(k·(x1�x2)) = E

Z

d3k g
k

cos(k·(x1�x2)).

(4.43)
(Ĥ is spin independent)

• Write cos(kr) = 1
2(e

ikr + e�ikr), then apply on both sides 1p
2⇡

3

R

d3re�ik0
r... and use that

R

d3rei(k
0�k)r = (2⇡)3�(k0 � k):

2✏
k

0
(g

k

0 + g�k

0 )

2
| {z }

= g
k

0 assume

symmetric

�Eg
k

0 = � 1

(2⇡)3

Z

d3k

Z

d3r e�ik
0
rV (r)

g
k

2
(eikr + e�ikr). (4.44)

We define:

V
k

0
k

=
1

(2⇡)3

Z

d3re�ik
0
rV (r)eikr

and then can write (4.44) as

=) g
k

0 (2✏
k

0 � E) = �1

2

Z

d3k (V
k

0
k

g
k

+ V
k

0 (�k) gk). (4.45)

Before proceeding, let us now ask how or why our two Fermions on top of the Fermi sea would
interact, for the specific case of electron in a solid crystal.
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Electrons in crystal:

• Surprisingly these e↵ectively experience a weakly attractive interaction due to
phonon-exchange.

• Negative charge of electron causes distortion of positively charged ion lattice with a
lot of delay, due to inertia of the ions. The resulting local excess charge after the ions
have finally moved, can attract another electron, see sketch.

• This e↵ect can even be dominant over the direct e� � e� Coulomb repulsion for large
distances between the electrons, since the direct Coulomb interaction is heavily screened
by the crystal ions.

• A QM treatment of the phonon mediated interactions in the figure, gives an energy
cuto↵ for these interactions at the Debye frequency ~!D, or equivalently a momentum
cuto↵ ⌘ �k.

We thus take an attractive interaction for V
k

0
k

and assume it to be constant below the cuto↵ for
simplicity:

V
k

0
k

=

(

�|V | ; kF < |k|, |k0 | < kF +�k  Debye cuto↵

0 ; otherwise
(4.46)

Hence V
k

0
k

= V
k

0 (�k). Setting V
k

0
k

= 0 for |k|, |k0 | < kF incorporates the fact that due to the
filled Fermi sea in the background, electrons cannot get scattered to these momenta through any
interaction 5.

Our Schrödinger equation (Eq. (4.45)) can then be written as

g
k

0 =
+|V |

(2✏
k

0 � E)

Z

d3k

�

�

�

�

k:k
F

<|k|<k
F

+�k

g
k

(4.47)

Next we perform the integral
R

d3k on both sides and cancel terms
R

d3kg
k

, to reach

1

|V | =
Z

d3k

�

�

�

�

k:k
F

<|k|<k
F

+�k

1

(2✏
k

� E)
.

We convert the integral to spherical polar coordinates and reach

1

|V | = (4⇡)

Z k
F

+�k

k
F

dk
k2

(2✏k � E)
. (4.48)

5Note, that we can interpret k as indicating both(⇤), the relative momentum of the pair p

rel

= ~k, or the
momentum of one of the members of the pair, e.g. p

1

= ~k (the other member has momentum p

2

= �p

1

in that
case. The constraints written above on possible values of k arise from the latter view.
(⇤)[This slightly confusing fact is due to the need to have CM momentum k

CM

⇡ 0 and the relative momentum being
defined as p

rel

= (p
1

� p

2

)/2. See some texts on QM of the two-body problem. One way to justify this, is that we
want

⇥
r̂, p̂

rel

⇤
= i~, where r̂ = x̂

1

+ x̂

2

]
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Change integration variable to energy dk = m/~2k d✏

1

|V | =
✓

4⇡m

~2

◆

Z ✏
F

+~!
D

✏
F

d✏

⇡ kF due to ~!D ⌧ ✏F
z}|{

k

(2✏� E)
. (4.49)

We finally arrive at

1

|V | = N
Z ✏

F

+~!
D

✏
F

d✏

(2✏� E)
=

N
2

log

✓

2EF � E + 2~!D

2EF � E

◆

, (4.50)

where we have used the shortcut notation N = 4⇡mkF /~2. For N|V | ⌧ 1 (weak coupling
approximation), we can solve this for E and then obtain the

Cooper pair energy:

Epair = E = 2EF � 2~!D exp



� 2

N|V |
�

. (4.51)

(size � inter-particle distance in medium)

Comments:

• E < 2EF for arbitrarily weak interactions. This signals an instability of the Fermi-sea towards
bound states (Cooper pairs) (relative to EF ). (Unlike the repulsion case, non-interacting
scenario is not a good starting point here.)

• A cooper pair is a bound state of Fermions above the Fermi sea, bound together by very weak
attractive, phonon-mediated interactions.

• In the discussion in this section, we only concluded that the Cooper pair is a bound-state
since the pairing gives a negative energy shift to the energy of two unpaired Fermions on
the Fermi surface. This view is further corroborated when evaluating the coe�cients g

k

to
first write the wave function of a Cooper pair first in Fourier space, and then in position
space. One finds a wavefunction for relative motion  0(x,y)

1p
2
(| "# i� | #" i), with symmetric

 0(x,y), that goes to zero for large |x�y|, hence is a bound state. See [A. Kadin, Journal of
Superconductivity and Novel Magnetism, “Spatial Structure of the Cooper Pair’’ (2007)] for
a discussion of the spatial Cooper pair wave function.

• For repulsive interactions E > 2EF (no problem).

• Without blocked Fermi-sea (let
R ~!

D

0 d✏ in Eq. (4.50)), we get E > 0 (no bound states).

• The size (orbital radius)( of a Cooper pair is typically much larger than the inter-particle
distance in medium.

• Without Debye cuto↵: Eq. (4.50) is UV divergent! need regularisation/renormalisation, see
section 3.5.2.
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The last point is the reason why we did the calculation for a solid-state setup rather cold atom
Fermion gases: In the Fermi-gas there is no natural cuto↵, so the calculation would need renormali-
sation, which we want to avoid here. But Cooper-pairs form in cold atomic Fermi gases for the same
reason as in an electron gas. One finds a

Cooper pair energy in an atomic Fermi gas that is a spin-mixture of " and #:

Epair = E = 2EF � 2EF exp



� ⇡

2kF |as|
�

. (4.52)

This sets the right order of magnitude.

• Roughly, to reach this keep variable k in Eq. (4.49), change cuto↵ from ~!D to ! EF and
use |V | = 4⇡~2|as|/m.

4.10.2 Many Cooper pairs

• In the previous section we saw that an attractively interacting degenerate Fermi-gas is un-
stable to pair formation, but we dealt with a single pair. What happens for many?

• Tight pairs (molecules) would be Bosons, they could condense. What does that cause? But
these pairs are not that tightly bound....

• Also: Now we also want to include all versus all interactions, not just among a single pair as
in section 4.10.

As we did in section 3.3.2 for a BEC, we want to build the statements above into a useful math-
ematical Ansatz for the many-body wave function. Unlike there, we would want to now describe
the condensation of pairs.

In first quantization, we could write

 (x) = P̂F [ 0(x1, x2) 0(x3, x4)... 0(xN�1, xN )] , (4.53)

where  0 is the pairing wave function we had found in section 4.10.1. Here, P̂F is the anti-
symmetrisation operator introduced in Eq. (2.1).

We could write Eq. (4.53) more elegantly as

ĉ†
N | 0 i

for N Cooper pairs, with

ĉ† =

Z

d3x

Z

d3y 0(x,y) ̂
†
"(x) ̂

†
#(y), (4.54)
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the Cooper-pair creation operator.6

Using the operator (4.54), we could write a Cooper pair condensate as a

Coherent state of pairs

| BCSi = N e�ĉ
† | 0 i (4.55)

where, N is normalisation factor, and � the complex number characterising the coherent
state (c.f. ↵ in (2.42)).

• If ĉ† was a bosonic operator, this would be analogous to our earlier treatments of BEC. But in
general, we can neither clearly associate commutation, nor anti-commutation relations with
ĉ†.

• We need some more powerful theory....

4.10.3 BCS-Theory

Let us consider the BCS Many-body theory of Fermion pairing due to Bardeen-Cooper-Schrie↵er,
which also explains superconductivity. Instead of attempting to deal with Cooper pairs, this starts
out with the following trick Where for a BEC, we had assumed a non-zero mean-field, now we can
assume a

non-zero pairing-field: (also “Order parameter”)

0 6= �(x) = U0h ̂"(x) ̂#(x)i (4.56)

• It shall turn out only after we did the ensuing calculation, that this assumption is in fact
related to Cooper pairing.

• Clearly (4.56) involves an assumption on the many-body quantum state. All states that we
find in the following, have to be checked for consistency with (4.56) in the end.

• For the moment just take (4.56) as a mathematical assumption, and let’s see where it leads
us....

6To see that this name makes sense, write ĉ

†| 0 i and apply the field operators to the vacuum to reach a Fermionic
Fock state |y #, z " i expressed using the position basis. Then write the position-space representation: hx0

y

0 |ĉ†| 0 i.
Using hx |x0 i = �(x� x

0), you should find the result discussed at the end of section 4.10.1.
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From these initial considerations, we will now approximately diagonalize the interacting
Hamiltonian (4.30) with U0 < 0, assuming equal numbers of ", # Fermions in a homogeneous
system.

We “simplify” the interaction term as

U0 ̂
†
"(x) ̂

†
#(x) ̂#(x) ̂"(x) ⇡ 1

2

⇢

h ̂†
"(x) ̂

†
#(x)i ̂#(x) ̂"(x) + h ̂#(x) ̂"(x)i ̂†

"(x) ̂
†
#(x) + h ̂†

"(x) ̂"(x)i †
#(x) ̂#(x)

(4.57)

+ h ̂†
#(x) ̂#(x)i †

"(x) ̂"(x)�
✓

h ̂†
"(x) ̂#(x)i †

#(x) ̂"(x) + h ̂†
#(x) ̂"(x)i †

"(x) ̂#(x)

◆�

.

(4.58)

Comments:

• This is motivated again by Wick’s theorem (3.86), use Fermionic signs as discussed
earlier.

• Wick’s theorem gets some minus signs when Fermions are involved.

• The red factor of 1/2 is required to make the assumption consistent with Wick’s theo-
rem. I am confused as it is not there in some of the literature.

We further define:

Hartree fields U"(x) = U0h ̂†
"(x) ̂"(x)i (same for #) (4.59)

Fock fields F"(x) = U0h ̂†
"(x) ̂#(x)i (same for "$#) (4.60)

• In the paired state (Eq. (4.55)), F",# = 0 (Proof ! Assignment 6).

• In a homogeneous system, �(x) = � (� 2 R), U"(x) = U#(x) = U can be constant. Note:
U 6= U0, but includes it.

From (4.58) we now have:

U0 ̂
†
"(x) ̂

†
#(x) ̂#(x) ̂"(x) ⇡ �⇤ ̂#(x) ̂"(x) +� ̂

†
"(x) ̂

†
#(x)

+ U
�

 ̂†
"(x) ̂"(x) +  ̂

†
#(x) ̂#(x)

�

.
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Finally, we re-assemble the Hamiltonian (4.30) and augment it to a grand-canonical one K̂ =
Ĥ � µN̂ :

K̂ =
X

s=",#

Z

d3x  ̂†
s(x)



� ~2r2

2m
+ U � µ

�

 ̂s(x)

+

Z

d3x
h

�⇤ ̂#(x) ̂"(x) +�  ̂
†
"(x) ̂

†
#(x)

i

.

In the homogeneous case, it is again simpler to work in the momentum basis. As we did for (4.33),
we reach the

BCS/pairing Hamiltonian:

K̂ = ĤBCS =
X

k,s=",#
⇠
k

â†�kâ�k +�
X

k

�

â#kâ"(�k) + â†"(�k)â
†
#k
�

(4.61)

where,

⇠
k

=
~2k2
2m

+ U � µ.

• In section 3.4, we had kept only Bose-gas excitations up to order �̂2, and then diagonalized
the Hamiltonian using the Bogoliubov transformation (e.g. Eq. (3.66)).

• This trick works generically for Hamiltonians up to quadratic in â, â†, thus also here, for
Eq. (4.61) . Here we define the

Bogoliubov-transformation (BCS-system)

↵̂"k = u
k

â"k � v
k

â†#(�k)

↵̂#k = u
k

â#k + v
k

â†"(�k) (4.62)

Comparison to BEC: In Chapter-3, we were more ambitious and did the Bogoliubov
transformation directly for an inhomogeneous system. For the homogeneous case, Eq. (3.66)
gives:

↵̂
k

= u
k

â
k

+ v
k

â†
k

, (4.63)

which is quite similar to (4.62). To reach this, use  ̂(x) =
R

d3k âkp
2⇡

3

'
k

(x) and the definition

of a � function.

The quasi-particle operators (Eq. (4.62)) should satisfy Fermi commutation relations:

n

↵̂sk, ↵̂
†
s0k0

o

exercise
== (u2

k

+ v2
k

)�
kk

0 �ss0 .
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We thus have to require the normalisation u2
k

+ v2
k

= 1.

Using the latter, we can derive the

inverse Bogoliubov transformation (Proof ! exercise, signs might be wrong)

â"k = u
k

↵̂"k � v
k

↵̂†
#(�k)

â#k = u
k

↵̂#k + v
k

↵̂†
"(�k). (4.64)

Inserting Eq. (4.62) into Eq. (4.61) gives

K̂ =
X

k

nh⇣

⇠
k

u
k

+�v
k

⌘

u
k

�
⇣

⇠
k

v
k

��u
k

⌘

v
k

i⇣

↵̂†
"k↵̂"k + ↵̂†

#k↵̂#k

⌘

+
h⇣

�v
k

+ ⇠
k

u
k

⌘

v
k

�
⇣

�u
k

� ⇠
k

v
k

⌘

u
k

i⇣

↵̂†
#k↵̂"(�k) + ↵̂†

"(�k)↵̂#k

⌘

+ 2⇠
k

v2
k

� 2�u
k

v
k

o

(steps see p.786)

Detailed steps: Note: (u
k

= u�k

, v
k

= v�k

from parity invariance).

K̂ =
X

k

⇠
k

h⇣

â†"k
z }| {

u
k

↵̂†
"k � v

k

↵̂#(�k)

⌘⇣

â"k
z }| {

u
k

↵̂"k � v
k

↵̂†
#(�k)

⌘

+
⇣

â†#k
z }| {

u
k

↵̂†
#k + v

k

↵̂"(�k)

⌘⇣

â#k
z }| {

u
k

↵̂#k + v
k

↵̂†
"(�k)

⌘i

+�
h⇣

u
k

↵̂#k + v
k

↵̂†
"(�k)

| {z }

â#k

⌘⇣

u�k

↵̂"(�k) � v�k

↵̂†
#k

| {z }

â"(�k)

⌘

+
⇣

u�k

↵̂†
"(�k) � v�k

↵̂#k
| {z }

â†"(�k)

⌘⇣

u
k

↵̂†
#k + v

k

↵̂"(�k)
| {z }

â†#k

⌘i

=
X

k

⇠
k

h

u2
k

↵̂†
"k↵̂"k � u

k

v
k

↵̂†
"k↵̂

†
#(�k) � u

k

v
k

↵̂#(�k)↵̂"k + v2
k

↵̂#(�k)↵̂
†
#(�k)

+ u2
k

↵̂†
#k↵̂#k + u

k

v
k

↵̂†
#k↵̂

†
"(�k) + u

k

v
k

↵̂"(�k)↵̂#k + v2
k

↵̂"(�k)↵̂
†
"(�k)

i

+�
h

u2
k

↵̂#k↵̂"(�k) � u
k

v
k

↵̂†
#k↵̂

†
"(�k) + u

k

v
k

↵̂"(�k)↵̂#k � v2
k

↵̂†
"(�k)↵̂#k

+ u2
k

↵̂†
"(�k)↵̂

†
#k + u

k

v
k

↵̂†
"(�k)↵̂"(�k) � u

k

v
k

↵̂#k↵̂
†
#k � v2

k

↵̂#k↵̂"(�k)

i

✓

Use
X

k

⇠
k

↵̂†
(�k)↵̂(�k) =

X

k

⇠
k

↵̂†
k

↵̂
k

, since ⇠
k

= ⇠�k

◆

=
X

k

h

⇠
k

(u2
k

� v2
k

) + 2�u
k

v
k

i

�

↵̂†
"k↵̂"k + ↵̂†

#k↵̂#k
�

+ 2⇠
k

v2
k

� 2�u
k

v
k

| {z }

from commutators

+
h

2⇠
k

u
k

v
k

� (u2
k

� v2
k

)�
i

�

↵̂†
#k↵̂

†
"(�k) + ↵̂"(�k)↵̂#k

�
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By demanding the

Bololiubov de Gennes equations (BCS, Fermions)

⇠
k

u
k

+�v
k

= ✏
k

u
k

�⇠
k

v
k

+�u
k

= ✏
k

v
k

. (4.65)

We diagonalize the Hamiltonian into

K̂ = E0 +
X

k,s

✏
k

↵̂†
k,s↵̂k,s (4.66)

where, E0 =
P

k

2(⇠
k

v2
k

��u
k

v
k

).

• This again has the form of non-interacting quasi-particles.

To find out more about the excitations of the system, we have to solve Eq. (4.65). In matrix form

✓

⇠
k

�
� �⇠

k

◆✓

u
k

v
k

◆

= ✏
k

✓

u
k

v
k

◆

. (4.67)

Using also u2
k

+ v2
k

= 1, we proceed as for (3.68). The solutions are:

u2
k

=
1

2

✓

1 +
⇠
k

✏
k

◆

, v2
k

=
1

2

✓

1� ⇠
k

✏
k

◆

, ✏
k

=
q

⇠2
k

+�2 (4.68)

for particle amplitude u
k

, hole amplitude v
k

and dispersion relation, quasiparticle-energy ✏
k

.

• Recall ⇠
k

= ~2k2/2m+ U � µ = ~2k2/2m� µ̃ (see Eq. (4.61)), using µ̃ = µ� U .

• µ̃ is the Fermi-energy at T = 0.
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Picture in momentum space:

• kf comes in via µ = EF .

• Behavior of u, v logical from particle/hole excitation interpretation (look at ↵†). Above the
Fermi energy, there are no holes to make.

• Crucial feature of dispersion relation is the energy gap ✏min = �. Thus, if � > 0, ✏k is never
zero.

Discussion of diagonalized Hamiltonian (4.66):

Ground state:

Already from (Eq. (4.66)), we can understand the system better:

• As was the case for Bose-gas, the ground state of the system is one with no quasi-particles
(c.f. Eq. (3.63)). We call this state the quasi-particle vacuum | 0i, and define it via

↵̂sk| 0i = 0. (4.69)

(compare ↵̂sk| 0 i = 0 for the bare vacuum)

• We can easily write one such state explicitly, namely

| 0i =
Y

k

0s0

↵̂
k

0s0 | 0 i (4.70)

Reason: This works since ↵̂2
sk = 0 (from {↵̂sk, ↵̂sk} = 0).

We can then use Eq. (4.62) to explicitly obtain the

BCS state:
| BCSi = | 0i =

Y

k

�

u
k

+ v
k

â†
k"â

†
(�k)#

�| 0 i. (4.71)
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• To see this, start by first evaluating ↵̂#(�k)↵̂"(k)| 0 i = · · · = v
k

(u
k

+ v
k

â†
k"â

†
(�k)#)| 0 i. Then

do the same for all other k0. Finally a factor
Q

k

v
k

is taken care of by normalising the state.

• Each possible pair can be either occupied (v) or unoccupied (u).

Ground state energy:

We can now verify that the pairing assumption � 6= 0 has lowered the energy compared to the
unpaired Fermi-sea.

h BCS|K̂| BCSi � hFS|K̂|FSi =
X

k

�

2⇠
k

v2
k

� 2�u
k

v
k

| {z }

E0, see (4.66)

��
|k|<k

F

X

k

2
|{z}

spin

"#

⇠
k

|{z}
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(*): The reason we can restrict the first sum also to |k| < kF is that v2
k

! 0 for |k| > kF ,
see figure on page 98

• Overall we lower the total energy of the system only for a non-zero gap �.

We can now finally actually see that the BCS state we got is the pair-coherent state we guessed in
Eq. (4.55). By going to Fourier-space, we can rewrite the pair operator

ĉ† =

Z

d3x

Z

d3y 0(x,y) ̂
†
"(x) ̂

†
#(y) (see Eq. (4.54))

as

ĉ† =
X

k

'
k

â†"kâ
†
#(�k). (4.72)
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(see details A below). Then, using Campbell Baker Hausdor↵ formula (see assignment 2) and

[â†
k

â†(�k), â
†
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0 â
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0 )
] = 0 (see details A&B below)
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With moving N into the product (detail C below), we reach the the form

BCS state as coherent pair state

| BCSi = e�ĉ
† | 0 i =

Y
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u
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�| 0 i (4.73)
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C: Determine N for which | pair i ⌘ N Q

k

�

1 + �'
k
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is normalized h pair | pair i = 1.

Let us rewrite | 0 i = | 0
k", 0k#, 0�k", 0�k# i ⌦ | 0other k

i, where we have singled out the Fock space
occupations for the forward and backward direction of a specific k, with all possible spins. Since
â±k

0 for any other k0 6= k do not a↵ect this sub-space, we can calculate normalisation separately
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in each of these segments. Then
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In the second equality we have split the products over k such that the symbol only contains half
of space (say with positive kx) and the pieces in the other half are made explicit by writing a part
with k ! (�k). We can now collect the combination in which operators may act so that rhs and
lhs are not orthogonal in the end. You shall find
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We now see that a way to normalize the state is the choice N =
Q

k

1p
1+|�|2|'k|2

. Inserting this into

| pair i and distributing each factor for k from N onto the main expression gives the form (4.73)
if we call u

k

= 1/
p

1 + |�|2|'
k

|2 and v
k

= �'
k

/
p

1 + |�|2|'
k

|2.

4.10.4 Self consistency of BCS-Theory

Before we move to the consequences of the gap, let us calculate it. (Recall, we just assumed
h ̂ ̂i = � at the onset of section 4.10.3.)

Recall that the BCS calculation started with an input non-vanishing pairing field� = U0h ̂"(x) ̂#(x)i.
Now we have actually found the quantum ground state with which to evaluate the right hand side,
namely (4.71). That state depends on u, v and these in turn depend on � through (4.65). We now
have to check that the theory is self consistent, which means we can correctly get � out, when we
evaluate U0h ̂"(x) ̂#(x)i.

Starting state (**): We assume h i pertains to a Fock-state (or thermal mixture of those)
with N

k

Bogoliubov excitations in mode k. For all N
k

= 0, this includes the BCS ground
state (4.71).

Let us evaluate the pairing field. Since we are in a homogenous system �(x) does not depend on x
and is equal to its mean value over space � =

R

d3x�(x)/V, where V is some quantisation volume.
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Then
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from Eq. (4.68), hence
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We divide both sides by �, use U0 = �|U0| and reform exp into tanh and turn the sum into an
integration to reach

the gap-equation (consistency condition)

|U0|
Z

d3k

(2⇡)3
tanh(✏

k

/2kBT )

2✏
k

= 1. (4.77)

• Here we really needed U0 < 0, else this would not have a solution. That means that for
repulsive interactions, our assumption of pairing � 6= 0 could never be consistent.

At zero temperature:
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Z

d3k

(2⇡)3
1

2
q

�2
0 + ⇠2

k

= 1. (4.78)

The main contribution to the integral is from |k| ⇡ kF (there the denominator is smallest, see
picture of � earlier). Near kF , we Taylor expand ⇠

k

to first order:

⇠
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2m
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. (4.79)

Also assuming small U , we then reach

|⇠
k

| ⇡ ~vF (|k|� kF )⌧ EF . (4.80)
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and can find
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==
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where, after inserting U0 = 4⇡~2as/m,

� =
2kF |as|
⇡

. (4.81)

We choose an energy-cuto↵ ✏cut = EF = ~2/2m, then find

zero-temperature gap:

�0 = EF exp

✓

� ⇡

2kF |as|
◆

⌧ EF . (4.82)

• Comparison with Eq. (4.52) now gives a neat interpretation: Since �0 = 1/2|Epair � 2EF |,
i.e., half the binding energy of a Cooper pair: Excitations become gapped, since in order to
make one, I would have to break a pair.

• Since we have found that � 6= 0 in the end, we have in retrospect justified our initial assump-
tion in (4.56). Thus the equation turned out self-consistent (i↵, � is chosen as (4.82)).

We could also evaluate � from Eq. (4.77) for T > 0 and would find

finite-temperature gap

� = 3.06Tc

✓

1� T

Tc

◆1/2

(4.83)

and critical temperature
Tc ⇡ 0.57�0 ⌧ TF . (4.84)

4.10.5 Fermionic superfluidity and superconductivity

Now we come to the main consequence of the paired ground-state and gapped excitation spectrum:
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Return to our discussion in section 3.4.5 of conditions “when an obstacle with velocity v can create
excitations within the quantum gas”. Nothing there was specific to Bosons, so also for Fermions
no excitations are possible below an obstacle velocity of

vcrit = min
k

✓

✏
k

~k

◆

. (4.85)

Wee see from Eq. (4.68) (and the plot underneath it), that

Fermion critical velocity for superconductivity

vcrit =
�

~kF
. (4.86)

Superfluidity arises here because we cannot create excitations of our Cooper-pair condensate.

Because the condensate again has a coherent order parameter �(r) = h ̂"(r) ̂#(r)i 2 C, we again
have the consequence of quantized-circulation =) vortices just as in a BEC.

This is used as an experimental signature of Fermionic superfluidity.

4.11 Outlook

• We looked only at N" = N# = spin-balanced Fermi gases. New physics for spin-imbalanced
N" 6= N#, or impurities N" = 1, N# = N � 1 ! Polarons.

• Fermionic superfluidity and superconductivity are probably one of the most involved and
surprising quantum-many-body e↵ects.

The e↵ect is not there at all in a two-body picture.
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