
Week 10
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

4.8 Trapped Atomic Fermi Gases

Now we explore the ultra-cold atomic Fermi gas further, within a harmonic trap, but initially
neglecting interactions (as justified in section 4.7). We then find

left: Non-interacting ground state: All single particle
states |'n i up to E = EF are filled with exactly one atom
(or (2S + 1) atoms if we consider them to have spin S).

This motivates us to define the

Fermi-Sea State:

|FS iN =
N�1
Y

n=0

â†n| 0 i (4.19)

N = Atom-number and En < EF (N)

Using the Fermi-field operator

 ̂(x) =
X

n

'n(x)ân, (4.20)

we obtain a total density

n(x) = hFS| ̂†(x) ̂(x)|FSi =
exercise

X

n

|'(x)|2. (4.21)
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left: Results of (4.21) are
plotted on the left for di↵er-
ent numbers of atoms. The
oscillations visible for smaller
N are called Friedel Oscilla-
tions.

4.8.1 Thomas-Fermi-approximation

To find the density shape shown as the blue line (for many atoms) in the figures above, we can again
use the Thomas-Fermi approximation, see section 3.3.4, however in a slightly di↵erent formulation.

Let us assume a large gas, so that we can use the local density approximation. This means we use
the results derived in section 4.1, which were assuming a homogeneous system, by instead inserting
a slowly varying density N/V ! n(r).

From Eq. (4.6) and Eq. (4.8) we can then find relations between a local Fermi wavenumber/mo-
mentum and density and local Fermi-energy, as:

n(r) =
k3F (r)

6⇡2
(ignoring spin)

, "F (r) =
~2kF (r)2

2m
. (4.22)

The equillibrium density is such that adding one more atom has the same energy everywhere, thus:

~2k2F (r)
2m

added on
Fermi surface

+ V (r)
trap

= µ (4.23)

Solving for n(r) gives us the

Thomas-Fermi profile for Fermi gas

n(r) =
1

6⇡2
(
2m

~2 [µ� V (r)])
3

2 if µ > V (r) else n(r) = 0 (4.24)

• This gives the blue line in the previous figure.

• Note for BEC we have [µ� V (r)]1.

We can extend this local semiclassical/like WKB approach to include the momentum distribution
and finite temperature e↵ects with the resultant
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Semiclassical distribution function for a Fermi gas:

f(r,p) =
1

exp[�( p

2

2m + V (r)� µ)] + 1
(4.25)

• From this we can obtain the total atom number

N =
1

(2⇡~)3

Z

d3rd3pf(r,p) (4.26)

or density/momentum density

n(r) =
1

(2⇡~)3

Z

d3pf(r,p) (4.27)

ñ(p) =
1

(2⇡~)3

Z

d3rf(r,p) (4.28)

• The same view-point adopted here can give the Thomas-Fermi profile for bosons, derived with
di↵erent methods for Eq. (3.46). In a (locally) homogeneous BEC there is no kinetic energy,
but instead interaction energy U0n(r), unlike the Fermionic case. Replacing in Eq. (4.23) the

Fermi-(kinetic) energy
~2k2

F

(r)
2m by U0n(r), we then find Eq. (3.46).

4.8.2 Excitations of the ideal gas

The simplest excited state of |FSi is obtained, when we move any atom with E < EF to E > EF .

left: Excitation of a degenerate Fermi gas, an
atom has jumped from state nh (h for hole) to ne

(e for excited).

In this we are actually doing two things: creating a hole at nh (oscillator quantum number) and
excited atom at ne.

We can consider these both separately as excited states of a system with N � 1 atoms (for the
hole) or N + 1 atoms (for the excited atom). Energy of hole: E[ân

h

|FSiN ] � E[|FSiN�1] =
EF � En

h

= EF � ~!(nh +
1
2)

Similarly for excitation E[â†n
e

|FSiN ]� E[|FSiN+1] = En
e

� EF

If we denote by nF the oscillator state quantum number up to which all states are filled in the
Fermi sea, we have
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Energy of particle or hole excitation

En = ~!|n� nF | (4.29)

(homogeneous system would have "k =
~2|k2�k2

F

|
2m )

4.9 (Weak) Repulsive interactions in spin mixtures

• So far, we only considered non-interacting Fermi gases, which as per the discussion in sec-
tion 4.7, is actually realistic for a cold single species gas.

• For two species (e.g. N
2 atoms in one spin state | " i and N

2 atoms in another | # i) interactions
become relevant since | " i atoms do have s-wave interactions with | # i atoms.

• Thus also evaporative cooling works again.

• Let us assume interactions are fully repulsive everywhere, that is U(r) > 0 8r.

4.9.1 Landau Fermi Liquid

Let us consider “slow” turning on of interactions, so we start with perturbation theory. We use the

Hamiltonian for spin-mixture of a Fermi-gas

Ĥ =

Z

d3x

⇢

X

s=",#
 ̂†
s(x)H0 ̂s(x) + U0 ̂

†
"(x) ̂

†
#(x) ̂#(x) ̂"(x)

�

. (4.30)

• The field operator now has a spin index

 ̂s(x) =
X

n

âs,n 'n(x)�s

(�s = spinor i.e. s = " �!
✓

1
0

◆

and s = # �!
✓

0
1

◆

)

(âs,n| 0 i = |n, s i, n ! trap single particle state, s = | " i, | # i)
• We have,

{ ̂s(x),  ̂
†
s0(x

0)} = �ss0�
(3)(x� x0). (4.31)

• The Hamiltonian already includes the fact that only atoms in two di↵erent spin-states can
interact, see section 4.7.

For simplicity, we only consider a homogeneous system, with the following expansion for the
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Fermion field operator:

 ̂s(x) =
X

k

âs,kp
2⇡

3 '
k

(x)
| {z }

planewaves

�s, '
k

(x) =
1pV eikx, (4.32)

where V is a box-normalisation factor.

Using

(2⇡)3�3(x) =

Z

d3x eikx

we obtain,

Momentum-space Hamiltonian for the spin-mixture

Ĥ =
X

k

~2k2
2m

(â†"kâ"k + â†#kâ#k)

| {z }

Ĥ
0

+
U0

V
X

k
1

,k
2

,k
3

,k
4

:
k

1

+k

2

=k

3

+k

4

â†"k
3

â†#k
4

â#k
2

â"k
1

| {z }

V̂

(4.33)

From this Hamiltonian, let us first find the energy of the unperturbed/ non-interacting Fermi-sea
itself. The expectation value is

E(0) =hFS|
X

k

~2k2
2m

(â†"kâ"k + â†#kâ#k)|FSi (Ĥ0 only!)

=(4⇡)

Z k
F

,"

0
dkk2 D

#
density
of states

~2k2
2m

+ (4⇡)

Z k
F

,#

0
dkk2D

~2k2
2m

=
Eq. (4.6),Eq. (4.8)

D=V/(2⇡)3

3

5
(EF"N" + EF#N#)

In the second equality, we used the fact that number operators give 0 for wave-numbers above
the Fermi-level and 1 below. Then we also already did the angular integration in spherical 3D
coordinates for k. Since energies are apparently separately found for each spin species, we have
also derived the

Total energy of an ideal Fermi gas

ETot =
3

5
EFN (4.34)

Now let us find the change of the energy due to some small interactions U0 using Rayleigh-
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Schödinger perturbation theory. The first order energy correction, as usual, is:

E(1) = hFS|V̂ |FSi =
k
1

=k
3

,
k
2

=k
4

U0

V

X

k
1

,k
2

hâ†"k
1

â"k
1

ihâ†#k
2

â#k
2

i = U0

V
N"N# (4.35)

Below the first equality, we indicate that for a non-vanishing matrix elements, indices in V̂ have to
be equal as shown. We show (4.35) here mainly as example for perturbation theory in a many-body
context.

Let us also look in the first order correction to the quantum state |FS i:

The formula you know from basic quantum mechanics perturbation theory is:

|n(1)i
| {z }

perturbed state

=
X

k 6=n

h k(0) |V̂
unpert. state
z }| {

|n(0) i
E(0)

n � E(0)
k

|k(0)i
| {z }

basis

(4.36)

In our many-body context this translates to

|FS(1) i =
0

X

N

hN |V̂ |FS(0) i
E(0) � E

N

|N i (4.37)

• The prime 0 on the sum shall denote that the sum does not include the state |FS i itself.
• We use Fock-states |N i, see Eq. (2.2), for Fermions, taking into account occupations of

di↵erent spin states also.

• We find

E
N

=
X

k

~2k2
2m

(Nk" +Nk#)

• For V̂ , see Eq. (4.33).

Let’s evaluate the required Matrix elements:

hN |V̂ |FS(0) i = U0

V

X

k
1

,k
2

,k
3

,k
4

:
k

1

+k

2

=k

3

+k

4

hN |â†"k
3

â†#k
4

â#k
2

â"k
1

|FS(0) i
| {z }

we need |k
1

|,|k
2

|<k
F

| {z }

we need k
1

=k
3

,k
2

=k
4

Or, |k
3

|,|k
4

|>k
F

(4.38)

Below the braces we indicate conditions for operators acting on states to gives something non-zero.
One choice, k1 = k3, k2 = k4 is boring, because we end up coupling |FS i with itself. However
for the second choice |k3|, |k4| > kF we mix |FS i with the “double particle-hole excitation” state
sketched below:

88



left: Double particle-hole excitation:
A state with the filled Fermi sea, but
then two atoms at momenta k1 and
k2 were removed, and lifted above the
Fermi surface to k3 and k4.

Let us give this is definition:

Particle-hole state

| (k3 ")e
| {z }

excitation with
wave-vector k

3

(k4 #)e (k2 #)h (k1 ")h
| {z }

hole with
wave-vector k

1

i (4.39)

eg: spin" spin#

The perturbed Fermi-sea from Eq. (4.37) thus is

|FS(1) i = |FS(0) i+ U0

V

X

k

1

+k

2

=k

3

+k

4

| (k3 ")e(k4 #)e(k2 #)h(k1 ")h i
E(0) � [

P

l=1,··· ,4
~2|k2

l

�k2
F

|
2m + E(0)]

(4.40)

It is said that the interactions dress the FS with particle+hole pairs: A

Fermi-liquid is a Fermi sea, which interactions dress with particle+hole pairs as in
Eq. (4.40).

This leads to a softening/smearing out of the Fermi edge even at T = 0:
left: Fermion energy distri-
bution without interactions
(left), and with weak re-
pulsive interactions (right),
forming a Fermi-liquid. Par-
ticle and hole excitation be-
comes increasingly unlikely
away from the Fermi surface,
due to the energy denomina-
tor in (4.40).
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Similarly to the ground-state, in the Fermi-liquid, also excited-states get dressed with other excited
many-body states.

Fermi liquid theory can be understood as free fermions | k, �
spin

i evolving into fermionic quasi-particles

with the same momentum and spin, due to interaction/dressing. These have a slightly modified
e↵ective mass m⇤.

Quasi-particle cartoon:

• Most properties of Fermi-liquid system are (surprisingly) similar to the non-interacting cases.

• Applied to electrons in a metal, this describes most non-superconducting metals.

• Cold-atom experiments:
See Nascimbine et al. Nature 463 1057 (2010).
Horikoshi et al. Science 327 442 (2010).
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