
Phys635, MBQM I-Semester 2019/20, Tutorial 1 so-

lution, Tue 20.8.

The objective of this tutorial was to get you to discuss, so there is no “solution”. However
the thoughts I would have for those prompts for discussion are listed below.

Stage 1 (Questions about the material so far.)

Stage 2 Why is quantum-many-body theory harder than classical many-body theory?

(i) What information is needed to specify a classical state of N particles?
A quantum state? Solution: For the classical state, we write down e.g. a
phase space point [r1, · · · rN ;p1, · · ·pN ]. In quantum theory a many-body
wave-function ψ(r1, · · · rN) ∈ C.

(ii) Invent a way to “quantify” the volume of that information? How does eit-
her scale as the number of particles gets larger? Solution: Suppose we limit
the number of available positions/momenta to M (or in QM the number of
modes to M). Then the classical phase-space vector contains 2N real num-
bers. The QM wavefunction (Eq. (1.24)), contains MN complex numbers.

(iii) In terms of the classification of many-body states seen in the lecture, which
aspect is “causing the trouble”? Solution: Entanglement. If it wasn’t for
entanglement (i.e. we look at a separable state), the information contained
again reduces to M × N complex numbers (why?), which is not so much
worse than classical (we say it has the same scaling with N).

Stage 3 Let’s chat about what to expect later in lecture. Consider the attached two
diagrams for Bosons or Fermions in a harmonic trap. The temperature where
it becomes important whether two particles can enter the same state or not, is
called “degeneracy temperature”.

(i) Why would it be not important for some temperatures? Solution: At large
temperatures each particle has a high probability p to be in a fairly large
energy state, p ∼ exp (−E/[kBT ]). Since this means that a large number of
states are available for each particle, the chance of them “wanting to be” in
the same single particle state is fairly small. In that case it also obviously
doesn’t matter whether they are allowed to be in that same state.

(ii) Make a rough estimate of the degeneracy temperature. Solution: States
with E ∼ kBT become likely. Thus we want kBT � N~ω in order for
having a larger number of available states than particles.

(iii) Suppose we are slowly reducing the temperature of the system. Discuss
what might happen in the context of section 2.2.2 of the lecture. Soluti-
on: At temperatures below the transition temperatures, if the system can
equilibrate, more than one particle will “ want to” get into the same state.
For Fermions this will be forbidden due to Fermi blocking. For Bosons it
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will actually speed up, so once there are a few seed Boson in the ground-
state, Bose-enhancement will accelerate the actual process of condensation.
Importantly, like in 2.2.2., for having any transitions between harmonic os-
cillator states at all, we need additional terms in the Hamiltonian beyond
the harmonic oscillator, for example interactions.

Stage 4 Think about the numerical component of assignments. In the first assignment,
we have seen en exemplary numerical solution of the TDSE for two coupled
harmonic oscillators.

(i) What is conceptually different when you are solving this on a compu-
ter, compared to an analytical solution? Solution: Analytically we have
all functions in a continuous space pf x and t. In a computer we cannot
store a function at an infinite number of coordinates. So we have to dis-
cretise both time and space into what is called a lattice [t0, t1, t2, t3, . . . ]
[x0,x1,x2,x3, . . . ].

(ii) How do you deal with the Laplacian? Solution: We can calculate it
using a Fourier transform, using f(x) =

∫
dk
eikxf̃(k) and thus ∂2

∂x2f(x) =∫
dk

(−k2)eikxf̃(k).

(iii) How do you deal with the ∂
∂t

? Solution: Very basic algorithm (Newton’s
method) would be: ∂

∂t
ψ(t)→ (ψ(t+ ∆t)− ψ(t))/∆t for some discrete time

step ∆t, then solve TDSE for ψ(t+ ∆t).

(iv) What can go wrong with either? Solution: If we choose an insufficent num-
ber of discrete points in space or time, the solution we get will be a very
bad approximation of the continuous function ψ(x, t) that we would like to
get.
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