PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correctness, please contact me if you spot a mistake.

4.10 Attractive interactions, pairing

Lots of credit: Gora Shlyapnikov "Ultracold quantum gases, Degenerate Fermi gases". Part-II (internet).

- On first sight our previous discussion should be equally valid for weak attractive interactions $\left(U_{0}<0\right.$ in Eq. (4.33)).
- However, another phenomenon precludes this, by making a filled Fermi-sea up to E_{F}, a bad starting point: Superfluid pairing.

4.10.1 Two-body Cooper-pairing

- The same pairing phenomenon gives rise to superconductivity in condensed matter systems (example D in section 2.3.1, free electron gas), we will discuss the condensed matter case here, not the cold-atom case, for a reason given at end of this section.

Assume a degenerate Fermi system at $T=0 \Longrightarrow$ all momentum states filled up to k_{F}. We assume for simplicity that these particles don't interact, but importantly Pauli-block all states up to $|k|=k_{F}$. (see section 2.2.2):

Now we add two interacting particles on top of this Fermi-sea, with Hamiltonian

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m}\left(\nabla_{\mathbf{x}_{1}}^{2}+\nabla_{\mathbf{x}_{2}}^{2}\right)+V(\underbrace{\mathbf{x}_{1}-\mathbf{x}_{2}}_{\equiv \mathbf{r}}) . \tag{4.41}
\end{equation*}
$$

We make the Ansatz

$$
\begin{equation*}
\psi_{0}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\frac{1}{\sqrt{2 \pi}^{3}} \int d^{3} \mathbf{k} \frac{g_{\mathbf{k}}}{\sqrt{\mathcal{V}}} \underbrace{\cos \left(\mathbf{k} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)}_{\text {symmetric }} \frac{1}{\sqrt{2}}[\underbrace{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}_{\text {anti-symmetric }}] \tag{4.42}
\end{equation*}
$$

for the complete wavefunction including relative motion and spin, but ignoring the irrelevant center-of-mass co-ordinate. Note that the Ansatz has the correct symmetry for Fermions.

Insertion into relative-motion Schrödinger equation following from (4.41):

$$
\begin{equation*}
\int d^{3} \mathbf{k} \underbrace{\frac{\hbar^{2} \mathbf{k}^{2}}{m}}_{\equiv 2 \epsilon_{\mathbf{k}}} g_{\mathbf{k}} \cos \left(\mathbf{k} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)+V\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \int d^{3} \mathbf{k} g_{\mathbf{k}} \cos \left(\mathbf{k} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)=E \int d^{3} \mathbf{k} g_{\mathbf{k}} \cos \left(\mathbf{k} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right) \tag{4.43}
\end{equation*}
$$

(\hat{H} is spin independent)

- Write $\cos (\mathbf{k r})=\frac{1}{2}\left(e^{i \mathbf{k r}}+e^{-i \mathbf{k r}}\right)$, then apply on both sides $\frac{1}{\sqrt{2 \pi}^{3}} \int d^{3} \mathbf{r} e^{-i \mathbf{k}^{\prime} \mathbf{r}} \ldots$ and use that $\int d^{3} \mathbf{r} e^{i\left(\mathbf{k}^{\prime}-\mathbf{k}\right) \mathbf{r}}=(2 \pi)^{3} \delta\left(\mathbf{k}^{\prime}-\mathbf{k}\right)$:

$$
\begin{equation*}
2 \epsilon_{\mathbf{k}^{\prime}} \underbrace{\frac{\left(g_{\mathbf{k}^{\prime}}+g_{-\mathbf{k}^{\prime}}\right)}{2}}_{\substack{g_{\mathbf{k}^{\prime}} \text { assume } \\ \text { symmetric }}}-E g_{\mathbf{k}^{\prime}}=-\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{k} \int d^{3} \mathbf{r} e^{-i \mathbf{k}^{\prime} \mathbf{r}} V(\mathbf{r}) \frac{g_{\mathbf{k}}}{2}\left(e^{i \mathbf{k r}}+e^{-i \mathbf{k r} \mathbf{r}}\right) \tag{4.44}
\end{equation*}
$$

We define:

$$
V_{\mathbf{k}^{\prime} \mathbf{k}}=\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{r} e^{-i \mathbf{k}^{\prime} \mathbf{r}} V(\mathbf{r}) e^{i \mathbf{k r}}
$$

and then can write (4.44) as

$$
\begin{equation*}
\Longrightarrow g_{\mathbf{k}^{\prime}}\left(2 \epsilon_{\mathbf{k}^{\prime}}-E\right)=-\frac{1}{2} \int d^{3} \mathbf{k}\left(V_{\mathbf{k}^{\prime} \mathbf{k}} g_{\mathbf{k}}+V_{\mathbf{k}^{\prime}(-\mathbf{k})} g_{\mathbf{k}}\right) . \tag{4.45}
\end{equation*}
$$

Before proceeding, let us now ask how or why our two Fermions on top of the Fermi sea would interact, for the specific case of electron in a solid crystal.

Electrons in crystal:

- Surprisingly these effectively experience a weakly attractive interaction due to phonon-exchange.

- Negative charge of electron causes distortion of positively charged ion lattice with a lot of delay, due to inertia of the ions. The resulting local excess charge after the ions have finally moved, can attract another electron, see sketch.
- This effect can even be dominant over the direct $e^{-}-e^{-}$Coulomb repulsion for large distances between the electrons, since the direct Coulomb interaction is heavily screened by the crystal ions.
- A QM treatment of the phonon mediated interactions in the figure, gives an energy cutoff for these interactions at the Debye frequency $\hbar \omega_{D}$, or equivalently a momentum cutoff $\equiv \Delta k$.

We thus take an attractive interaction for $V_{\mathbf{k}^{\prime} \mathbf{k}}$ and assume it to be constant below the cutoff for simplicity:

$$
V_{\mathbf{k}^{\prime} \mathbf{k}}= \begin{cases}-|V| & ; k_{F}<|\mathbf{k}|,\left|\mathbf{k}^{\prime}\right|<k_{F}+\Delta k \leftarrow \text { Debye cutoff } \tag{4.46}\\ 0 & ; \text { otherwise }\end{cases}
$$

Hence $V_{\mathbf{k}^{\prime} \mathbf{k}}=V_{\mathbf{k}^{\prime}(-\mathbf{k})}$. Setting $V_{\mathbf{k}^{\prime} \mathbf{k}}=0$ for $|\mathbf{k}|,\left|\mathbf{k}^{\prime}\right|<k_{F}$ incorporates the fact that due to the filled Fermi sea in the background, electrons cannot get scattered to these momenta through any interaction ${ }^{5}$.

Our Schrödinger equation (Eq. (4.45)) can then be written as

$$
\begin{equation*}
g_{\mathbf{k}^{\prime}}=\left.\frac{+|V|}{\left(2 \epsilon_{\mathbf{k}^{\prime}}-E\right)} \int d^{3} \mathbf{k}\right|_{\mathbf{k}: k_{F}<|\mathbf{k}|<k_{F}+\Delta k} g_{\mathbf{k}} \tag{4.47}
\end{equation*}
$$

Next we perform the integral $\int d^{3} \mathbf{k}$ on both sides and cancel terms $\int d^{3} \mathbf{k} g_{\mathbf{k}}$, to reach

$$
\frac{1}{|V|}=\left.\int d^{3} \mathbf{k}\right|_{\mathbf{k}: k_{F}<|\mathbf{k}|<k_{F}+\Delta k} \frac{1}{\left(2 \epsilon_{\mathbf{k}}-E\right)}
$$

We convert the integral to spherical polar coordinates and reach

$$
\begin{equation*}
\frac{1}{|V|}=(4 \pi) \int_{k_{F}}^{k_{F}+\Delta k} d k \frac{k^{2}}{\left(2 \epsilon_{k}-E\right)} \tag{4.48}
\end{equation*}
$$

[^0]Change integration variable to energy $d k=m / \hbar^{2} k d \epsilon$

$$
\frac{1}{|V|}=\left(\frac{4 \pi m}{\hbar^{2}}\right) \int_{\epsilon_{F}}^{\epsilon_{F}+\hbar \omega_{D}} d \epsilon \frac{\overbrace{k} \frac{k_{F} \text { due to } \hbar \omega_{D} \ll \epsilon_{F}}{(2 \epsilon-E)} .}{}
$$

We finally arrive at

$$
\begin{equation*}
\frac{1}{|V|}=\mathcal{N} \int_{\epsilon_{F}}^{\epsilon_{F}+\hbar \omega_{D}} \frac{d \epsilon}{(2 \epsilon-E)}=\frac{\mathcal{N}}{2} \log \left(\frac{2 E_{F}-E+2 \hbar \omega_{D}}{2 E_{F}-E}\right), \tag{4.50}
\end{equation*}
$$

where we have used the shortcut notation $\mathcal{N}=4 \pi m k_{F} / \hbar^{2}$. For $\mathcal{N}|V| \ll 1$ (weak coupling approximation), we can solve this for E and then obtain the

Cooper pair energy:

$$
\begin{equation*}
E_{\mathrm{pair}}=E=2 E_{F}-2 \hbar \omega_{D} \exp \left[-\frac{2}{\mathcal{N}|V|}\right] \tag{4.51}
\end{equation*}
$$

(size \gg inter-particle distance in medium)

Comments:

- $E<2 E_{F}$ for arbitrarily weak interactions. This signals an instability of the Fermi-sea towards bound states (Cooper pairs) (relative to E_{F}). (Unlike the repulsion case, non-interacting scenario is not a good starting point here.)
- A cooper pair is a bound state of Fermions above the Fermi sea, bound together by very weak attractive, phonon-mediated interactions.
- In the discussion in this section, we only concluded that the Cooper pair is a bound-state since the pairing gives a negative energy shift to the energy of two unpaired Fermions on the Fermi surface. This view is further corroborated when evaluating the coefficients $g_{\mathbf{k}}$ to first write the wave function of a Cooper pair first in Fourier space, and then in position space. One finds a wavefunction for relative motion $\psi_{0}(\mathbf{x}, \mathbf{y}) \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$, with symmetric $\psi_{0}(\mathbf{x}, \mathbf{y})$, that goes to zero for large $|\mathbf{x}-\mathbf{y}|$, hence is a bound state. See [A. Kadin, Journal of Superconductivity and Novel Magnetism, "Spatial Structure of the Cooper Pair" (2007)] for a discussion of the spatial Cooper pair wave function.
- For repulsive interactions $E>2 E_{F}$ (no problem).
- Without blocked Fermi-sea (let $\int_{0}^{\hbar \omega_{D}} d \epsilon$ in Eq. (4.50)), we get $E>0$ (no bound states).
- The size (orbital radius)(of a Cooper pair is typically much larger than the inter-particle distance in medium.
- Without Debye cutoff: Eq. (4.50) is UV divergent \rightarrow need regularisation/renormalisation, see section 3.5.2.

The last point is the reason why we did the calculation for a solid-state setup rather cold atom Fermion gases: In the Fermi-gas there is no natural cutoff, so the calculation would need renormalisation, which we want to avoid here. But Cooper-pairs form in cold atomic Fermi gases for the same reason as in an electron gas. One finds a

Cooper pair energy in an atomic Fermi gas that is a spin-mixture of \uparrow and \downarrow :

$$
\begin{equation*}
E_{\text {pair }}=E=2 E_{F}-2 E_{F} \exp \left[-\frac{\pi}{2 k_{F}\left|a_{s}\right|}\right] \tag{4.52}
\end{equation*}
$$

This sets the right order of magnitude.

- Roughly, to reach this keep variable k in Eq. (4.49), change cutoff from $\hbar \omega_{D}$ to $\rightarrow E_{F}$ and use $|V|=4 \pi \hbar^{2}\left|a_{s}\right| / m$.

4.10.2 Many Cooper pairs

- In the previous section we saw that an attractively interacting degenerate Fermi-gas is unstable to pair formation, but we dealt with a single pair. What happens for many?
- Tight pairs (molecules) would be Bosons, they could condense. What does that cause? But these pairs are not that tightly bound....
- Also: Now we also want to include all versus all interactions, not just among a single pair as in section 4.10 .

As we did in section 3.3 .2 for a BEC, we want to build the statements above into a useful mathematical Ansatz for the many-body wave function. Unlike there, we would want to now describe the condensation of pairs.

In first quantization, we could write

$$
\begin{equation*}
\psi(\mathbf{x})=\hat{\mathcal{P}}_{F}\left[\psi_{0}\left(x_{1}, x_{2}\right) \psi_{0}\left(x_{3}, x_{4}\right) \ldots \psi_{0}\left(x_{N-1}, x_{N}\right)\right] \tag{4.53}
\end{equation*}
$$

where ψ_{0} is the pairing wave function we had found in section 4.10.1. Here, $\hat{\mathcal{P}}_{F}$ is the antisymmetrisation operator introduced in Eq. (2.1).

We could write Eq. (4.53) more elegantly as

$$
\hat{c}^{\dagger^{N}}|0\rangle
$$

for N Cooper pairs, with

$$
\begin{equation*}
\hat{c}^{\dagger}=\int d^{3} \mathbf{x} \int d^{3} \mathbf{y} \psi_{0}(\mathbf{x}, \mathbf{y}) \hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{y}) \tag{4.54}
\end{equation*}
$$

the Cooper-pair creation operator. ${ }^{6}$
Using the operator (4.54), we could write a Cooper pair condensate as a

Coherent state of pairs

$$
\begin{equation*}
\left|\psi_{\mathrm{BCS}}\right\rangle=\mathcal{N} e^{\gamma \hat{c}^{\dagger}}|0\rangle \tag{4.55}
\end{equation*}
$$

where, \mathcal{N} is normalisation factor, and γ the complex number characterising the coherent state (c.f. α in (2.42)).

- If \hat{c}^{\dagger} was a bosonic operator, this would be analogous to our earlier treatments of BEC. But in general, we can neither clearly associate commutation, nor anti-commutation relations with \hat{c}^{\dagger}.
- We need some more powerful theory....

4.10.3 BCS-Theory

Let us consider the BCS Many-body theory of Fermion pairing due to Bardeen-Cooper-Schrieffer, which also explains superconductivity. Instead of attempting to deal with Cooper pairs, this starts out with the following trick Where for a BEC, we had assumed a non-zero mean-field, now we can assume a
non-zero pairing-field: (also "Order parameter")

$$
\begin{equation*}
0 \neq \Delta(\mathbf{x})=U_{0}\left\langle\hat{\Psi}_{\uparrow}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right\rangle \tag{4.56}
\end{equation*}
$$

- It shall turn out only after we did the ensuing calculation, that this assumption is in fact related to Cooper pairing.
- Clearly (4.56) involves an assumption on the many-body quantum state. All states that we find in the following, have to be checked for consistency with (4.56) in the end.
- For the moment just take (4.56) as a mathematical assumption, and let's see where it leads us....

[^1]From these initial considerations, we will now approximately diagonalize the interacting Hamiltonian (4.30) with $U_{0}<0$, assuming equal numbers of \uparrow, \downarrow Fermions in a homogeneous system.

We "simplify" the interaction term as

$$
\begin{align*}
U_{0} \hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x}) & \approx \frac{1}{2}\left\{\left\langle\hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{x})\right\rangle \hat{\Psi}_{\downarrow}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})+\left\langle\hat{\Psi}_{\downarrow}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})\right\rangle \hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{x})+\left\langle\hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})\right\rangle \psi_{\downarrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right. \tag{4.57}\\
& \left.+\left\langle\hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right\rangle \psi_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})-\left(\left\langle\hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right\rangle \psi_{\downarrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})+\left\langle\hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})\right\rangle \psi_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right)\right\} . \tag{4.58}
\end{align*}
$$

Comments:

- This is motivated again by Wick's theorem (3.86), use Fermionic signs as discussed earlier.
- Wick's theorem gets some minus signs when Fermions are involved.
- The red factor of $1 / 2$ is required to make the assumption consistent with Wick's theorem. I am confused as it is not there in some of the literature.

We further define:

$$
\begin{array}{lll}
\text { Hartree fields } & \mathcal{U}_{\uparrow}(\mathbf{x})=U_{0}\left\langle\hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})\right\rangle & (\text { same for } \downarrow) \\
\text { Fock fields } & \mathcal{F}_{\uparrow}(\mathbf{x})=U_{0}\left\langle\hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right\rangle & (\text { same for } \uparrow \leftrightarrow \downarrow)
\end{array}
$$

- In the paired state (Eq. (4.55)), $\mathcal{F}_{\uparrow, \downarrow}=0$ (Proof \rightarrow Assignment 6).
- In a homogeneous system, $\Delta(\mathbf{x})=\Delta(\Delta \in \mathbb{R}), \mathcal{U}_{\uparrow}(\mathbf{x})=\mathcal{U}_{\downarrow}(\mathbf{x})=U$ can be constant. Note: $U \neq U_{0}$, but includes it.

From (4.58) we now have:

$$
\begin{aligned}
U_{0} \hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x}) & \approx \Delta^{*} \hat{\Psi}_{\downarrow}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})+\Delta \hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{x}) \\
& +U\left(\hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})+\hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right) .
\end{aligned}
$$

Finally, we re-assemble the Hamiltonian (4.30) and augment it to a grand-canonical one $\hat{K}=$ $\hat{H}-\mu \hat{N}$:

$$
\begin{aligned}
\hat{K} & =\sum_{s=\uparrow, \downarrow} \int d^{3} \mathbf{x} \hat{\Psi}_{s}^{\dagger}(\mathbf{x})\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+U-\mu\right] \hat{\Psi}_{s}(\mathbf{x}) \\
& +\int d^{3} \mathbf{x}\left[\Delta^{*} \hat{\Psi}_{\downarrow}(\mathbf{x}) \hat{\Psi}_{\uparrow}(\mathbf{x})+\Delta \hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{x})\right] .
\end{aligned}
$$

In the homogeneous case, it is again simpler to work in the momentum basis. As we did for (4.33), we reach the

BCS/pairing Hamiltonian:

$$
\begin{equation*}
\hat{K}=\hat{H}_{\mathrm{BCS}}=\sum_{\mathbf{k}, s=\uparrow, \downarrow} \xi_{\mathbf{k}} \hat{a}_{\sigma \mathbf{k}}^{\dagger} \hat{a}_{\sigma \mathbf{k}}+\Delta \sum_{\mathbf{k}}\left(\hat{a}_{\downarrow \mathbf{k}} \hat{a}_{\uparrow(-\mathbf{k})}+\hat{a}_{\uparrow(-\mathbf{k})}^{\dagger} \hat{a}_{\downarrow \mathbf{k}}^{\dagger}\right) \tag{4.61}
\end{equation*}
$$

where,

$$
\xi_{\mathbf{k}}=\frac{\hbar^{2} k^{2}}{2 m}+U-\mu
$$

- In section 3.4, we had kept only Bose-gas excitations up to order $\hat{\chi}^{2}$, and then diagonalized the Hamiltonian using the Bogoliubov transformation (e.g. Eq. (3.66)).
- This trick works generically for Hamiltonians up to quadratic in $\hat{a}, \hat{a}^{\dagger}$, thus also here, for Eq. (4.61) . Here we define the

Bogoliubov-transformation (BCS-system)

$$
\begin{align*}
& \hat{\alpha}_{\uparrow \mathbf{k}}=u_{\mathbf{k}} \hat{a}_{\uparrow \mathbf{k}}-v_{\mathbf{k}} \hat{a}_{\downarrow(-\mathbf{k})}^{\dagger} \\
& \hat{\alpha}_{\downarrow \mathbf{k}}=u_{\mathbf{k}} \hat{a}_{\downarrow \mathbf{k}}+v_{\mathbf{k}} \hat{a}_{\uparrow(-\mathbf{k})}^{\dagger} \tag{4.62}
\end{align*}
$$

Comparison to BEC: In Chapter-3, we were more ambitious and did the Bogoliubov transformation directly for an inhomogeneous system. For the homogeneous case, Eq. (3.66) gives:

$$
\begin{equation*}
\hat{\alpha}_{\mathbf{k}}=u_{\mathbf{k}} \hat{a}_{\mathbf{k}}+v_{\mathbf{k}} \hat{a}_{\mathbf{k}}^{\dagger}, \tag{4.63}
\end{equation*}
$$

which is quite similar to (4.62). To reach this, use $\hat{\Psi}(\mathbf{x})=\int d^{3} \mathbf{k} \frac{\hat{a}_{\mathbf{k}}}{\sqrt{2 \pi}^{3}} \varphi_{\mathbf{k}}(\mathbf{x})$ and the definition of a δ function.

The quasi-particle operators (Eq. (4.62)) should satisfy Fermi commutation relations:

$$
\left\{\hat{\alpha}_{s \mathbf{k}}, \hat{\alpha}_{s^{\prime} \mathbf{k}^{\prime}}^{\dagger}\right\} \stackrel{\text { exercise }}{=}\left(u_{\mathbf{k}}^{2}+v_{\mathbf{k}}^{2}\right) \delta_{\mathbf{k k}^{\prime}} \delta_{s s^{\prime}} .
$$

We thus have to require the normalisation $u_{\mathbf{k}}^{2}+v_{\mathbf{k}}^{2}=1$.
Using the latter, we can derive the
inverse Bogoliubov transformation (Proof \rightarrow exercise, signs might be wrong)

$$
\begin{align*}
& \hat{a}_{\uparrow \mathbf{k}}=u_{\mathbf{k}} \hat{\alpha}_{\uparrow \mathbf{k}}-v_{\mathbf{k}} \hat{\alpha}_{\downarrow(-\mathbf{k})}^{\dagger} \\
& \hat{a}_{\downarrow \mathbf{k}}=u_{\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}+v_{\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger} . \tag{4.64}
\end{align*}
$$

Inserting Eq. (4.62) into Eq. (4.61) gives

$$
\begin{aligned}
\hat{K}=\sum_{\mathbf{k}} & \left\{\left[\left(\xi_{\mathbf{k}} u_{\mathbf{k}}+\Delta v_{\mathbf{k}}\right) u_{\mathbf{k}}-\left(\xi_{\mathbf{k}} v_{\mathbf{k}}-\Delta u_{\mathbf{k}}\right) v_{\mathbf{k}}\right]\left(\hat{\alpha}_{\uparrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\uparrow \mathbf{k}}+\hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\downarrow \mathbf{k}}\right)\right. \\
& +\left[\left(\Delta v_{\mathbf{k}}+\xi_{\mathbf{k}} u_{\mathbf{k}}\right) v_{\mathbf{k}}-\left(\Delta u_{\mathbf{k}}-\xi_{\mathbf{k}} v_{\mathbf{k}}\right) u_{\mathbf{k}}\right]\left(\hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\uparrow(-\mathbf{k})}+\hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger} \hat{\alpha}_{\downarrow \mathbf{k}}\right) \\
& \left.+2 \xi_{\mathbf{k}} v_{\mathbf{k}}^{2}-2 \Delta u_{\mathbf{k}} v_{\mathbf{k}}\right\} \quad \quad \text { (steps see p.786) }
\end{aligned}
$$

Detailed steps: Note: $\left(u_{\mathbf{k}}=u_{-\mathbf{k}}, v_{\mathbf{k}}=v_{-\mathbf{k}}\right.$ from parity invariance $)$.

$$
\begin{aligned}
& \hat{K}=\sum_{\mathbf{k}} \xi_{\mathbf{k}}[(\overbrace{u_{\mathbf{k}} \hat{\alpha}_{\uparrow \mathbf{k}}^{\dagger}-v_{\mathbf{k}} \hat{\alpha}_{\downarrow(-\mathbf{k})}}^{\hat{a}_{\uparrow \mathbf{k}}^{\dagger}})(\overbrace{u_{\mathbf{k}} \hat{\alpha}_{\uparrow \mathbf{k}}-v_{\mathbf{k}} \hat{\alpha}_{\downarrow(-\mathbf{k})}^{\dagger}}^{\hat{a}_{\uparrow \mathbf{k}}})+(\overbrace{u_{\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger}+v_{\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}}^{\hat{a}_{\downarrow \mathbf{k}}^{\dagger}})(\overbrace{u_{\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}+v_{\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger}}^{\hat{a}_{\downarrow \mathbf{k}}})] \\
& +\Delta[(\underbrace{u_{\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}+v_{\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger}}_{\hat{a}_{\downarrow \mathbf{k}}})(\underbrace{u_{-\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}-v_{-\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger}}_{\hat{a}_{\uparrow(-\mathbf{k})}})+(\underbrace{u_{-\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger}-v_{-\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}}_{\hat{a}_{\uparrow(-\mathbf{k})}^{\dagger}})(\underbrace{u_{\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger}+v_{\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}}_{\hat{a}_{\downarrow \mathbf{k}}^{\dagger}})] \\
& =\sum_{\mathbf{k}} \xi_{\mathbf{k}}\left[u_{\mathbf{k}}^{2} \hat{\alpha}_{\uparrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\uparrow \mathbf{k}}-u_{\mathbf{k}} v_{\mathbf{k}} \hat{\alpha}_{\uparrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\downarrow(-\mathbf{k})}^{\dagger}-u_{\mathbf{k}} v_{\mathbf{k}} \hat{\alpha}_{\downarrow(-\mathbf{k})} \hat{\alpha}_{\uparrow \mathbf{k}}+v_{\mathbf{k}}^{2} \hat{\alpha}_{\downarrow(-\mathbf{k})} \hat{\alpha}_{\downarrow(-\mathbf{k})}^{\dagger}\right. \\
& \left.+u_{\mathbf{k}}^{2} \hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\downarrow \mathbf{k}}+u_{\mathbf{k}} v_{\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger}+u_{\mathbf{k}} v_{\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})} \hat{\alpha}_{\downarrow \mathbf{k}}+v_{\mathbf{k}}^{2} \hat{\alpha}_{\uparrow(-\mathbf{k})} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger}\right] \\
& +\Delta\left[u_{\mathbf{k}}^{2} \hat{\alpha}_{\downarrow \mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}-u_{\mathbf{k}} v_{\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger}+u_{\mathbf{k}} v_{\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})} \hat{\alpha}_{\downarrow \mathbf{k}}-v_{\mathbf{k}}^{2} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger} \hat{\alpha}_{\downarrow \mathbf{k}}\right. \\
& \left.+u_{\mathbf{k}}^{2} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger} \hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger}+u_{\mathbf{k}} v_{\mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger} \hat{\alpha}_{\uparrow(-\mathbf{k})}-u_{\mathbf{k}} v_{\mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}} \hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger}-v_{\mathbf{k}}^{2} \hat{\alpha}_{\downarrow \mathbf{k}} \hat{\alpha}_{\uparrow(-\mathbf{k})}\right] \\
& \left(\text { Use } \sum_{\mathbf{k}} \xi_{\mathbf{k}} \hat{\alpha}_{(-\mathbf{k})}^{\dagger} \hat{\alpha}_{(-\mathbf{k})}=\sum_{\mathbf{k}} \xi_{\mathbf{k}} \hat{\alpha}_{\mathbf{k}}^{\dagger} \hat{\alpha}_{\mathbf{k}} \text {, since } \xi_{\mathbf{k}}=\xi_{-\mathbf{k}}\right) \\
& =\sum_{\mathbf{k}}\left[\xi_{\mathbf{k}}\left(u_{\mathbf{k}}^{2}-v_{\mathbf{k}}^{2}\right)+2 \Delta u_{\mathbf{k}} v_{\mathbf{k}}\right]\left(\hat{\alpha}_{\uparrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\uparrow \mathbf{k}}+\hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\downarrow \mathbf{k}}\right)+\underbrace{2 \xi_{\mathbf{k}} v_{\mathbf{k}}^{2}-2 \Delta u_{\mathbf{k}} v_{\mathbf{k}}}_{\text {from commutators }} \\
& +\left[2 \xi_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}}-\left(u_{\mathbf{k}}^{2}-v_{\mathbf{k}}^{2}\right) \Delta\right]\left(\hat{\alpha}_{\downarrow \mathbf{k}}^{\dagger} \hat{\alpha}_{\uparrow(-\mathbf{k})}^{\dagger}+\hat{\alpha}_{\uparrow(-\mathbf{k})} \hat{\alpha}_{\downarrow \mathbf{k}}\right)
\end{aligned}
$$

By demanding the

Bololiubov de Gennes equations (BCS, Fermions)

$$
\begin{align*}
\xi_{\mathbf{k}} u_{\mathrm{k}}+\Delta v_{\mathrm{k}} & =\epsilon_{\mathrm{k}} u_{\mathrm{k}} \\
-\xi_{\mathrm{k}} v_{\mathrm{k}}+\Delta u_{\mathrm{k}} & =\epsilon_{\mathrm{k}} v_{\mathrm{k}} . \tag{4.65}
\end{align*}
$$

We diagonalize the Hamiltonian into

$$
\begin{equation*}
\hat{K}=E_{0}+\sum_{\mathbf{k}, s} \epsilon_{\mathbf{k}} \hat{\alpha}_{\mathbf{k}, s}^{\dagger} \hat{\alpha}_{\mathbf{k}, s} \tag{4.66}
\end{equation*}
$$

where, $E_{0}=\sum_{\mathbf{k}} 2\left(\xi_{\mathbf{k}} v_{\mathbf{k}}^{2}-\Delta u_{\mathbf{k}} v_{\mathbf{k}}\right)$.

- This again has the form of non-interacting quasi-particles.

To find out more about the excitations of the system, we have to solve Eq. (4.65). In matrix form

$$
\left(\begin{array}{cc}
\xi_{\mathrm{k}} & \Delta \tag{4.67}\\
\Delta & -\xi_{\mathrm{k}}
\end{array}\right)\binom{u_{\mathrm{k}}}{v_{\mathrm{k}}}=\epsilon_{\mathrm{k}}\binom{u_{\mathrm{k}}}{v_{\mathrm{k}}}
$$

Using also $u_{\mathbf{k}}^{2}+v_{\mathbf{k}}^{2}=1$, we proceed as for (3.68). The solutions are:

$$
\begin{equation*}
u_{\mathbf{k}}^{2}=\frac{1}{2}\left(1+\frac{\xi_{\mathbf{k}}}{\epsilon_{\mathbf{k}}}\right), v_{\mathbf{k}}^{2}=\frac{1}{2}\left(1-\frac{\xi_{\mathbf{k}}}{\epsilon_{\mathbf{k}}}\right), \epsilon_{\mathbf{k}}=\sqrt{\xi_{\mathbf{k}}^{2}+\Delta^{2}} \tag{4.68}
\end{equation*}
$$

for particle amplitude $u_{\mathbf{k}}$, hole amplitude $v_{\mathbf{k}}$ and dispersion relation, quasiparticle-energy $\epsilon_{\mathbf{k}}$.

- Recall $\xi_{\mathbf{k}}=\hbar^{2} \mathbf{k}^{2} / 2 m+U-\mu=\hbar^{2} \mathbf{k}^{2} / 2 m-\tilde{\mu}$ (see Eq. (4.61)), using $\tilde{\mu}=\mu-U$.
- $\tilde{\mu}$ is the Fermi-energy at $T=0$.

- k_{f} comes in via $\mu=E_{F}$.
- Behavior of u, v logical from particle/hole excitation interpretation (look at α^{\dagger}). Above the Fermi energy, there are no holes to make.
- Crucial feature of dispersion relation is the energy gap $\epsilon_{\min }=\Delta$. Thus, if $\Delta>0, \epsilon_{k}$ is never zero.

Discussion of diagonalized Hamiltonian (4.66):

Ground state:

Already from (Eq. (4.66)), we can understand the system better:

- As was the case for Bose-gas, the ground state of the system is one with no quasi-particles (c.f. Eq. (3.63)). We call this state the quasi-particle vacuum $\left|\psi_{0}\right\rangle$, and define it via

$$
\begin{equation*}
\hat{\alpha}_{s \mathbf{k}}\left|\psi_{0}\right\rangle=0 . \tag{4.69}
\end{equation*}
$$

(compare $\hat{\alpha}_{s \mathbf{k}}|0\rangle=0$ for the bare vacuum)

- We can easily write one such state explicitly, namely

$$
\begin{equation*}
\left|\psi_{0}\right\rangle=\prod_{\mathbf{k}^{\prime} s^{\prime}} \hat{\alpha}_{\mathbf{k}^{\prime} s^{\prime}}|0\rangle \tag{4.70}
\end{equation*}
$$

Reason: This works since $\hat{\alpha}_{s \mathbf{k}}^{2}=0\left(\right.$ from $\left.\left\{\hat{\alpha}_{s \mathbf{k}}, \hat{\alpha}_{s \mathbf{k}}\right\}=0\right)$.

We can then use Eq. (4.62) to explicitly obtain the

BCS state:

$$
\begin{equation*}
\left|\psi_{\mathrm{BCS}}\right\rangle=\left|\psi_{0}\right\rangle=\prod_{\mathbf{k}}\left(u_{\mathbf{k}}+v_{\mathbf{k}} \hat{a}_{\mathbf{k} \uparrow}^{\dagger} \hat{a}_{(-\mathbf{k}) \downarrow}^{\dagger}\right)|0\rangle . \tag{4.71}
\end{equation*}
$$

- To see this, start by first evaluating $\hat{\alpha}_{\downarrow(-\mathbf{k})} \hat{\alpha}_{\uparrow(\mathbf{k})}|0\rangle=\cdots=v_{\mathbf{k}}\left(u_{\mathbf{k}}+v_{\mathbf{k}} \hat{a}_{\mathbf{k} \uparrow}^{\dagger} \hat{a}_{(-\mathbf{k}) \downarrow}^{\dagger}\right)|0\rangle$. Then do the same for all other \mathbf{k}^{\prime}. Finally a factor $\prod_{\mathbf{k}} v_{\mathbf{k}}$ is taken care of by normalising the state.
- Each possible pair can be either occupied (v) or unoccupied (u).

Ground state energy:

We can now verify that the pairing assumption $\Delta \neq 0$ has lowered the energy compared to the unpaired Fermi-sea.

$$
\begin{aligned}
& \left\langle\psi_{\mathrm{BCS}}\right| \hat{K}\left|\psi_{\mathrm{BCS}}\right\rangle-\langle F S| \hat{K}|F S\rangle=\sum_{\mathbf{k}}(\underbrace{2 \xi_{\mathbf{k}} \nu_{\mathbf{k}}^{2}-2 \Delta u_{\mathbf{k}} v_{\mathbf{k}}}_{E_{0}, \text { see (4.66) }})-\sum_{\mathbf{k}}^{|\mathbf{k}|<k_{F}} \underbrace{\begin{array}{c}
2 \\
\text { energy relative } \\
\text { to Fermi-sea }
\end{array}}_{\begin{array}{c}
\text { spin } \\
\uparrow \downarrow
\end{array}} \\
& =\sum_{\mathbf{k}}\{2 v_{\mathbf{k}} \underbrace{\left(\xi_{\mathbf{k}} v_{\mathbf{k}}-\Delta u_{\mathbf{k}}\right)}_{=-\epsilon_{\mathbf{k}} v_{\mathbf{k}}}\}-\sum_{\mathbf{k}}^{|\mathbf{k}|<k_{F}} 2 \xi_{\mathbf{k}} \stackrel{*}{\mid} \sum_{\mathbf{k}}^{|\mathbf{k}|<k_{F}}\left\{-2 \epsilon_{\mathbf{k}} v_{\mathbf{k}}^{2}-2 \xi_{\mathbf{k}}\right\} \\
& \text { Eq. (4.65) } \\
& \stackrel{\mathrm{Eq} .(4.68)}{|\mathbf{k}|<k_{F}} \sum_{\mathbf{k}}\left(-\epsilon_{\mathbf{k}}\left(1-\frac{\xi_{\mathbf{k}}}{\epsilon_{\mathbf{k}}}\right)-2 \xi_{\mathbf{k}}\right)=\sum_{\mathbf{k}} \underbrace{(\underbrace{-\xi_{\mathbf{k}}}_{>0}-\sqrt{\xi_{\mathbf{k}}^{2}+\Delta^{2}})}_{<0}
\end{aligned}
$$

(*): The reason we can restrict the first sum also to $|\mathbf{k}|<k_{F}$ is that $v_{\mathbf{k}}^{2} \rightarrow 0$ for $|k|>k_{F}$, see figure on page 98

- Overall we lower the total energy of the system only for a non-zero gap Δ.

We can now finally actually see that the BCS state we got is the pair-coherent state we guessed in Eq. (4.55). By going to Fourier-space, we can rewrite the pair operator

$$
\begin{equation*}
\hat{c}^{\dagger}=\int d^{3} \mathbf{x} \int d^{3} \mathbf{y} \psi_{0}(\mathbf{x}, \mathbf{y}) \hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{y}) \tag{4.54}
\end{equation*}
$$

as

$$
\begin{equation*}
\hat{c}^{\dagger}=\sum_{\mathbf{k}} \varphi_{\mathbf{k}} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow(-\mathbf{k})}^{\dagger} \tag{4.72}
\end{equation*}
$$

(see details A below). Then, using Campbell Baker Hausdorff formula (see assignment 2) and $\left[\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{(-\mathbf{k})}^{\dagger}, \hat{a}_{\mathbf{k}^{\prime}}^{\dagger} \hat{a}_{\left(-\mathbf{k}^{\prime}\right)}^{\dagger}\right]=0$ (see details A\&B below)

$$
\begin{aligned}
\mathcal{N} e^{\gamma \hat{c}^{\dagger}} & =\mathcal{N} e^{\sum_{\mathbf{k}} \gamma \varphi_{\mathbf{k}} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow(-\mathbf{k})}^{\dagger} \stackrel{(*)}{=}} \mathcal{N} \prod_{\mathbf{k}} e^{\gamma \varphi_{\mathbf{k}} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow(-\mathbf{k})}^{\dagger}} \\
& \stackrel{\text { Fermions }}{=} \mathcal{N} \prod_{\mathbf{k}}\left(1+\gamma \varphi_{\mathbf{k}} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow(-\mathbf{k})}^{\dagger}\right) .
\end{aligned}
$$

With moving \mathcal{N} into the product (detail C below), we reach the the form

BCS state as coherent pair state

$$
\begin{equation*}
\left|\psi_{\mathrm{BCS}}\right\rangle=e^{\gamma \hat{c}^{\dagger}}|0\rangle=\prod_{\mathbf{k}}\left(u_{\mathbf{k}}+v_{\mathbf{k}} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow(-\mathbf{k})}^{\dagger}\right)|0\rangle \tag{4.73}
\end{equation*}
$$

Proof details

A:

$$
\begin{aligned}
\hat{c}^{\dagger}= & \int d^{3} \mathbf{x} \int d^{3} \mathbf{y} \varphi_{0}(\mathbf{x}, \mathbf{y}) \hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{y}) \\
& \left(\text { Use } \hat{\Psi}_{\uparrow}(\mathbf{x})=\sum_{\mathbf{k}} \frac{1}{\sqrt[3]{2 \pi}} \hat{a}_{\uparrow \mathbf{k}} \frac{e^{i \mathbf{k} \cdot \mathbf{x}}}{\sqrt{\mathcal{V}}}\right) \\
= & \frac{1}{\mathcal{V}} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} \frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{x} \int d^{3} \mathbf{y} \varphi_{0}(\mathbf{x}-\mathbf{y}) e^{-i \mathbf{k} \cdot \mathbf{x}} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{y}} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow \mathbf{k}^{\prime}}^{\dagger}
\end{aligned}
$$

change to relative and C.M. co-ordinates $\mathbf{r}=\mathbf{x}-\mathbf{y}, \mathbf{R}=(\mathbf{x}+\mathbf{y}) / 2$

$$
\begin{aligned}
& =\frac{1}{\mathcal{V}} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} \frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{r} \int d^{3} \mathbf{R} \varphi_{0}(\mathbf{r}) e^{-i \mathbf{k} \cdot\left(\mathbf{R}-\frac{\mathbf{r}}{2}\right)} e^{-i \mathbf{k}^{\prime} \cdot\left(\mathbf{R}+\frac{\mathbf{r}}{2}\right)} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow \mathbf{k}^{\prime}}^{\dagger} \\
& =\frac{1}{\mathcal{V}} \sum_{\mathbf{k}, \mathbf{k}^{\prime}}(\underbrace{\left(\frac{\int d^{3} \mathbf{r}}{\sqrt[3]{2 \pi}} \varphi_{0}(\mathbf{r}) e^{-i\left(\frac{\mathbf{k}^{\prime}-\mathbf{k}}{2}\right) \cdot \mathbf{r}}\right.}_{\text {F.T. } \tilde{\varphi}_{0}\left(\frac{\mathbf{k}^{\prime}-\mathbf{k}}{2}\right)})(\underbrace{\frac{\int d^{3} \mathbf{R}}{\sqrt[3]{2 \pi}} e^{-i\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \cdot \mathbf{R}}}_{=\sqrt[3]{2 \pi} \delta\left(\mathbf{k}+\mathbf{k}^{\prime}\right)}) \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow \mathbf{k}^{\prime}}^{\dagger} \\
& =\sum_{\mathbf{k}} \varphi_{\mathbf{k}} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow(-\mathbf{k})}^{\dagger} \text { with } \varphi_{\mathbf{k}}=\frac{\sqrt[3]{2 \pi} \tilde{\varphi}_{0}(-\mathbf{k})}{\mathcal{V}} .
\end{aligned}
$$

B:

$$
\left[\hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow \mathbf{k}}^{\dagger}, \hat{a}_{\uparrow \mathbf{k}^{\prime}}^{\dagger} \hat{a}_{\downarrow \mathbf{k}^{\prime}}^{\dagger}\right]=\hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow \mathbf{k}}^{\dagger} \hat{a}_{\uparrow \mathbf{k}^{\prime}}^{\dagger} \hat{a}_{\downarrow \mathbf{k}^{\prime}}^{\dagger}-\hat{a}_{\uparrow \mathbf{k}^{\prime}}^{\dagger} \hat{a}_{\downarrow \mathbf{k}^{\prime}}^{\dagger} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow \mathbf{k}}^{\dagger} \stackrel{\text { use anti- }}{=} 0
$$

\mathbf{C} : Determine \mathcal{N} for which $\left|\psi_{\text {pair }}\right\rangle \equiv \mathcal{N} \prod_{\mathbf{k}}\left(1+\gamma \varphi_{\mathbf{k}} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow(-\mathbf{k})}^{\dagger}\right)$ is normalized $\left\langle\psi_{\text {pair }} \mid \psi_{\text {pair }}\right\rangle=1$. Let us rewrite $|0\rangle=\left|0_{\mathbf{k} \uparrow}, 0_{\mathbf{k} \downarrow}, 0_{-\mathbf{k} \uparrow}, 0_{-\mathbf{k} \downarrow}\right\rangle \otimes\left|0_{\text {other } \mathbf{k}}\right\rangle$, where we have singled out the Fock space occupations for the forward and backward direction of a specific \mathbf{k}, with all possible spins. Since $\hat{a}_{ \pm \mathbf{k}^{\prime}}$ for any other $\mathbf{k}^{\prime} \neq \mathbf{k}$ do not affect this sub-space, we can calculate normalisation separately
in each of these segments. Then

$$
\begin{align*}
\left\langle\psi_{\text {pair }} \mid \psi_{\text {pair }}\right\rangle & =\mathcal{N}^{2} \prod_{\mathbf{k}, \mathbf{k}^{\prime}}\langle 0|\left(1+\gamma^{*} \varphi_{\mathbf{k}}^{*} \hat{a}_{\downarrow(-\mathbf{k})} \hat{a}_{\uparrow \mathbf{k}}\right)\left(1+\gamma \varphi_{\mathbf{k}} \hat{a}_{\uparrow \mathbf{k}}^{\dagger} \hat{a}_{\downarrow(-\mathbf{k})}^{\dagger}\right)|0\rangle \\
& =\mathcal{N}^{2} \prod_{\mathbf{k}, \mathbf{k}^{\prime}(\text { halfspace })}\langle 0|\left(1+\gamma^{*} \varphi_{\mathbf{k}}^{*} \hat{a}_{\downarrow(-\mathbf{k})} \hat{a}_{\uparrow \mathbf{k}}\right)\left(1+\gamma^{*} \varphi_{-\mathbf{k}}^{*} \hat{a}_{\downarrow(\mathbf{k})} \hat{a}_{\uparrow(-\mathbf{k})}\right) \\
& \times\left(1+\gamma \varphi_{\mathbf{k}}^{\prime} \hat{a}_{\uparrow \mathbf{k}^{\prime}}^{\dagger} \hat{a}_{\downarrow\left(-\mathbf{k}^{\prime}\right)}^{\dagger}\right)\left(1+\gamma \varphi_{-\mathbf{k}^{\prime}} \hat{a}_{\uparrow\left(-\mathbf{k}^{\prime}\right)}^{\dagger} \hat{a}_{\downarrow \mathbf{k}^{\prime}}^{\dagger}\right)|0\rangle \tag{4.74}
\end{align*}
$$

In the second equality we have split the products over \mathbf{k} such that the symbol only contains half of space (say with positive k_{x}) and the pieces in the other half are made explicit by writing a part with $\mathbf{k} \rightarrow(-\mathbf{k})$. We can now collect the combination in which operators may act so that rhs and lhs are not orthogonal in the end. You shall find

$$
\begin{align*}
&\left\langle\psi_{\text {pair }} \mid \psi_{\text {pair }}\right\rangle=\mathcal{N}^{2} \prod_{\mathbf{k}, \mathbf{k}^{\prime}(\text { halfspace })}\left(1+|\gamma|^{2}\left|\varphi_{\mathbf{k}}\right|^{2}\right)\left(1+|\gamma|^{2}\left|\varphi_{\mathbf{k}}^{\prime}\right|^{2}\right)=\mathcal{N}^{2}\left(\prod_{\mathbf{k}(\text { halfspace })}\left(1+|\gamma|^{2}\left|\varphi_{\mathbf{k}}\right|^{2}\right)\right)^{2} \\
& \varphi_{\mathbf{k}}=\varphi_{-\mathbf{k}} \tag{4.75}\\
&=\mathcal{N}^{2} \prod_{\mathbf{k}}\left(1+|\gamma|^{2}\left|\varphi_{\mathbf{k}}\right|^{2}\right)
\end{align*}
$$

We now see that a way to normalize the state is the choice $\mathcal{N}=\prod_{\mathbf{k}} \frac{1}{\sqrt{1+|\gamma|^{2}\left|\varphi_{\mathbf{k}}\right|^{2}}}$. Inserting this into $\left|\psi_{\text {pair }}\right\rangle$ and distributing each factor for \mathbf{k} from \mathcal{N} onto the main expression gives the form (4.73) if we call $u_{\mathbf{k}}=1 / \sqrt{1+|\gamma|^{2}\left|\varphi_{\mathbf{k}}\right|^{2}}$ and $v_{\mathbf{k}}=\gamma \varphi_{\mathbf{k}} / \sqrt{1+|\gamma|^{2}\left|\varphi_{\mathbf{k}}\right|^{2}}$.

4.10.4 Self consistency of BCS-Theory

Before we move to the consequences of the gap, let us calculate it. (Recall, we just assumed $\langle\hat{\Psi} \hat{\Psi}\rangle=\Delta$ at the onset of section 4.10.3.)

Recall that the BCS calculation started with an input non-vanishing pairing field $\Delta=U_{0}\left\langle\hat{\Psi}_{\uparrow}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right\rangle$. Now we have actually found the quantum ground state with which to evaluate the right hand side, namely (4.71). That state depends on u, v and these in turn depend on Δ through (4.65). We now have to check that the theory is self consistent, which means we can correctly get Δ out, when we evaluate $U_{0}\left\langle\hat{\Psi}_{\uparrow}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right\rangle$.

Starting state $\left(^{* *}\right)$: We assume \rangle pertains to a Fock-state (or thermal mixture of those) with $N_{\mathbf{k}}$ Bogoliubov excitations in mode k. For all $N_{\mathbf{k}}=0$, this includes the BCS ground state (4.71).

Let us evaluate the pairing field. Since we are in a homogenous system $\Delta(\mathbf{x})$ does not depend on \mathbf{x} and is equal to its mean value over space $\Delta=\int d^{3} \mathbf{x} \Delta(\mathbf{x}) / \mathcal{V}$, where \mathcal{V} is some quantisation volume.

Then

$$
\begin{aligned}
& \Delta=U_{0} \int d^{3} \mathbf{x}\left\langle\hat{\Psi}_{\uparrow}(\mathbf{x}) \hat{\Psi}_{\downarrow}(\mathbf{x})\right\rangle / \mathcal{V}=\frac{U_{0}}{\mathcal{V}} \sum_{\mathbf{k}} \sum_{\mathbf{k}^{\prime}}\langle\hat{a}_{\uparrow \mathbf{k}} \hat{a}_{\downarrow \mathbf{k}^{\prime}} \underbrace{\int d^{3} \mathbf{x} \frac{\exp \left[i\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \mathbf{x}\right]}{\mathcal{V}}}_{=\delta_{\mathbf{k}, \mathbf{k}^{\prime}}}\rangle \\
&=\frac{U_{0}}{\mathcal{V}} \sum_{\mathbf{k}}\left\langle\hat{a}_{\uparrow \mathbf{k}} \hat{a}_{\downarrow(-\mathbf{k})}\right\rangle \\
& \stackrel{\text { Eq. }}{=} \\
& \qquad \stackrel{(4.64)}{=} \frac{U_{0}}{\mathcal{V}} \int d^{3} \mathbf{k}\left\langle\left(u_{\mathbf{k}} \hat{\alpha}_{\downarrow(-\mathbf{k})}+v_{\mathbf{k}} \hat{\alpha}_{\uparrow \mathbf{k}}^{\dagger}\right)\left(u_{\mathbf{k}} \hat{\alpha}_{\uparrow \mathbf{k}}-v_{\mathbf{k}} \hat{\alpha}_{\downarrow(-\mathbf{k})}^{\dagger}\right)\right\rangle \\
& \stackrel{(* *)}{=}-\frac{U_{0}}{\mathcal{V}} \sum_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}}\left(1-2 N_{\mathbf{k}}\right)
\end{aligned}
$$

where,

$$
N_{\mathbf{k}}=\frac{1}{\exp \left(\epsilon_{\mathbf{k}} / k_{B} T\right)+1}
$$

We have $u_{\mathbf{k}} \nu_{\mathbf{k}}=\Delta / 2 \epsilon_{\mathbf{k}}$ from Eq. (4.68), hence

$$
\begin{equation*}
\Delta=-\frac{U_{0}}{\mathcal{V}} \sum_{\mathbf{k}} \frac{\Delta}{2 \epsilon_{\mathbf{k}}}\left(1-2 \frac{1}{\exp \left(\epsilon_{\mathbf{k}} / k_{B} T\right)+1}\right) \tag{4.76}
\end{equation*}
$$

We divide both sides by Δ, use $U_{0}=-\left|U_{0}\right|$ and reform exp into tanh and turn the sum into an integration to reach
the gap-equation (consistency condition)

$$
\begin{equation*}
\left|U_{0}\right| \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{\tanh \left(\epsilon_{\mathbf{k}} / 2 k_{B} T\right)}{2 \epsilon_{\mathbf{k}}}=1 \tag{4.77}
\end{equation*}
$$

- Here we really needed $U_{0}<0$, else this would not have a solution. That means that for repulsive interactions, our assumption of pairing $\Delta \neq 0$ could never be consistent.

At zero temperature:

$$
\begin{equation*}
\left|U_{0}\right| \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{2 \sqrt{\Delta_{0}^{2}+\xi_{\mathbf{k}}^{2}}}=1 \tag{4.78}
\end{equation*}
$$

The main contribution to the integral is from $|\mathbf{k}| \approx k_{F}$ (there the denominator is smallest, see picture of Δ earlier $)$. Near k_{F}, we Taylor expand $\xi_{\mathbf{k}}$ to first order:

$$
\begin{equation*}
\xi_{\mathbf{k}} \approx \underbrace{\frac{\hbar^{2} k_{F}^{2}}{2 m}}_{E_{F}}+\underbrace{\frac{\hbar^{2}}{m} k_{F}}_{\hbar v_{F}}\left(k-k_{F}\right)+\mathcal{O}\left(k-k_{F}\right)^{2}+U-\underbrace{\mu}_{=E_{F}} \tag{4.79}
\end{equation*}
$$

Also assuming small U, we then reach

$$
\begin{equation*}
\left|\xi_{\mathbf{k}}\right| \approx \hbar v_{F}\left(|\mathbf{k}|-k_{F}\right) \ll E_{F} \tag{4.80}
\end{equation*}
$$

and can find

$$
\Longrightarrow\left|U_{0}\right|(4 \pi) \int_{0}^{\overbrace{\kappa}^{\text {cutoff }}} d k \frac{k^{2}}{2 \sqrt{\Delta_{0}^{2}+\left(\hbar v_{F}\right)^{2}\left(k-k_{F}\right)^{2}}} \stackrel{\text { integration }}{\text { nasty }} \lambda \ln \left(\frac{\epsilon_{c u t}}{\Delta_{0}}\right) \stackrel{!}{=} 1
$$

where, after inserting $U_{0}=4 \pi \hbar^{2} a_{s} / m$,

$$
\begin{equation*}
\lambda=\frac{2 k_{F}\left|a_{s}\right|}{\pi} \tag{4.81}
\end{equation*}
$$

We choose an energy-cutoff $\epsilon_{\text {cut }}=E_{F}=\hbar^{2} \kappa / 2 m$, then find
zero-temperature gap:

$$
\begin{equation*}
\Delta_{0}=E_{F} \exp \left(-\frac{\pi}{2 k_{F}\left|a_{s}\right|}\right) \ll E_{F} \tag{4.82}
\end{equation*}
$$

- Comparison with Eq. (4.52) now gives a neat interpretation: Since $\Delta_{0}=1 / 2\left|E_{\text {pair }}-2 E_{F}\right|$, i.e., half the binding energy of a Cooper pair: Excitations become gapped, since in order to make one, I would have to break a pair.
- Since we have found that $\Delta \neq 0$ in the end, we have in retrospect justified our initial assumption in (4.56). Thus the equation turned out self-consistent (iff, Δ is chosen as (4.82)).

We could also evaluate Δ from Eq. (4.77) for $T>0$ and would find

finite-temperature gap

$$
\begin{equation*}
\Delta=3.06 T_{c}\left(1-\frac{T}{T_{c}}\right)^{1 / 2} \tag{4.83}
\end{equation*}
$$

and critical temperature

$$
\begin{equation*}
T_{c} \approx 0.57 \Delta_{0} \ll T_{F} \tag{4.84}
\end{equation*}
$$

4.10.5 Fermionic superfluidity and superconductivity

Now we come to the main consequence of the paired ground-state and gapped excitation spectrum:

Return to our discussion in section 3.4 .5 of conditions "when an obstacle with velocity \mathbf{v} can create excitations within the quantum gas". Nothing there was specific to Bosons, so also for Fermions no excitations are possible below an obstacle velocity of

$$
\begin{equation*}
v_{\mathrm{crit}}=\min _{\mathbf{k}}\left(\frac{\epsilon_{\mathbf{k}}}{\hbar \mathbf{k}}\right) \tag{4.85}
\end{equation*}
$$

Wee see from Eq. (4.68) (and the plot underneath it), that

Fermion critical velocity for superconductivity

$$
\begin{equation*}
v_{\text {crit }}=\frac{\Delta}{\hbar k_{F}} \tag{4.86}
\end{equation*}
$$

Superfluidity arises here because we cannot create excitations of our Cooper-pair condensate.
Because the condensate again has a coherent order parameter $\Delta(\mathbf{r})=\left\langle\hat{\Psi}_{\uparrow}(\mathbf{r}) \hat{\Psi}_{\downarrow}(\mathbf{r})\right\rangle \in \mathbb{C}$, we again have the consequence of quantized-circulation \Longrightarrow vortices just as in a BEC.

This is used as an experimental signature of Fermionic superfluidity.

4.11 Outlook

- We looked only at $N_{\uparrow}=N_{\downarrow}=$ spin-balanced Fermi gases. New physics for spin-imbalanced $N_{\uparrow} \neq N_{\downarrow}$, or impurities $N_{\uparrow}=1, N_{\downarrow}=N-1 \rightarrow$ Polarons.
- Fermionic superfluidity and superconductivity are probably one of the most involved and surprising quantum-many-body effects.
The effect is not there at all in a two-body picture.

[^0]: ${ }^{5}$ Note, that we can interpret \mathbf{k} as indicating both ${ }^{(*)}$, the relative momentum of the pair $\mathbf{p}_{\text {rel }}=\hbar \mathbf{k}$, or the momentum of one of the members of the pair, e.g. $\mathbf{p}_{1}=\hbar \mathbf{k}$ (the other member has momentum $\mathbf{p}_{2}=-\mathbf{p}_{1}$ in that case. The constraints written above on possible values of \mathbf{k} arise from the latter view.
 ${ }^{(*)}$ [This slightly confusing fact is due to the need to have CM momentum $\mathbf{k}_{C M} \approx 0$ and the relative momentum being defined as $\mathbf{p}_{\text {rel }}=\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2$. See some texts on QM of the two-body problem. One way to justify this, is that we want $\left[\hat{\mathbf{r}}, \hat{\mathbf{p}}_{r e l}\right]=i \hbar$, where $\left.\hat{\mathbf{r}}=\hat{\mathbf{x}}_{1}+\hat{\mathbf{x}}_{2}\right]$

[^1]: ${ }^{6}$ To see that this name makes sense, write $\hat{c}^{\dagger}|0\rangle$ and apply the field operators to the vacuum to reach a Fermionic Fock state $|\mathbf{y} \downarrow, \mathbf{z} \uparrow\rangle$ expressed using the position basis. Then write the position-space representation: $\left\langle\mathbf{x}^{\prime} \mathbf{y}^{\prime}\right| \hat{c}^{\dagger}|0\rangle$. Using $\left\langle\mathbf{x} \mid \mathbf{x}^{\prime}\right\rangle=\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$, you should find the result discussed at the end of section 4.10.1.

