
Phys635, MBQM I-Semester 2019/20, Tutorial 2 so-

lution, Wed 18.9.

The objective of this tutorial was to get you to discuss, so there is no “solution”. However
the thoughts I would have for those prompts for discussion are listed below.

Stage 1 (Questions about the material so far.)

Stage 2 Use a math plotting tool (such as mathematica) to explore Eq. (3.12). If you
copy paste the following lines into mathematica, you can start comparing BE
distributions m(Eb) for two different sets of parameters.

kbT1 := 2;
kbT2 := 1;
mu1 := -2;
mu2 := -2;
Plot[{1/(Exp[(Eb -mu1)/kbT1] - 1), 1/(Exp[(Eb -mu2)/kbT2] - 1)}, {Eb, 0,
5}]

(i) Let us assume a constant density of states g(E) for simplicity. Confirm
that when you reduce the temperature, the total number of particles N =∫∞
0
dEg(E)m(Eb) does down.

Solution: Let T1 > T2, you see that m(Eb, T1) > m(Eb, T2) for all values of
Eb, hence you know the statement is correct without doing any integration.

(ii) Suppose you want to keep the total number constant [while reducing the
temperature] what do you do?
Since the only other control knob in the distribution function is µ, we have
to adjust that one. It is negative, we have to increase it towards 0.

(iii) We cannot have µ > 0. Can you find a way to keep the total number
constant once µ = 0 and you further reduce the temperature?
Not as before. As discussed in the lecture, the only way out is assuming
the ground-state is macroscopically occupied (hence BEC).

Stage 3 Quantum Fields: Discuss the following in your team, then on your table. Use
the board as well.

(i) Suppose you want to solve Eq. (2.33) for the quantum field operator in
some brute force manner. How could you try this in principle? When does
it work? When does it not work?
Solution: We could give a restricted range of M elements of some some sin-
gle particle basis, e.g. oscillator states {ϕ0(x), · · · , ϕM(x), and then devise
some restricted Fock space on that, say |N0, · · · , NM 〉, with Ni < Nmax.
The total number of states scales like NM , thus we can afford only very
small N , M . If the physics of interest can be described in the limit of those
small N , M , this approach is fine. Often, however, it cannot and we would
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require e.g. N = 10000, M = 500. Then clearly this does not work (see
week 13 also)..

(ii) What is a quantum field?
It is a “field”(i.e. some function of time and space), which is made of
“quanta”(i.e. photons). As a consequence of this, it does not need to have a
well defined value but can undergoes quantum fluctuations. Mathematically,
the two features are manifest by combining single-particle modes (Which
depend on time and space), with creation and destruction operators for
discrete particles (field quanta).

(iii) Which disciplines use quantum fields? How are they used there.
The two most extensive takers, are presumably particle physics and con-
densed matter physics. In particle physics there are lots of fundamental
reasons for their use, such as the ability to write down theories possessing
interesting or relevant symmetries. In the core phenomenon of particle
physics, scattering of two particles, there is no initial problem with many-
particles, however we get one since energies are so high that new particles
can be created and destroyed during the collision. In condensed matter phy-
sics this typically does not happen for the fundamental particles, but might
for quasi-particles (see week 7,11). But in CM, there are typically truly
gigantic numbers of particles involved.
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