
Week 0 / 1
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

0 Administrative affairs

(i) Office: AB1 - 014
Phone: 1213
Email: sebastian@iiserb.ac.in
Lecture hours: Slot X, Tue 10am L7, Wed, Thu 2pm L9, TA-Class and replacement slot Fri
2pm L11
Office hours: Tue 2-5 pm
webpage: http://home.iiserb.ac.in/∼sebastian/teaching.html

(ii) Literature: No Single Textbook

• Pethick and Smith, “Bose-Einstein Condensation in Dilute Gases” [closest matching
book]

• R. Shankar, “Principles of Q.M”

• J.J. Sakurai, “Modern Quantum Mechanics”

• Negele and Orland, “Quantum Many Particle Systems”

• Petter and Walecka, “Quantum Theory of Many Particle Systems”

• L. Schiff, “Quantum Mechanics”

• Henrik Bruus, Flensberg, “Introduction to Many Body Quantum Mechanics in Condensed
Matter”

There is no primary text-book. I collect material from wherever I find it best covered case-
by-case.

(iii) Assessment:

• Three scheduled Quizzes in the AIR studio with examineer: 15% To supple-
ment the exams, there will be three quizzes lasting one lecture hour, conducted using
the examineer webpage . For quiz timings see webpage. These are ”open notes” quizzes,
so bring a copy of your notes. Quizzes will be simpler than exams, intended to encourage
you to continuously keep on top of the material. Make sure to bring an internet
capable phone/tablet/laptop on the days of the quiz, if you use online notes a
second device for the notes. Please contact me if there is a problem with this. You also
need some pen and paper for scrap notes on quiz days. There will also be a few, even
easier ones that you can do from home over a few days.

1

http://home.iiserb.ac.in/~sebastian/teaching.html
https://www.examineer.in


• Assignments: 15% There will be about five assignments handed out with a two week
deadline each. I expect you to form teams of 3-4 students and stick in these teams for
the semester. Hand in only one solution per team. The TA is instructed to give full
marks for any serious attempt at a given question of the assignment, even if the result
is wrong. This is to discourage copying and encourage doing it yourself. Additionally
however the TA is asked to deduct marks for messy presentation and blatant copying.
These assignments are intended as your primary means of learning the essential course
material, please do all of them diligently.

• Numerics component of assignments: Moderns science almost always necessitates
the heavy use of computers. Most assignments will contain a numerics component, to be
done using XMDS . I will provide a tool and template package that you have to only
minorly edit. See notes on numerics assignments online.

• Mid-Sem exam: 30%

• Final exam: 40% The exams will try to test understanding of the essential physics con-
cepts taught, not maths. For guidance regarding what are the most important concepts
look at the quizzes and assignments. All exams will be designed to give a significant
advantage to those students that solved all assignments by themselves.

Course outline

1) Motivation and Review: ∼ 1 week
• Fields that require Many-Body QM, why degenerate gases?
• Review essential pieces from single-particle QM

2) Quantum-many-body Formalism: ∼ 4-5 weeks
• Second Quantisation, Bosons vs Fermions, quantum field operators, coherent states

3) Bose-Einstein Condensates (BECs): ∼ 4-5 weeks
• Symmetry breaking/ mean field, Critical Temperature, Gross- Pitaevskii equation, Bogoliubov
quasi-particles, Quantum field theory of BEC.

4) Degenerate Femi Gases ∼ 3-4 weeks
• Fermi Surface, Degeneracy Pressure, Neutron stars, electron gas, pairing, superconductivity

5) Online(?): Quantum Simulators: ∼ 2-3 weeks
• Analog and digital quantum Simulation, Bose-Hubbard model, BEC-BCS cross-over
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1 Motivation and Review

1.1 Quantum many-body theory and Quantum field theory (QFT)

Singe quantum particle can be described by a state ϕ(x).

Many Particle Wavefunctions: are more complicated.

• We have to firstly take care of Bosonic/Fermionic Symmetries:

ψ (x1,x2) =
1√
2

[
ϕ1 (x1)ϕ2 (x2)± ϕ1 (x2)ϕ2 (x1)

]
(1.1)

• Then we often have to worry about particle creation or destruction ψ(x1) ↔
ψ(x1, x2)↔ ψ(x1, x2, x3)↔ · · ·

• Very helpful for this is Second Quantisation with creation and destruction operators:
â, â† (same algebra as Simple Harmonic oscillator ladder operators)

• The natural next step from there is Quantum field theory

Ψ̂ (x) =
∑
n

ϕn (x)︸ ︷︷ ︸
wave aspect

ân︸︷︷︸
particle aspect

(1.2)

Where Ψ̂ can be viewed as a type of destruction operator

• Compared to a classical field → now the field itself is quantised

• For v ≈ c we need to do relativistic Quantum Mechanics and then relativistic Quantum
Field theory as used in elementary particle physics. We do not cover this, but will
mention the Spin-Statistics theorem, which originates from there.

• Condensed matter physics provides lots of advanced QFT techniques, such as Greens-
functions, Path-Integrals, Keldysh formalism or thermal field theory, we also do not
require these.

1.2 Disciplines with many-body QM

Many sub-fields of physics require us to tackle many-body quantum mechanics.
• Atomic and Molecular Physics (many e−)
• Chemistry (even more e−)
• Nuclear Physics (many n,p)
• Particle Physics (several elementary particles, but usually more concerned with creation/ destruc-
tion/ conversion/ symmetries then with the number of particles)
• Condensed Matter Physics (1023 e− or Quasiparticles like Spinon, Magnon, Plasmon etc.)
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• Astrophysics (even more e−/n)
Recently:
• Quantum Optics (many γ, usually non-interacting)
• Quantum Information (many 0,1)

1.3 Review

1.3.1 Single-particle States

In this course we will always assume the problem of a single particle to be solved, e.g with the

Time-independent Schrödinger equation (TISE)

Ĥ0|ϕn〉 = En|ϕn〉. (1.3)

• Where Ĥ0 is the single body Hamiltonian (depends on co-ordinates of just one particle)

• |ϕn 〉 is the (typically) infinite single-particle basis. The ϕn are also called mode.

• En are single particle energies

Examples: We will require these to construct many-body theories later, so this is to set
notation
(i) Free particles in Volume V

Ĥ0 =
p̂2

2m
= − h2

2m
∇2 En =

h2k2

2m
=

p2

2m
(1.4)

|ψn〉 |φk〉 =
1√
V
eikx (1.5)

where k is the wavenumber. Technically we have to distinguish continuous and discrete
spectra, where the free particle is continuous, see books. We will always use a discrete
notation for simplicity.

(ii) Spin - 1
2 states

Ĥ0 =
∆E

2
σ̂3 σ3 =

[
1 0
0 −1

]
E↑↓ = ±∆E

2
(1.6)

The basis are spin-up and spin-down states |ϕ↑,↓〉, specifically |ϕ↑〉 =

[
1
0

]
∼= | ↑〉 and

[
0
1

]
∼=

| ↓〉

8



Example cont.: (iii) Simple Harmonic oscillator states (3D), with Hamiltonian

H0 =
p2

2m
+

1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(1.7)

3D Harmonic oscillator Quantum states

|ϕn〉 = |ϕnxnynz〉 = ϕnx(x)ϕny(y)ϕnz(z) (= |ϕn(x)〉) (1.8)

ϕni (xi) =
1√

2ni (ni)!
√
πσi

e−
x2

2σ2Hni

(
xi
σi

)
(1.9)

where xi ∈ {x, y, z}, and Hn(x) are Hermite polynomials. The oscillator widths in the
three directions are σi =

√
~/(mωi). Energies:

En = ~ωx(nx +
1

2
) + ~ωy(ny +

1

2
) + ~ωz(nz +

1

2
). (1.10)

The 3D eigenstates thus factor into the 1D eigenstates which you know, and which
look like

left: Sketch of 1D har-
monic oscillator potential
and the first few eigen-
states

(iv) Other examples: from PHY 303/304: particle in a 1D/2D/3D box potential, Single
electron in a Hydrogen atom...

Going back to the 1D oscillator, we recall the

Ladder-Operators (1D)

Lowering operator b̂ =

√
mω

2~
x̂+ i

√
1

2mω~
p̂ (1.11)

Raising operator b̂† =

√
mω

2~
x̂− i

√
1

2mω~
p̂ (1.12)
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We can show that [b̂, b̂†]=1 (from [x,p] = i} )
New Hamiltonian using ladder operators (from 1D version of (1.7)).

Ĥ0 = }ω
(
b̂†b̂+

1

2

)
(1.13)

We can now show (e.g. in Shankar∼= pg. 204) the

Function of Raising and Lowering Operators

b̂|ϕn〉 =
√
n|ϕn−1〉 b̂|ϕ0〉 = 0, (1.14)

b̂†|ϕn〉 =
√
n+ 1|ϕn+1〉, (1.15)

and define the phonon number Operator: N̂ = b̂†b̂ and N̂ |ϕn〉 = n|ϕn〉.

• These properties follow solely from the commutation relation
[
b̂, b̂†

]
=1 , and hence we would

not need to know the position space representation (1.9).

1.3.2 Single Particle Density Matrices

Quantum mechanics allows superpositions of two “opposite” states, e.g. |ψ〉 = 1√
2

(| ↑〉+ | ↓〉).
Classically we can already have random probability distributions of opposite states e.g. P(↑) = 50%,
P(↓) = 50% (let ↑↓ be”head/tail” for a flipped coin here). The quantum superposition is a
stronger statement, since it involves complex phases. However we require some mathematics to
describe both sources of randomness simultaneously, since e.g. experiments might involve both.
The mathematics is provided by the concept of the

Density Matrix/ operator

ρ̂ =
∑
nm

ρnm|ϕn〉〈ϕm|, (1.16)

where |ϕn〉 is a chosen single particle basis as in section 1.3.1.

Density Matrix Properties

• For a pure quantum state: ρ̂ = |ψ〉〈ψ|. So the statement ”my system is in state |ψ 〉” is
equivalent to saying ”my system has a density matrix |ψ〉〈ψ|”.

• For a fully classical (mixed) state: ρnm = 0 for n 6= m

• Then ρ̂ =
∑

n pn|ϕn〉〈ϕn| where pn is the probability to be in state n.
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• the expectation value of observable Ô is now Tr[Ôρ̂], where Tr[...] denotes the trace, so the
sum of diagonal elements.

• ρ̂ is Hermitian, for pure states ρ̂2 = ρ̂, always Tr[ρ̂] = 1

• We can define the purity P as P = Tr[ρ̂2], then

P = 1 for pure states (1.17)

P < 1 for mixed states (1.18)

See your favourite QM book, the online notes for PHY435 “Decoherence and open quantum sys-
tems” and related literature on my webpage for a more detailed discussion of density matrices (in
this order).

Time-Evolution of states involving density matrices is via the von-Neumann equation

i}
∂

∂t
ρ̂ =

[
Ĥ, ρ̂

]
(1.19)

Examples:
Single spin-1

2 (see (ii) earlier)
(i) Let its quantum state be |ψ 〉 = 1√

2
(| ↑ 〉+ | ↓ 〉). The corresponding density matrix is

ρ̂ = |ψ〉〈ψ| = 1
2 (| ↑〉〈↑ |+ | ↓〉〈↓ |+ | ↑〉〈↓ |+ | ↓〉〈↑ |) .

We can write this in Matrix form

| ↑ 〉 | ↓ 〉

ρ =

[
1
2

1
2

1
2

1
2

]
| ↑ 〉
| ↓ 〉 (1.20)

(ii) If we had a classical mixture instead (50 % ↑, 50% ↓), we would write
ρ̂ = 1

2 (| ↑〉〈↑ |+ | ↓〉〈↓ |), which becomes

| ↑ 〉 | ↓ 〉

ρ =

[
1
2 0
0 1

2

]
| ↑ 〉
| ↓ 〉 (1.21)

Diagonal Elements are called populations or probabilities. ρnn ∼= probability to find
system in state n. Off-diagonal Elements are called coherences, where ρ12

∼= indicates
the amount of coherence between state 1 and 2, this is = 0 classically.

• Note that in both examples above, the probability for ↑ and ↓ is 50% each.

• Distinction: However we can discriminate the coherent superpositions from the classical
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mixtures through the appearance of interference terms in certain observables, for example:

〈σ̂x〉 =


〈ψ|σ̂x|ψ〉 = ~

2 , for case (i), pure

Tr [ρ̂σ̂x] = Tr

[
0 ~

2
√

2
~

2
√

2
0

]
= 0, for case (ii), mixed

(1.22)

1.3.3 Many Particle States

The generalisation of section 1.3.1 to many particles is to add one co-cordinate per particle:

Many-body TISE (general case)

Ĥ(x1, ...,xn, p̂1, ..., p̂n)ψk(x1, ...,x2) = Ekψk(x1, ...,xn) (1.23)

• Typically very high dimensional PDE (e.g. already 9D for 3 particles in 3-dimensions.)

• Often too high dimensional to deal with it directly →We learn techniques to sometimes deal
with this problem in this lecture.

• k is an index numbering the eigenstate, as in single particle QM. But now the state is a
many-body state. Often it makes sense to de-compose it into a collection of e.g. single
particle indices, such as k ≡ {n1, n2, · · ·nN}, see next dotpoint.

• We can always write many body states in terms of single-body ones, but the decomposition
might be complicated:

ψk(x1, ...xN ) =
∑

n1,...,nN

ck;n1,n2,...nNϕn1(x1)ϕn2(x2)...ϕnN (xN ). (1.24)

Orthogonality: Many body states as products of single particle basis are orthogonal, whenever any
of the constituents differ, they inherit their orthogonality properties from the single particle states:

〈ϕn1 |〈ϕn2 ||ϕn′1〉|ϕn′2〉 =∫
d3x1d

3x2 ϕ∗n1
(x1)ϕ∗n2

(x2)ϕn′1(x1)ϕn′2(x2)

=

(∫
d3x1 ϕ∗n1

(x1)ϕn′1(x1)

)(∫
d3x2 ϕ∗n2

(x2)ϕn′2(x2)

)
= δn1n′1

δn2n′2
. (1.25)

1.3.4 Entanglement

The generic many body states (1.24) can be classified as follows
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Separable states: A many body state is called separable, if it can be written as a product
of states for each particle:

ψsep (x1,x2, · · · ,xn) =
N∏
i=1

φni (xi) (1.26)

All states that are not separable are called entangled.

• Less stringently, we can also talk about many-body states being separable or entangled with
respect to two (or few) sub-systems A and B of the many-body Hilbertspace.

Examples: Separable:

|ψ〉 = | ↑↑〉 = | ↑〉 ⊗ | ↑〉 (1.27)

|ψ〉 =
1

2
(| ↑〉+ | ↓〉)⊗ (| ↑〉+ | ↓〉) =

1

2
(| ↑↑〉+ | ↓↓〉+ | ↑↓〉+ | ↓↑〉) (1.28)

ψ (x1, x2) =
1√
V
eik1x1N exp

[
− x2

2

2σ2

]
(1.29)

Entangled:

|ψ〉 =
1√
2

(| ↑↑〉+ | ↓↓〉) (1.30)

ψ (x1, x2) = N exp

[
−(x1 − x2)2

2σ2
⊥

− (x1 + x2)2

2σ2
‖

]
(1.31)

• In an entangled state (for two systems A,B) if we measure state A we typically know also about
B.
• Entanglement also implies classical correlations, but it is much more than that (keywords: EPR
paradox, Bell-theorem).
• The definition gets a bit more complicated for mixed states (ρ̂).

1.3.5 Indistinguishable Particles

So far we have implicitly treated our many particles as distinguishable. For example the state
(1.29) implies, “particle 1 is in a momentum eigenstate with momentum ~k1, and particle two has
a Gaussian wavefunction with width σ”. However:

• A statement like, “Particle 1 is in state n1 and Particle 2 is in state n2” makes sense if the
particles are distinguishable (say 1 = e− (electron), 2 = p (proton), 3 = γ (photon) ).
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• For indistinguishable particles, the uncertainty relation forces us to abandon the labels “Par-
ticle 1”, “Particle 2” etc. (See box for “trajectories” below).

• This implies that mathematically, the state ψ(xa,xb) must be equivalent to ψ(xb,xa).

]
Since the overall phase or sign of a wave-function does not matter, “being equivalent” still allows
for

Identical particle exchange symmetry

ψ (xa, xb) = ±ψ (xb, xa) (1.32)

⊕ = Bosons=Symmetric under exchange of any two indistinguishable particles
	 = Fermions= Anti-symmetric under exchange of any two indistinguishable particles.

• The most important consequence of this is the Pauli exclusion principle: Two indistin-
guishable Fermions cannot be in the same single particle state. Proof: Try to write
a contradicting state down.

• The need for special treatment of indistinguishable particles comes from the green encircled
region in the above figure i.e when the matter waves overlap.
If this never happens, particles can be tracked and (anti-)symmetrization is irrelevant (we
can still do it, but it makes no difference to the math)
Example: One e− inside you and another on the moon (see example next page and also
Shankar p.273) .
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Example: Relevance of many-body symmetries:
Consider two particles with a Gaussian 1D wave-function, one centered at xa
the other at xb, with width σ each. We want to compare distinguishable
particles with non-symmetrized wavefunction ψdist(x1, x2) = ϕa(x1)ϕb(x2) ≡
N 2 exp [−(x1 − xa)2/(2σ2)] exp [−(x2 − xb)2/(2σ2)] with indistinguishable particles, where

we (anti-)symmetrized the wave function ψindist(x1, x2) = [ϕa(x1)ϕb(x2)±ϕb(x1)ϕa(x2)]/
√

2.
N is a normalisation factor. Let us distinguish two cases:
case (i) σ � |xa − xb|, i.e. x1 within you, x2 on the moon.
Let us first draw the two wave-functions in a many-body coordinate system:

left: Non-symmetrised and
symmetrised wave func-
tions for case (i). (blue)
ψ > 0, (red) ψ < 0, (white)
ψ ≈ 0.

Now consider the expectation value of any observable Ô. For simplicity we assume Ô
contains no derivatives.

〈Ô〉 =

∫
dx1dx2 ψ∗(x1, x2)Ô ψ(x1, x2)

=
∫
dx1

∫
dx2 |ϕa(x1)|2|ϕb(x2)|2Ô, for ψdist

=
∫
dx1

∫
dx2

|ϕa(x1)|2|ϕb(x2)|2 ± 1
2 [ϕ∗a(x1)ϕb(x1)ϕ∗b(x2)ϕb(x2)]︸ ︷︷ ︸

≈0

+c.c.

 Ô, for ψindist

(1.33)

• In the second line we used that we can rename x1 ↔ x2 in the integration.

• The term in square brackets vanishes because the overlap of the Gaussians near xa and
xb is essentially zero.

We thus see that in this case, both approaches give the same result.

case (ii) σ ∼ |xa − xb|, e.g. two electrons in an atom

left: Non-symmetrised and
symmetrised wave func-
tions for case (ii). Legend
as above.

In this case the argument above no longer works, so the extra terms matter and can be
crucial. In particular the overall integration for the expectation value depends on the sign
±, so differs for Bosons and Fermions.
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2 Quantum Many-Body Formalism

2.1 Second Quantisation

In principle we could work out most of many-body quantum mechanics using (anti-) symmetrized
wave functions such as Eq. (1.32). We could generalise that expression to more particles using the

(Anti-) Symmetrization Operator

P̂{BF }ψ (x1,x2,x3, , ,xN ) = N
∑
P
ξPψ

(
xP(1),xP(2), ...,xP(N)

)
(2.1)

ξ = −1 (for Fermions) or ξ = +1 (for Bosons),
P = Permutation of {1, 2, ..., N}, (e.g. {1, 3, 2, 4, ..., N}),
ξP ← ξ to the power of parity of permutation.
The normalisation factor is N = 1/

√
N !
∏
k nk!, where the

∏
part is 1 for Fermions.

In practice, such a formalism gets cumbersome quickly. Discouraging example: Write the bosonic
states for three particles in three states A, B, C. The only meaningful information in an (anti-) sym-
metrized many-body wave function is how many particles (not “which”) are in which single-particle
basis states φn. We thus introduce:

(Occupation) Number representation

|N 〉 = |N0, N1, ..., 〉, (2.2)

which denotes a state where N0 particles are in state |φ0 〉, N1 particles are in state |φ1 〉
etc. The vectora N = [N0, N1, N2, . . . ]

T just groups all these numbers. The space of all
{|N0, ... 〉} is called the Fock Space.

aThe superscript T means ”transposed”, turning the row I write into a column vector.

• Correct (anti-) symmetrisation is automatically implied in these states
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Example (Bosons): If we explicitly write the Fock state in terms of single particles states
in the position representation, we get:

〈x | 2100... 〉 =
1√
3

[φ0(x1)φ0(x2)φ1(x3) + φ0(x1)φ0(x3)φ1(x2) + φ0(x2)φ0(x3)φ1(x1)]

We also define one special number state, the vacuum, which has no particles in any state

| 0 〉 = | 0...0 〉. (2.3)

Now define

Creation and Destruction Operators

creation operator for Bosons: a†n|N0N1... 〉 =
√
Nn + 1|N0N1...(Nn + 1)... 〉

(2.4)

annihilation operator for Bosons: an|N0N1... 〉 =
√
Nn|N0N1...(Nn − 1)... 〉

(2.5)

creation operator for Fermions: a†n|N0N1... 〉 = (−1)
∑
k<nNk(1−Nn)|N0N1...(Nn + 1)... 〉

(2.6)

annihilation operator for Fermions: an|N0N1... 〉 = (−1)
∑
k<nNkNn|N0N1...(Nn − 1)... 〉

(2.7)

• The last two relations already incorporate the Pauli inclusion principle on the level of the
operators.

• The sign factors appearing for Fermions take care of the fact that a state that is anti-symmetric
under exchange of particles x1 ↔ x2, such as 〈x | 11 〉 = 1

2

(
φa(x1)φb(x2) − φb(x1)φa(x2)

)
,

then is also automatically anti-symmetric under exchange of state labels a↔ b.

From these definitions, we can show

Commutation Relations

[âi, âj ] = 0, [â†i , â
†
j ] = 0, [âi, â

†
j ] = δij (Bosons)

{âi, âj} = 0, {â†i , â
†
j} = 0, {âi, â†j} = δij (Fermions) (2.8)

• To proof these, apply both sides to a general “test” Fock state.

• We used the

Anti-Commutator: {Â, B̂} = ÂB̂ + B̂Â
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• For Bosons this is inspired by the S.H.O ladder operators (1.12) for harmonic oscillator states.
They share the commutator algebra with bosonic many-body creation operators.

• Using operatrs â†, we can span the entire Fock space:

|N0N1N2... 〉 =
(â†0)N0(â†1)N1(â†2)N2 ...| 0 〉√

N0!N1!N2!...
(2.9)

• Fock-states obey orthonormality

〈N ′0N ′1N ′2... |N0N1N2... 〉 = δN0N ′0
δN1N ′1

δN2N ′2
...

By combining operators from above, we can define the

Particle number operator

N̂k = â†kâk, (2.10)

which fulfills N̂k|N 〉 = Nk|N 〉.

• Thus Fock states are eigenstates of all the number operators N̂k, with the number of particles
in single particle state |ϕk 〉 as eigenvalues.

• We finally can define the total number operator

N̂ =
∑
k

N̂k (2.11)

2.1.1 N-Body Operators

Second quantisation now means to re-write everything in terms of creation and destruction operators

Consider a generic 2-body Hamiltonian (in the first quantised form), e.g.

Ĥ = − ~2

2m
(∇2

x1
+ ∇2

x2
) + V (x1) + V (x2) + U(x1,x2) (2.12)

where ∇2
x1

and ∇2
x2

are kinetic energies of particle 1,2. V(x1), V(x2) are some external potentials
(e.g. harmonic trap, gravity), and U(x1, x2) is an interaction potential.
We can distinguish here:
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Operator types
Single-body Operators (e.g. kinetic energy, potential energy), that are a sum of identical
replica acting on each particle:

Ô1 =
∑
k

ô(k), where ô(k) acts on a particle k. (2.13)

and a Two-body operator (Interaction potential), that contains both x̂1 and x̂2, Ô2 =∑
kl ô

(kl).

• More generally, there can be N -body operators for any N , but typically the two above are
sufficient.

• It is possible to express any first quantised Hamiltonian such as Eq. (2.12) in second quantised

form, i.e. using â, â†. To see how, we need to realize:

Equality of operators: Operators Ô are maps in Hilbert Space =⇒ they are identical
if all matrix-elements such as 〈φA |Ô|φB 〉, for all states A and B, are the same.

2.2 Second Quantised Hamiltonian

Let us assume Ĥ = Â + B̂, where Â =
∑

k Âk is a single-body and B̂ =
∑

kl B̂kl a two-body
operator. This results in

Second-Quantised Hamiltonian

Ĥ =
∑
nm

Anmâ
†
nâm +

∑
nmlk

Bnm,lkâ
†
mâ
†
nâlâk (2.14)

with single-body matrix-elements: Anm = 〈φn |Â|φm 〉,
and two-body matrix-elements: Bnm,lk = 〈φnφm |B̂|φlφk 〉. (2.15)
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Example: Consider N identical particles in a 1-D harmonic trap, interacting with

U(x1,x2) = U0 exp(−|x1−x2|2
2η2 ). First quantised Hamiltonian:

Ĥ =
N∑
k=1

(
− ~2

2m
∇2

xk
+ V (xk)

)
+

1

2

N∑
k,l=1

U(xk,xl) (2.16)

V (xk) = 1
2mω

2x2
k. We want to use the Harmonic oscillator basis (1.9) to define our â, â†. In

the notation used for Eq. (2.15):

Â = − ~2

2m
∇2

x + V (x̂) = Ĥ0,osc,

B̂ = U(x̂, ŷ).

Thus,

Anm = 〈φn |H0,osc|φm 〉 = Em〈φn |φm 〉 = δnmEm, · · ·
(2.17)

Example continued:
...and

Bnm,lk = 〈φnφm |B̂|φlφk 〉

=

∫
d3x

∫
d3y φ∗n(x)φ∗m(y)

U(x,y)

2
φn(x)φm(y)

The latter expression is quite complicated, involving many oscillator states and the Gaussian
interaction potential, but can in principle be evaluated, at the very least numerically.
Hence, for the 1D case for simplicity:

Ĥ =
∑
n

~ω(n+
1

2
)â†nân +

∑
nmlk

Bnm,lkâ
†
mâ
†
nâlâk (2.18)

Exercise: For 2 ≤ N ≤ 3, explicitly confirm that the matrix elements of operators Eq. (2.16) and
Eq. (2.18) are the same between a few pairs of Fock-states Eq. (2.2).

In the same manner, any first quantized many-body Hamiltonian can be converted to second
quantized form for any choice of single-particle basis.
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2.2.1 Basis Changes

We can always change the single particle basis underlying our second quantisation with a
unitary transformation

|φl 〉 =
∑
m

ulm|wm 〉 ulm = 〈wm |φl 〉 (2.19)

Define one set of operators for each, e.g.

〈x |â†n| 0 〉 = φn(x) 〈x |ĉ†n| 0 〉 = wn(x)

We can show the following

Basis Transformation for Second-Quantised Operators

â†l =
∑
m

ulmĉ
†
m (2.20)

=⇒ â =
∑
m

u∗lmĉm

Example: Let us rewrite the Hamiltonian Eq. (2.18) in the previous example 1.13 in the
momentum basis. Hence we have a continuous form of the transformation Eq. (2.19):

φl(x) =

∫
ul(k)eikxdk since 〈x |W (k) 〉 = exp [ikx]

ul(k) =
1

2π

∫
e−ikxφl(x)dx = φ̃l(k) ← (Momentum space oscillator eigenfunction)

i.e: ulm → ul(k) [m-index became continuous momentum ”k” and
∑

m →
∫
dk]

Hence we have â†l =
∫
ul(k)ĉ†(k)dk. The single-body term of Eq. (2.18) becomes∑

n

~ω(n+
1

2
)︸ ︷︷ ︸

=En

â†nân =
∑
n

En

∫
dk

∫
dk′un(k)u∗n(k′)ĉ†(k)ĉ(k′)

=

∫
dk

∫
dk′h(k, k′)ĉ†(k)ĉ(k′)

h(k, k′) =
∑
n

Enun(k)u∗n(k′)

This term describes the transitions between different momenta, as expected since momentum
states are not eigenstates of the single-particle Hamiltonian Ĥ0,osc.
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2.2.2 Application: Fermi Blocking vs Bose-Enhancement

Let us consider again N atoms in a harmonic trap, ignore interactions but add a small perturbing

potential P (x) = P0 exp
(
− x2

2η2

)
. So Eq. (2.16) becomes

Ĥ =
N∑
k=1

(
− ~2

2m
∇2
xk

+ V (xk) + P (xk)

)
(2.21)

left: Sketch of trap and per-
turbing potential.

We can separately determine the contribution of P(x) to the single body operator and find

Ĥ = [
∑
n

Enâ
†
nâm +

∑
nm

κnmâ
†
nâm]

κnm =

∫
dx φ∗n(x)P (x)φm(x) (2.22)

In general, κnm may be non-zero for n 6= m, hence the perturbation induces transitions between
oscillator states n, m.

Fermions:

top: What is the transition amplitude from
|A 〉 = | 1, 1, 0, 0, ... 〉 → |B 〉 = | 2, 0, 0, 0, ... 〉 for Fermions?

We consider the following

matrix element of the Hamiltonian:

〈B |Ĥ|A 〉 = 〈 0 |â0â0(
∑
nm

κnmâ
†
nâm)â†0â1| 0 〉 = 0.

We can see that it must be zero in multiple ways:

1. = 0 from {âi, âj} = 0 in Eq. (2.8)

2. or = 〈 1 |â0 = [â†0| 1 〉]∗ = 0 from Eq. (2.7)

3. or we say 〈 2, 0, 0, ... | for Fermions didn’t make sense to begin with.
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Either way, this demonstrates:

Fermi blocking: Fermionic particles cannot make a transition into a state already occupied
by another particle.

Bosons:

top: What is the transition amplitude from |A′ 〉 = |N, 1, 0, 0, ... 〉 → |B′ 〉 = |N + 1, 0, 0, 0, ... 〉
for Bosons?
The corresponding matrix element to the one above is:

〈B′ |Ĥ|A′ 〉 = 〈N + 1, 0, 0, .. |
∑
nm

κnmâ
†
nâm|N, 1, 0, ... 〉

Eq. (2.4)−(2.5)
= 〈N + 1, 0, 0, ... |κ01

√
N + 1× 1|N + 1, 0, 0, ... 〉 =

√
N + 1κ01

We see that there is

Bose-Enhancement: The quantum transition amplitude of a Boson into a single-body
state already occupied by N other identical Bosons is enhanced by a factor

√
N + 1
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2.3 Quantum Fields

Let us expand our assembly of the second quantized Hamiltonian in (2.21) again

Ĥ =
∑
nm

〈ϕn |Â|ϕm 〉â†nâm +
∑
nmlk

〈ϕnϕm |B̂|ϕlϕk 〉â†mâ†nâlâk (2.23)

Please refer again to section 2.1.1 for the definitions of Â, Â, B̂, B̂. Using the position space
representation of |ϕn 〉, this becomes

Ĥ =
∑
nm

∫
dx ϕ∗n(x)Â(x)ϕm(x)â†nâm +

∑
nmlk

∫
dx

∫
dy ϕ∗n(x)ϕ∗m(y)B̂(x, y)ϕl(x)ϕk(y)â†nâ

†
mâlâk

(2.24)
We now lump together the position space single particle basis functions ϕn(x) and operators ân
into the

Field Operator

Ψ̂(x) =
∑
n

ϕn(x)ân (2.25)

Using this notation, the Hamiltonian is

Ĥ =

∫
dx Ψ̂†(x)Â(x)Ψ̂(x) +

∫
dx

∫
dy Ψ̂†(y)Ψ̂†(x)B̂(x, y)Ψ̂(x)Ψ̂(y) (2.26)

For the same case as (2.16) we have:

Hamiltonian for particles in a 1D harmonic trap (with interactions)

Ĥ =

∫
dx Ψ̂†(x)

[
− ~2

2m
∇2
x + V (x)

]
︸ ︷︷ ︸

≡Ĥo

Ψ̂(x) +
1

2

∫
dx

∫
dy Ψ̂†(y)Ψ̂†(x)U(x− y)Ψ̂(x)Ψ̂(y)

(2.27)
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• Field operator is also simply the annihilation operator for the position-basis. Think of it

as annihilating a particle at position ”x”. To see this consider the state |x 〉 = Ψ̂†(x)| 0 〉 =∑
n ϕn(x)â†n| 0 〉. If we now consider the overlapp of two of these states we have

〈 y |x 〉 = 〈 0 |
∑
nm

ϕ∗m(y)ϕn(x)âmâ
†
n| 0 〉. (2.28)

Using the orthogonality of Fock states, this reduces to 〈 y |x 〉 =
∑

n ϕ
∗
n(y)ϕn(x)

see QM book
=

δ(x− y). Since the states only overlap for x = y, they must be position eigenstates.

• All three descriptions (2.12), (2.14), (2.27) are fully equivalent, which is ”best” depends on
the problem.

• Using (2.8) and
∑

n ϕn(x)ϕ∗n(y) = δ(x− y) we can show

Commutation relations for field operators

Bosons :
[
Ψ̂(x), Ψ̂†(y)

]
= δ(x− y),

[
Ψ̂(x), Ψ̂(y)

]
= 0

Fermions :
{

Ψ̂(x), Ψ̂†(y)
}

= δ(x− y),
{

Ψ̂(x), Ψ̂(y)
}

= 0
(2.29)

2.3.1 Examples of Quantum Fields

Advantages/strengths of quantum field concept:

• Naturally deals with particle creation/anhilation and conversion. Different Fock-states (2.2)
can be viewed as different excited states of the underlying the field.

• Formulated in time and space (t, x), quantum fields can naturally address spatial and temporal
coherence properties (e.g. see chapter 3).

• Can conveniently formulate Lorentz-invariant (relativistic) theories and take care of causality.

Examples:
Example A: Harmonically trapped dilute Bose gas

Ψ̂(x) =
∑
n

ϕn(x)︸ ︷︷ ︸
SHO modes

ân

• typically atom number conserved and non-relativistic

• Field operator useful to describe coherence and condensation.

• Atom number may fluctuate if part of the system external.
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Examples cont:
Example B: Harmonically trapped dilute Fermi gas.

We expect here that Fermi blocking or the Pauli exclusion principle
play a crucial role. These first two examples are the sole focus of this lecture. The remaining
ones are listed to provide links to other lectures.

Example C: Quantized light field / electric field in QED, Quantum Optics

~̂E(~r, t) =
∑
k

~εkEkâke−iωkt+ik·r + H.c.

where,

~εk - Polarization vector, Ek - Amplitude, e−iωkt+ik·r - Plane wave
(Photon-mode)

Example D: Relativistic spin 1
2 field (e.g. quarks/electrons)

Ψ̂α(x) =
∑
s=± 1

2

∫
d3p

(2π)32p0

e−ipxuα(p, s)â(p, s)︸ ︷︷ ︸
particle

+ eipxvα(p, s)â†(p, s)︸ ︷︷ ︸
anti-particle


where α - spin index, x - 4-vector(t,x), uα(p, s) - Spinor

Example E: Non-relativistic electron gas in condensed-matter

Ψ̂σ(x) =
∑
n

∫
dk ânk unk(r)︸ ︷︷ ︸

Bloch-function

eikx︸︷︷︸
plane-wave

χσ︸︷︷︸
spin

where, n - Band index, unk(r) - Bloch function with period-
icity R

unk(r +R) = unk(r)

• Quantum fields are operators and thus on the same level as an Observable in single body
quantum mechanics.

• A specific physical situation requires us in principle to specify also an underlying (many-body)
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quantum state |ψ 〉.

• With that we can then evaluate specific expectation values involving the quantum field.

Example: Interplay of quantum field and quantum state: Consider N Bosonic
atoms in a 1D harmonic trap as in Example A above.
Using (2.10) and (2.25), we can show that the total number of atoms is:

N =

∫
dxΨ̂†(x)Ψ̂(x). (2.30)

This motivates viewing ρ̂(x) = Ψ̂†(x)Ψ̂(x) as operator for the density of atoms.
We shall see two sources of fluctuations for this density: One due to the underlying quantum
state of the field, and one due to the discreteness of the individual atoms. To measure local
density, we count atoms in a small region of size L as shown in the figure, to find the local
number of atoms in this region

n̂loc(x0) =

∫ x0+L

x0

dxΨ̂†(x)Ψ̂(x), (2.31)

and then use ρ̂ = nloc(x0)/L to get a density. Let us define the local number uncertainty

∆nloc(x0)2 = 〈n̂loc(x0)2〉 − 〈n̂loc(x0)〉2. (2.32)

You should have seen similar expressions for e.g. position uncertainty ∆X in basic QM.

Case (i): Quantum state ψ = |N, 0, 0, 0 · · · 〉, i.e. all N atoms are in the ground state. We

can see a mean local number 〈ρ̂〉 = Nploc and an uncertainty ∆nloc(x0) =
√
N(ploc − p2

loc),

where ploc =
∫ L

0 du|ϕ0(x0 + u)|2 is the single atom probability to be in the chosen region.
The uncertainty arises because the density measurement is based on a finite sample number
of atoms.
Case (ii): Quantum state ψ = [|N − k, 0, 0, 0 · · · 〉+|N + k, 0, 0, 0 · · · 〉]/

√
2 for k < N . Now

the atom number itself is uncertain. We find again 〈ρ̂〉 = Nploc but this time ∆nloc(x0) =√
N(ploc − p2

loc) + k2p2
loc. Thus while we can have the same mean density, increasing k

increases the density fluctuations. This now happens because of the quantum state itself.

Note that all the properties above changed based on quantum state.
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• As we see later, often the detailed specification of the underlying quantum state can be avoided
however, by simply postulating certain properties of expectation values of field operators, and
then working with those.

2.3.2 Dynamics of quantum fields

Here the field operators are mainly a way to re-write the Hamiltonian. Much of the usual method-
ology of quantum mechanics can be applied as before.

E.g. Consider the Heisenberg picture1 for the field operator in (2.27): i~ ˙̂
Ψ = [Ψ̂, Ĥ]:

Heisenberg equation for Field operator

i~ ˙̂
Ψ(x, t) = Ĥ0Ψ̂(x, t) +

∫
d3y Ψ̂†(y, t)U(x− y)Ψ̂(y, t)Ψ̂(x, t) (2.33)

• We have made use of the commutation relation (2.29).

• We shall begin exploring BEC from here in chapter 3.

Example: Non-interacting evolution of atom-field (thus the Hamiltonian is as in (2.16) but
with U = 0)
Insert Ψ̂(x) =

∑
n ϕn(x)ân into (3.38).

i~
∑
n

ϕn(x) ˙̂an = Ĥ0

(∑
n

ϕn(x)ân

)
(2.34)

=
∑
n

Ĥ0ϕn(x)︸ ︷︷ ︸
==Enϕn(x)

ân (2.35)

(2.36)

Multiplying by
∫
dxϕ∗m(x)

i~ ˙̂am = Emâm (2.37)

=⇒ âm(t) = â(0)e−i
Emt
~ (2.38)

=⇒ Ψ̂(x, t) =
∑
n

ϕn(x)e−i
Ent
~ â(0) (2.30b)

The number of cases where (2.30) can be solved is limited. But we also still have:

1If unfamiliar, please revise all three QM dynamical pictures (Schrödinger-, Heisenberg-, Interaction picture)
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Time-evolution operator:

Û(t, t0) = T
[
exp

[
−i
∫ t

t0

dt′Ĥ(t′)

]]
(2.39)

• Evolves a (many-body) quantum state in time

|ψ(t) 〉 = Û(t, t0)|ψ(t0) 〉

• Ĥ & initial/final states can be written using field operators.

• We can move to the interaction picture to replace Ĥ(t′) with some (weaker) interaction V̂ (t’)
in (2.31).

• Then expand exponential in a power series → time-dependent perturbation theory, Feynman
diagrams (not here).

2.3.3 Observables and Green’s functions2

1. As usual in QM, all physical observations related to a quantum field can be written as
expectation value of an operator.

2. In 2.2.1 we showed of all operators can be expressed by creation-(destruction-) operator â†(â).

3. These in turn can all be expressed through field operators.

All up, a huge list of phenomena can be understood from correlation functions:

Green’s function: Roughly of the form

G(n)(x1t, ..., xnt|x′1t′, ..., x′nt′) = 〈Ψ̂†(xn,′ t′), ..., Ψ̂†(x1,
′ t′)Ψ̂(xn, t), ..., Ψ̂(x1, t)〉 (2.40)

There are lots and lots of alternative definitions.

2.3.4 Spin-statistics theorem

This really belongs to the realm of relativistic quantum mechanics or particle physics, but we could
not resist sketching it here. You know that:

2See Bruus and Flensberg
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Spin-statistics theorem:

Half-integer spin particles = Fermions (s =
1

2
,
3

2
, etc.)

Integer spin particles = Bosons (s = 0, 1, 2, etc.)
(2.41)

This follows necessarily from casuality and Lorentz invariance.

Rough sketch of the proof:

• Hamiltonian density Ĥ =
∫
d4xĤ (x) (where x = (t,x)) must obey

[
Ĥ (x), Ĥ (y)

]
= 0

for (x− y)2 = c2∆t2 −∆x2 < 0. (A)
(This means space-like seperated events cannot affect each other.)

• Quantum fields obey specific transformation laws under Lorentz-transformations Λ
(4x4 matrix), depending on spin of the field.

U(Λ)Ψ̂†(x)U−1(Λ) = Ψ̂†(Λx) (spin zero)

U(Λ)Ψ̂†s(x)U−1(Λ) =
∑
s′

Dss′(Λ
−1)︸ ︷︷ ︸

≡ representation matrix

Ψ̂†s′(Λx) (spin 1/2)

• It turns out that (A) works out if[
Ψ̂(x), Ψ̂†(y)

]
= 0 for (x− y)2 < 0 (integer spin){

Ψ̂(x), Ψ̂†(y)
}

= 0 for (x− y)2 < 0 (half-integer spin)

2.3.5 Notation overview-I

We have introduced a lot of different but similar symbols for single vs many body states and
operators. We will attempt to stick to the following notation:

Notation:

|wn 〉, |ϕn 〉, wn(x), ϕn(x) Single particle bases and their position representation.
|ψ 〉, ψ(x1,x2, ...) Many-body state and its (1st quantized) position representation.

Ψ̂(x) Field operator

b̂, b̂† Harmonic oscillator ladder operator.

ân, â
†
n, ĉn, ĉ

†
n Creation and anhilation operators for various bases |wn 〉, |ϕn 〉
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2.4 Coherent states

Coherent states are a very useful concept in many areas of quantum physics. We discuss two types,
which are mathematically/algebraically identical but conceptually subtly different:

2.4.1 Coherent Harmonic Oscillator States

• Question: What is the “most classical” type of oscillation we can get in the quantum harmonic
oscillator:

• Answer: Define

Coherent State

|α〉 = e−
|α|2

2 exp[αb̂†]|0〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|ϕn〉, α ∈ C (2.42)

We can write this also as: |α〉 = D(α)|0〉, where D(α) = eαâ
†−α∗â is the

displacement operator.

• Here b̂† is a ladder operator from (1.12).

• Coherent states are not necessarily eigenstates of the harmonic oscillator Hamiltonian ĤSHO

in (1.13), since they have an uncertain energy/number of oscillator quanta.
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Properties of coherent states

b̂|α〉 = α|α〉, b̂†|α〉 =

(
∂

∂α
+
α∗

2

)
|α〉, 〈α|b̂† = 〈α|α∗, (2.43)

〈α|α′〉 = exp

[
α∗α′ − |α|

2

2
− |α

′|2

2

]
(Not orthogonal), (2.44)

〈α|α〉 = 1, (2.45)

I =
1

π

∫
dα|α〉〈α|. (2.46)

• Coherent state is a right-eigenstate of destruction operator

• Two different coherent states are typically not orthogonal, unless |α − α′| is very large (and
even then only approxiately).

Proof of (2.43): Let |ᾱ〉 = e
|α|2

2 |α〉

b̂|ᾱ〉 =

∞∑
n=0

αn√
n!
b̂|ϕn〉 =

∞∑
n=1

αn√
n!

√
n|ϕn−1〉

=
n7−→n+1

∞∑
n=0

αn+1√
(n+ 1)!

√
n+ 1|ϕn〉 = α

∞∑
n=0

αn√
n!
|ϕn〉 = α|ᾱ〉

b̂†|ᾱ〉 =
∞∑
n=0

αn√
n!
b̂†|ϕn〉 =

∞∑
n=0

αn√
n!

√
n+ 1|ϕn+1〉

=
∞∑
n=0

1√
n!

1

n+ 1

∂

∂α
αn+1

√
n+ 1|ϕn+1〉 =

∞∑
n=0

∂

∂α

αn+1√
(n+ 1)!

|ϕn+1〉

=
∂

∂α

∞∑
n=1

αn√
n!
|ϕn〉 =

∂

∂α

∞∑
n=0

αn√
n!
|ϕn〉 =

∂

∂α
|ᾱ〉

(Rest follows from the product rule.)
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Example: Oscillation of coherent state: What is the meaning of α? Let α0 ∈ R
Convert the equation b̂|α0〉 = α0|α0〉 to the position basis:

〈x|b̂|α0〉 = α0 〈x|α0〉︸ ︷︷ ︸
≡α̃0(x)

Using−−−−−−→
Eq. (1.12)

∂

∂x
α̃0(x) =

(
− mω

~
x+

√
2mω

~
α0

)
α̃0(x)

Solve
===⇒

DE
α̃0(x) = C exp

[
− (x− α′0)2

2σ2

]
,

where σ =
√

~
mω and α′0 =

√
2σα0. Thus the position space representation of a coherent

state has a Gaussian shape, with center location governed by α′0.
We now want to find the time evolution of the coherent state |α0 〉. The latter is assembled
from oscillator eigen states that obey:

Ĥ0|ϕn〉 = En|ϕn〉, En = ~ω
(
n+

1

2

)
.

Since the Hamiltonian is time-independent, we can us the standard rules for time evolution
to find

⇒ |α(t)〉 =
∑
n

αn0√
n!
e−iω(n+ 1

2
)t|ϕn〉

=
∑
n

1√
n!

(α0e
−iωt)ne−i

ω
2
t|ϕn〉

= e−i
ω
2
t|α0e

−iωt〉.

Can show after some fiddling:

|α̃(x, t)|2 = C ′exp

[
− (x− α′0 cos(ωt))2

σ2

]
.
We thus always have a ground-state shaped Gaussian oscillating in the potential with
amplitude α′0.

top: Coherent state Gaussian oscillating
in a harmonic trap

top: Coherent state in phase space, rep-
resented by Wigner function (see below)
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2.4.2 Wigner function

In the example above, bottom right, we also wanted to show a phase space representation of a
quantum harmonic oscillator in a coherent state.

Classically we have the idea of phase-space (x, p). Quantum mechanically ∆x∆p ≥ ~/2→ particle
cannot have a fixed phase-space coordinate. We can still represent a quantum state ϕ(x) in phase-
space, using the

Wigner distribution

W (x, p) =
1

π~

∫ ∞
−∞

ϕ∗(x+ y)ϕ(x− y)e2ipy/~dy (2.47)

• Properties ∫ ∞
−∞

dp W (x, p) = |ϕ(x)|2 (position-space distribution),∫ ∞
−∞

dxW (x, p) = |ϕ̃(p)|2 (momentum-space distribution).

• W (x, p) is a quasi-probability distribution (means we can get some expectation values by
integrating over it, but it may have regions with W (x, p) < 0)

• The interpretation is that when drawing W (x, p), non-zero regions show the location of a
quantum-state in phase-space. This was used in the figure of the example above.

We can alternatively define the

Wigner function from the number-state representation

χW (λ, λ∗) = Tr{ρ̂eλâ†−λ∗â} (2.48)

W (α, α∗) =
1

π2

∫
d2λe−λα

∗+λ∗αχW (λ, λ∗) (2.49)

• The above gives the same as (2.47) for harmonic oscillator ladder operators â→ b̂.

• It directly generalizes to Fock states (2.2), when â are many-body creation and destruction
opertors.
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Example, Laser:

Consider a single-mode photon field at frequency ω:

Ĥ = ~ωâ†â, just as for oscillator

Electric field (c.f. Example C page 19)

Ê(x, t) = E(x, t)â+ h.c.

Taking expectation value in the coherent state |α(t)〉, we can show (exercise)

〈α(t)|Ê(x, t)|α(t)〉 = 2 Re{E(x, t)α0e
−iωt︸ ︷︷ ︸

α(t)

}

Thus here, the complex number α(t) characterizes amplitude and phase of the oscillating
electric field.

2.4.3 Coherent many-body states

Due to identical properties of ladder b̂ operators and â, ĉ, we can equally define a

Many-body coherent state (Bosons):

|α〉 = exp[â†mα]|0〉 = e−
|α|2

2

∑
n

αn√
n!
|n〉, α ∈ C (2.50)

where |n〉 is a Fock-state that represents the occupation of mode |φm〉.

• this now describes a superposition of different occupation numbers (Fock-states) of single-
body mode |ϕm〉
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• all properties of (2.43)-(2.46) apply

We can combine states (2.50) for multiple single-particles states (modes) into

Many-mode coherent state (Bosons):

âk|α〉 = αk|α〉, α = {α1...αN}, αk ∈ C (2.51)

which exhibit one coherent amplitude αk for each single-particle basis state k

• The slightly messy formal decomposition of (2.51) into Fock-states is

|α〉 = e−
∑
k
|αk|

2

2

∑
n1n2...nN

αn1
1 αn2

2 ...αnNN√
n1!
√
n2!...

√
nN !
|n1n2...nN 〉. (2.52)

2.4.4 Fermionic coherent states (not used here)

If we assume a definition like (2.51) for fermionic operators we run into trouble:

{âk, âl}|α〉 = (αkαl + αlαk)|α〉
!

= 0 (since{âk, âl} = 0)

For two non-zero complex numbers αkαl + αlαk = 2αkαl 6= 0 of course.

Solution: We use

Grassmann-numbers Defined as an anti-commuting set of complex numbers

• Based on this we can also use the coherent state concept for fermions. Mainly useful for
fermionic path integrals

• Not further used in this lecture
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3 Bose-Einstein Condensates

3.1 Quantum statistical physics

For large systems, we cannot know all microscopic detail =⇒ describe with density-matrix (see
1.3.2).

All essential postulates take a very similar form to classical statistical physics.

Quantum statistical ensembles:

Microcanonical ensemble (fixed N,V,E)

ρ̂ =
1

Γ(E)

∑
k

Ek≈E

|ψk 〉〈ψk | (3.1)

• the sum runs over all many-body states k with energy in energy range E ≤ Ek ≤ E+∆E, for
a small ∆E. See Eq. (1.23) for the definition of |ψk 〉, Ek, i.e., they are generic many-body
states.

Canonical ensemble (fixed N,V,T)

ρ̂ =
1

Z
e−βĤ , (3.2)

where β = (kBT )−1 and Z is the partition function, Z = Tr[e−βĤ ].

• Z normalizes ρ̂ to fulfill Tr[ρ̂] = 1.

• The exponential of an operator is defined via the power series of exp.
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• In eigenbasis of Ĥ, 〈ψk |, we can write

ρ̂ =
1

Z

∑
k

e−βEk |ψk 〉〈ψk |. (3.3)

• (3.3) is however more general. We may not know the eigenbasis, since finding it is hard for
interacting many-body systems.

Grand-canonical ensemble (fixed µ,V,T)

ρ̂ =
1

ZG
e−β(Ĥ−µN̂), (3.4)

where µ is the chemical potential (operationally defined later), N̂ the total number operator

for the system and ZG = Tr[e−β(Ĥ−µN̂)] the grand-canonical partition function.

• In eigenbasis of Ĥ and N̂ , 〈ψk |, we can write:

ρ̂ =
1

ZG

∑
k

e−β(Ek−µNk)|ψk 〉〈ψk |, (3.5)

where Nk is the number of particles in the state |ψk 〉.

We focus on the latter example, and explore the
Consequences for Indistinguishable particles:

Consider single particle basis H0|ϕm 〉 = εm|ϕm 〉 and non-interacting many-body Hamiltonian

Ĥ =
∑
m

εmâ
†
mâm. (3.6)

• Convince yourself that Fock states |N 〉 = |N1N2N3 · · · 〉 in (2.2) are eigenstates of Ĥ|N 〉 =
EN|N 〉 with EN =

∑
mNmεm.

• From (3.5)

ρ̂ =
∑
N

PN|N 〉〈N |

with (define NN =
∑

mNm)

PN =
e−β(EN−µNN)∑
N e−β(EN−µNN)

=
exp [−β (

∑
mNmεm) + βµ (

∑
mNm)]∑

N1,N2,N3,...
exp [−β (

∑
mNmεm) + βµ (

∑
mNm)]

(3.7)

=

∏
m exp[βNm(µ− εm)]∏

l

[∑
Nl

exp[βNl(µ− εl)]
] =

∏
m

Pm(Nm) (3.8)
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with

Pm(Nm) =
exp[βNm(µ− εm)]∑
Nl

exp[βNl(µ− εl)]
, (3.9)

the probability to have Nm particles in mode number m. To see the latter statement more
rigorously, define this probability as Pm(Nm) =

∑̄
N′PN′ with

∑̄
running only over all N̄′

that fulfill N ′m = Nm. Starting from (3.7) you then reach (3.9) (excercise).

Now: What is the mean number of particles in state |ψb 〉, with energy εb?

m̄b = 〈N̂b
↓

= â†bâb

〉 = Tr[ρ̂N̂b] =
∑
N

PNTr (Nb|N 〉〈N |)

=
∑
N

PNNb
as ~
=
∑
Nb

Pb(Nb)Nb (3.10)

So far, our discussion was valid for both, Bosons and Fermions. Now we have to specifiy.

Fermions: Allowed values of Nb = 0, 1

=⇒ m̄b = 0 + Pb(1)× 1 =
exp(β(µ− εb))

1 + exp(β(µ− εb))
=⇒

Fermi-Dirac distribution Mean number of indistinguishable Fermions in a given state b
with energy εb:

m̄b =
1

exp(β(εb − µ)) + 1
. (3.11)

Bosons: All values of Nb = 0, 1, 2, ...,∞ are allowed

• Define a = exp[β(µ− εb)] and note that we can then write

m̄b =
∑
Nb

Pb(Nb)Nb =
a d
da

(∑
Nb
aNb
)

∑
Nb
aNb

• Use geometric series
∑

n a
n = 1/(1− a) to reach3

Bose-Einstein distribution Mean number of indistinguishable Bosons in a given state b
with energy εb:

m̄b =
1

exp(β(εb − µ))− 1
. (3.12)

3 Using this expression requires a < 1, which is the case since µ < 0, as we shall see shortly.
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• The classical limit m̄b � 1 is reached when the occupation of each state is very small.
=⇒ exp� 1

=⇒ m̄b = exp(−β(εb − µ)),

so we recover the Boltzmann-distribution from classical physics.

• For given system (i.e. fixed εk and temperature), the chemical potential controls the mean
total particle number via N =

∑
k m̄k.

3.2 Bose-Einstein condensation

Consider non-interacting Bosonic atoms in a harmonic trap, with

εn = ~ω(nx + ny + nz +
3

2
).

!4 In section 3.2, nx, ny, nz label oscillator states not occupation numbers. For those we
use capital N as before

The mean total atom number now is

N =
∑

nxnynz

m̄nxnynz
(3.12)

=
∑

nxnynz

1

exp[β(~ω(nx + ny + nz + 3
2)− µ)]− 1

• Define µ̃ = µ − 3
2~ω. We need µ̃ < 0 for reasonable results, which means positive mean

occupation, m̄n>0.

• We see that, for a given state n = (nx, ny, nz), if we lower the temperature (T↓) then all mean
occupations go down (m̄n ↓). On the other hand, for a given state n and T , if we increase
the adjusted chemical potential (µ̃ ↑) then all mean occupations go up (m̄n ↑).

• Thus, if we would want to keep the total particle numbers N fixed as we lower the temperature
T , we need to simultaneously increase µ.

• But in that we are limited by the requirement µ̃ < 0, so the question is what happens when
we reach µ̃ = 0? In that case we see for the groundstate occupation: m̄000

↓
Ground-state occupation

= 1
eβ.0−1

→ ∞,

which is a problem, while for all other states the formula (3.12) could still be OK.

• The solution is to separately write the occupation of the ground-state as in:

N = N0 +
∑

n6=(000)

m̄n (3.13)

Let us find the lowest temperature Tc where N0 ≈ 0 is still possible. In other words, what is the
lowest temperature for which we are still able to distribute “enough” atoms among all the excited
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states, using the B.E. distribution function (3.12). This will correspond to µ̃ = 0. Hence:

N =
∑

n6=(000)

1

exp[βc(~ω(nx + ny + nz))− µ̃
↓

=0

]− 1
βc =

1

kBTc

≈
∫
dnxdnydnz

1

exp[βc(~ω(nx + ny + nz))]− 1
Let n′x/y/z = ~ωnx/y/z

≈
(
kBTc
~ω

)3 ∫ ∞
0

dn′xdn
′
ydn

′
z

1

en
′
x+n′y+n′z − 1

=

(
kBTc
~ω

)3 ∞∑
p=1

∫
d3ne−p(n

′
x+n′y+n′z)

∵ ∞∑
p=1

e−pα =
1

eα − 1


︸ ︷︷ ︸

geometric series

=

(
kBTc
~ω

)3 ∞∑
p=1

(∫ ∞
0

dn′xe
−pn′x

)
︸ ︷︷ ︸

=1/p

(∫ ∞
0

dn′ye
−pn′y

)(∫ ∞
0

dn′ze
−pn′z

)

=

(
kBTc
~ω

)3 ∞∑
p=1

1

p3
=

(
kBTc
~ω

)3

ζ(3)

where ζ(s) =
∑∞

p=1
1
ps is the Riemann-Zeta function. Below TC , we have to allow N0 > 0 in (3.13)

in order to allocate all our N atoms into a quantum state. We thus derived the

Critical temperature for Bose-Einstein condensation in a 3D isotropic harmonic trap

kBTc = ~ωN1/3ζ(3)−1/3 = 0.94N1/3~ω (3.14)

• depends on the dimension and trap details.

• numerical estimate: N = 10000, ω = (2π)100Hz =⇒ Tc = 97 nK (nano-Kelvin)

Now let T < Tc. From (3.13) =⇒

N = N0(T ) +
∑

n 6=(000)

m̄n =
↓

as before

N0(T ) +

∫
dnxdnydnz

1

exp[β
↓

β = 1/kBT (not Tc now)

(~ω(nx + ny + nz))]− 1

= N0(T ) +

(
kBT

~ω

)3

ζ(3) = N0(T ) +

(
kBT

kBTc

)3

N =⇒

Fraction of Bose condensed atoms:

fc =
N0(T )

N
=

[
1−

(
T

Tc

)3
]

(3.15)
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• Bose Einstein condensation has the properties of a second order phase transition.

• Unlike most of those, it does not require interactions (except indirectly, for thermalization).

• At T = 0, the system is in the state of N0 = N , with

ρ̂ = |N000... 〉〈N000... | ←→ |ψ0 〉 = |N
↓

Fock-state with all N atoms in the ground state

000... 〉 (3.16)

3.2.1 De-Broglie Wave overlap

To work out one more aspect of condensation, let us redo the derivation in 3.2 for Bosons in a 3D
infinite square (cubic) well (of volume L3 = V ).

En =
π2~2

2mL2
(n2
x + n2

y + n2
z) k =

nπ

L

Using a similar calculations as in 3.2 (bit harder due to E ∼ n2)
one can show:

Tc ≈
~2

2mπkb

(
N

2.6V

)2/3

. Let us define the

Thermal de-Broglie Wavelength

λT =
~√

mkBT
. (3.17)

as the wavelength of a particle with kinetic energy Ekin ≈ kBT . Mean nearest neighbour distance

of randomly distributed atoms at density ρ = N/V is d̄ = 1
3

(
3

4πρ

)1/3
Γ(1/3) ≈ 0.5ρ−1/3. Thus

λTc = ~

√√√√ 1

mkB

(
2πmkB

~2

(
2.6V

N

)2/3
)

=

√
2π(2.6)2/3

ρ1/3
≈ 3ρ−1/3

Thus around Tc, the atomic de-Broglie waves begin to overlap:
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Week 6
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

3.3 Gross-Pitaevskii Equation

• Previously, we considered Bose gases with non-interacting atoms.

• However BEC occurs also if (weak) interactions are present.

• These can be treated very simply for dilute-gas BEC.

3.3.1 Contact Interactions

Consider N interacting Bosons with Hamiltonian (2.16)

Ĥ =

N∑
k=1

(
− ~2

2m
∇2

xk
+ V (xk)

)
+

1

2

N∑
k,l=1

U(xk − xl) (3.18)

with V (xk) = 1
2mω

2x2
k (harmonically trapped, e.g. magnetic or optical trap, see PHY402 lecture

notes).

Realistically, atoms interact with a finite range potential

U(xk − xl) =
A

r12
− B

r6
r = |xk − xl|, (3.19)

that has an attractive van-der-Waals components (∼ −r−6), due to interactions of dipole fluctua-
tions and a repulsive component (∼ +r−12) due to electron overlapp. This is called Lennard-Jones
Potential.

left: Sketch of Lennard-Jones Potential. Note the
range is of the order 10a0 ∼nm.
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Important fact I: Densities in dilute gas BEC are such that the mean distance d between
atoms d� R, since d ∼ 0.1µm. =⇒ When interactions take place, they are mostly binary
scattering of two atoms, so let us look at that.

We need to consider atomic collisions in quantum scattering theory.

Quantum scattering theory: (This box is a reminder only. Please read up quantum
scattering theory basics in a text book, if required.) An atom scatters of an target (assumed
immobile) at r = 0 with interaction potential U(r). We can write

ϕk(r) = eikix + fk(θ)
eikr

r
(3.20)

for the scattering wave function of the particle. This includes that the incoming particle has
a known initial momentum pi = ~kiex along the x direction, while after the scattering it may
go in any direction (with final momentum pf , with a scattering angle θ while |pi| = |pf |.
The amplitude for a certain scattering angle is encoded in fk(θ).

left: Schematic of the setup
in quantum scattering the-
ory. The x direction goes to
the right.

To find f , we solve the scattering TISE, inserting (3.20). mr = m/2 is the reduced mass.

(∇2 + k2)ϕk(r) =
2mr

~2
U(r)ϕk(r). (3.21)

Partial wave expansion (PWE): (Also reminder only. ) A useful tool for the solution of
Eq. (3.21) in scattering theory is the PWE. Here we expand both, f and the incoming wave
in terms of Legendre polynomials in θ.

ϕk(r) =
∞∑
l=0

AlPl(cos θ)Rkl(r). (3.22)

The interpretation of l is that it quantifies the angular momentum wrt. the scattering centre,
which depends on the impact parameter, and is conserved in a central potential V (r).
Due to that conservation we can solve (3.21) separately in each angular momentum channel.
There the corresponding radial wave function Rkl(r) satisfies:

R′′kl(r) +
2

r
R′kl(r) +

k2− l(l + 1)

r2
− 2mr

~2
U(r)︸ ︷︷ ︸

≡− 2mr
~2 Ueff(r)

Rkl(r) = 0. (3.23)
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s-wave scattering: As in usual solutions of the TISE, the wavefunction R(r) will not
significantly extend into regions where 0 < E < Ueff(r) (see below). Thus if the range of
the interaction potential U(r) is sufficiently short, higher angular momentum channels will
not be affected by it. This means that scattering at very low temperatures can be fully
described by l = 0, which is called s-wave scattering. Since for l = 0, Pl(θ) = 1, in this case
the scattering is isotropic.

left: Interaction potential U(r) (ma-
genta), and complete effective po-
tential Ueff(r) for higher l (green).
An exemplary incoming partial wave
in channel 3 with energy E =
~2k2/(2mr) > 0 is also shown.

left: Alternatively think that an-
gular momentum quantisation is di-
viding the continuous axis of differ-
ent impact parameters d into regions
with discrete angular momentum. If
the potential is short ranged, colli-
sions with impact parameter yielding
l > 0 will not involve it. The lower
the velocity, the larger the “l=0” re-
gion. Hence...

Important fact II: At low temperatures (low scattering velocities) only l = 0 (s-wave) will
contribute. Since the s-wave component of the PWE P0(cos θ) = 1 does not depend on θ,
scattering is isotropic (all outgoing directions are equally likely)

s-wave scattering length: To first order perturbation theory (Born approximation), one
can show that the scattering amplitude in Eq. (3.20) is given by

fk(θ) = − 2mr

4π~2

∫
d3r′e−i(kf−ki)·r

′
U(r′), (3.24)

that is, fk(θ) is related to a Fourier transform of V (r). For very low temperatures, and hence
small momenta of the scattering particles, their de-Broglie wavelengths are much longer than
the range of the interaction potential. Then e−i(kf−ki)·r

′ ≈ 1 in Eq. (3.25) and we have

f = − 2mr

4π~2

∫
d3r′U(r′) ≡ as (3.25)

So now f no longer depends on scattering energy/momentum through k nor on angle θ. The
quantity as is called s-wave scatteing length.

45



Important fact III: At very low temperatures for dilute gases, a single number, the
s-wave scatteing length contains all the information about the scattering.

Together, the three “important facts” above allow the use of the

Contact interaction potential. (chosen to give same s-wave scattering as (3.19))

U(xk − xl) =⇒ U0δ(xk − xl) (3.26)

with U0 = 4π~2as
m

• as is the s-wave scattering length, that quantifies the amplitude of the scattering process (or
total cross-section).

• sign of as tells if interactions are repulsive (as > 0) or attractive (as < 0).

• Exercise: Show that (3.26) indeed gives the same scattering amplitudes as (3.19) when inserted
into (3.25).

3.3.2 Condensate Wave function

Let us assume something like Eq. (3.16) [|ψ0 〉 = |N000... 〉] holds even in the interacting case.
Thus again all Bosons shall be in the same state =⇒

Ansatz for many-body wave-function (N Bosons, 1D)

ψ(x, t) =
N∏
l=1

φ(xl, t) (3.27)

with

∫ ∞
−∞
|φ(x, t)|2dx = 1 (3.28)

Unlike in the non-interacting case, φ may not be the trap ground-state, and we now want to find
which state it is.

Determine φ(x, t) from Ĥ in Eq. (2.16) with potential (3.26) using the time-dependent variational principle:
δS = 0, with
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Action S:

S =

∫
dtdNx

i~
2

[ψ∗(x, t)
∂

∂t
ψ(x, t)− ψ(x, t)

∂

∂t
ψ∗(x, t)]− ψ∗(x, t)Ĥψ(x, t)]︸ ︷︷ ︸

Lagrangian density

(3.29)

• To test this we could show that it gives the correct many-Body SE upon variation of ψ.

• Variational principle allows us to “enforce” the guess (3.27) and then ask “what equation
does φ(x, t) have to follow if this is true?”

Note:

∂

∂t
ψ(x, t)

(3.27)
= [

N∑
k=1

∂

∂t
φ(xk, t)]

N∏
l=1
l 6=k

φ(xl, t) (3.30)

Let us insert (3.27) into (3.29) and simplify

S
(3.30)

=

∫
dtdNx [

i~
2

[
N∏
l′=1

φ∗(xl′ , t)
N∑
k=1

N∏
l=1
l 6=k

φ(xl, t)
∂

∂t
φ(xk, t)−

N∏
l′=1

φ(xl′ , t
′)

N∑
k=1

N∏
l=1
l 6=k

φ∗(xl, t)
∂

∂t
φ∗(xk, t)]

−
N∏
l′=1

φ∗(xl′ , t
′)[

N∑
k=1

Ĥ0(xk) +
1

2

N∑
k,m=1
k 6=m

U0δ(xk − xm)]
N∏
l=1

φ(xl, t)]

(3.31)
We have to integrate

∫
dNx =

∫
dx1

∫
dx2....

∫
dxi.....

∫
dxN . All integrals with xi 6= (xk or xm)

give
∫
|φ(xi, t)|2dxi = 1 =⇒

S =

N∑
k=1

∫
dt

∫
dxk [

i~
2

[φ∗(xk, t)
∂

∂t
φ(xk, t)− φ(xk, t)

∂

∂t
φ∗(xk, t)]

− φ∗(xk, t)Ĥ0(xk)φ(xk, t) +
U0

2

N∑
m=1
k 6=m

∫
dxm φ∗(xk, t)φ

∗(xm, t)δ(xk − xm)φ(xk, t)φ(xm, t)

︸ ︷︷ ︸
=
U0(N−1)

2
φ∗(xk,t)2φ(xk,t)2

]

(3.32)
Note all pieces of the sum

∑N
k=1 are the same:

S =N

∫
dt

∫
dx [

i~
2

[φ∗(x, t)
∂

∂t
φ(x, t)− φ(x, t)

∂

∂t
φ∗(x, t)]

− φ∗(x, t)Ĥ0φ(x, t) +
U0(N − 1)

2
φ∗(x, t)2φ(x, t)2]

(3.33)

Variation of S:
δS = S[φ+ δφ, φ∗] + S[φ, φ∗ + δφ∗]− 2S[φ, φ∗] (3.34)
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(We treat φ and φ∗ as independent). Demand

0 = δS = N

∫
dt

∫
dx

i~
2

[δφ∗
∂

∂t
φ+ φ∗

∂

∂t
δφ− δφ ∂

∂t
φ∗ − φ ∂

∂t
δφ∗

− δφ∗[H0φ+ U0(N − 1)φ∗φ2]− [φ∗H0δφ+ U0(N − 1)φ∗2φδφ]]

(3.35)

Now this should be zero for all small functions δφ(x, t) =⇒
coefficient of δφ(x, t) and δφ∗(x, t) must vanish inside the integral ∀x, t. From coefficient of δφ∗(x, t)
we finally obtain the

time-dependent Gross-Pitaevskii Equation (GPE)

i~
∂

∂t
φ(x, t) =

(
− ~2

2m

∂2

∂x2
+ V (x)︸ ︷︷ ︸

=Ĥ0(x)

+U0(N − 1)|φ(x, t)|2
)
φ(x, t). (3.36)

• φ(x, t) is the condensate wave function. Here (
∫∞
−∞ |φ(x, t)|2dx = 1)

• U0 = 4π~2as
m from (3.26).

• This is similar to single-particle Schrödinger equation but with a term that is non-linear in
the wave function. This completely changes the mathematics and solutions to do with this
equation.

• (N − 1)|φ(x, t)|2 = ρ = atom density. This makes sense, since the non-linear term describes
interactions, and the interaction energy for one atom should be dependent on the density of
other atoms.

3.3.3 Mean Field Theory

We can derive (3.36) differently (and much easier), starting from quantum field theory. Consider

Ĥ in (2.27) with U(x− y) from (3.26), thus

Ĥ =

∫
dx

[
ψ̂†(x)H0Ψ̂(x) +

U0

2
ψ̂†(x)ψ̂†(x)Ψ̂(x)Ψ̂(x)

]
(3.37)

Consider the field operator in Heisenberg picture Ψ̂(x, t), which must fulfill the

Heisenberg equation for the field operator

i~
∂

∂t
Ψ̂(x, t) = [Ψ̂(x, t), Ĥ] = Ĥ0Ψ̂(x, t) + U0Ψ̂†(x, t)Ψ̂(x, t).Ψ̂(x, t) (3.38)

We ought to specify an (initial) quantum state, but let’s not, rather we make the :
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Mean-Field Ansatz
〈Ψ̂(x, t)〉 = φ̃(x, t) (3.39)

• φ̃ is again the condensate wave-function 4 or order parameter of the BEC.

Taking the expectation value of (3.38) we reach

i~
∂

∂t
φ̃(x, t) = Ĥ0φ̃(x, t) + U0 〈Ψ̂†(x, t)Ψ̂(x, t)Ψ̂(x, t)〉︸ ︷︷ ︸

factorisation: 〈Ψ̂†(x,t)〉〈Ψ̂(x,t)〉〈Ψ̂(x,t)〉

(3.40)

We now assume the factorization as shown and reach:

Gross-Pitaevskii Equation (again)

i~ ˙̃
φ(x, t) = Ĥ0(x)φ̃(x, t) + U0|φ̃(x, t)|2φ̃(x, t) (3.41)

• Same as (3.36) for N ≈ N − 1.

• A possible quantum-state that justifies (3.3.3) is the many-body coherent state (2.51).

We assume the S.H.O single-particle basis and |ψ 〉 = |α0, α1, ..... 〉 (see (2.51)) Thus

〈ψ
↓

state

| Ψ̂
↓

field op.

| ψ
↓

state

〉 = 〈α0, α1, .....|
∞∑
k=1

ϕk(x)âk|α0, α1, .....〉

= 〈α0, α1, .....|
∞∑
k=1

ϕk(x)αk|α0, α1, .....〉

=

∞∑
k=1

ϕk(x)αk ≡ φ̃(x, t = 0) ∈ C

(3.42)

• Due to the use of coherent states, we have an uncertainty in the particle number here (≈ N
in the mean).

• 〈 ∂∂tΨ̂〉 = ∂
∂t〈Ψ̂〉 since in Heisenberg picture state is time-independent.

4Here
∫∞
−∞ |φ̃(x, t)|2dx = N , in contrast to the normalisation used for (3.36). We try to distinguish the two

conventions with the ˜ symbol.
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•

〈Ĥ0(x)Ψ̂〉 = 〈ψ
↓

many body fock state

|Ĥ0(x)
∑
n

ϕn(x)ân|ψ〉 =Ĥ0(x)
∑
n

ϕn(x)〈ψ|ân|ψ〉

=Ĥ0(x) 〈ψ|
∑
n

ϕn(x)ân|ψ〉︸ ︷︷ ︸
=〈Ψ̂〉

= Ĥ0(x)φ̃(x) (3.43)

• For coherent state |ψ 〉 = |α0, α1, · · · 〉 we have 〈α0, α1, · · · |Ψ̂†Ψ̂Ψ̂|α0, α1, · · · 〉 = 〈Ψ̂†〉〈Ψ̂〉〈Ψ̂〉
(exercise), thus the coherent state would also justify the factorization used in (3.40).

Counter-example where factorization does not work: (just math example)

|ψ 〉 =
1√
2

(| 300... 〉+ | 200... 〉) =⇒ 〈ψ|Ψ̂†(x)Ψ̂(x)Ψ̂(x)|ψ〉 =
↓

all other terms of
∑∞
k=1 ϕk(x)a†k vanish

1

2
〈ψ||ϕ0(x)|2ϕ0(x)â†0â0â0|ψ〉

=
1

2
|ϕ0(x)|2ϕ0(x)(〈300|+ 〈200|)(2

√
3|200〉+

√
2|100〉) =

√
3|ϕ0(x)|2ϕ0(x) But:

〈ψ〉 =
ϕ0(x)

2
(〈300|+〈200|)(

√
3|200〉+

√
2|100〉) =

√
3

2
ϕ0(x) =⇒ 〈Ψ̂†〉〈Ψ̂〉〈Ψ̂〉 =

3
√

3

8
|ϕ0(x)|2ϕ0(x)

3.3.4 Condensate Ground State

Stationary states of (3.3.3) evolve as

φ̃(x, t) = exp

[
−iµt
~

]
φ̃0(x). (3.44)

Inserting this into (3.3.3) gives a

Time-independent GPE

µφ0(x) =
[
Ĥ0(x) + U0|φ0(x)|2

]
φ0(x) (3.45)

• We renamed φ̃0 −→ φ0 but still
∫∞
−∞ |φ0(x)|2dx = N .

• µ is the chemical potential if φ0 is the ground state.

• Same as for the TISE, also Eq. (3.45) has multiple (excited state) solutions.
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Ground State Solutions:
Example (i):

Very strong repulsive interactions U0 � ~ω︸︷︷︸
trap

> 0. In that case, neglect − ~2

2m∇
2 in Ĥ0.

µφ0(x) = V (x)φ0(x) + U0|φ0(x)|2φ0(x)

|φ0(x)|2 =

{
µ−V
U0

if > 0

0 else

left: In a harmonic trap (blue
dashed), non-interacting atoms con-
dense into the SHO ground state
(grey shape). Due to interac-
tions, atoms instead settle into the
Thomas-Fermi shape (brown line).

=⇒
Wave-function in Thomas-Fermi Approximation

φ0(x) =

{√
µ−V
U0

if(µ− V ) > 0

0 else
(3.46)

•Why do we neglect −~
2

2m ∇
2 and not the trap? We see that both, the repulsive interaction U0|φ0(x)|2

for U0 > 0 and the kinetic energy cause a spread of the wave-function. In contrast, the trap V
causes localization. The final shape is determined by a balance of spread versus localization. For
U0n >

~ω
2
↓

Approximate K.E. in GS oscillator

the kinetic energy can be neglected relative to the interaction energy.

Example (ii): Very weak interactions |U0| � ~ω.
For U0 = 0, we know harmonic oscillator ground state ϕ0 solves (??). So,
Ansatz :

φ0(x) = N exp [− x2

2σ(U0)2
] (3.47)

Determine σ(U0) from variational principle δE = 0 using
E =

∫
dx φ∗0(x)[Ĥ0 + U0(|φ0(x)|)2]φ0(x) (Pethick-Smith (Exercise))
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Example (iii): Any other interaction strength: We can use the imaginary time method,
where we solve (3.3.3) for t −→ −iτ

Imaginary Time GPE

− ~
∂

∂τ
φ̃(x, τ) =

[
Ĥ0(x) + U0|φ̃(x, τ)|2

]
φ̃(x, τ) (3.48)

subject to constraint
∫∞
−∞ |φ̃(x, τ)|2dx !

= N

This typically rapidly converges to the lowest energy solutions φ0(x) of (??), (almost) re-
gardless of initial state.
heuristic motivation:

Take the (linear) Schrödinger equation (U0 = 0). Then ψ(x, t) =
∑

n cn(0)e
−iEnt

~ φn(x) Re-

place t −→ −iτ =⇒ ψ(x, τ) =
∑

n cn(0)e
−Enτ

~ φn(x) ψ(x, τ) −→ 0 for τ −→ ∞ since
all components exponentially decay. But among all of them, the groundstate component
(n = 0) decays the slowest. =⇒ If we enforce

∫∞
−∞ |ψ|

2dx = 1, the ground-state eventually
becomes the only one to survive, so the scheme converges to the groundstate.

BONUS TEXT: In the presence of interactions U0 > 0, the justification for the imaginary time
method is a bit more tricky:

left: Let f(x, y) be a 2D function. To
find the minimum value and its loca-
tion f0(x0, y0), go opposite to the gra-
dient (along red arrow in figure) from
some initial test-point (xi, yi). TThis
is called the steepest descent method in
optimization.

Now consider the GP energy functional

E =

∫
d3x φ∗(x)

[
Ĥ0(x) +

U0

2
|φ0(x)|2

]
φ0(x

as ∞-dimensional function, using the identification f −→ E, (x, y) −→ φ(x).

The analog of ∂f
∂x is δE

δφ(x) (functional derivative). Let us consider φ, φ∗ as independent.

δE

δφ∗(x)
=

[
H0(x) +

U0

2
|φ0(x)|2

]
φ0(x)

Thus going for a short step δτ
~ into direction of negative gradient.

φ(x, τ + δτ)− φ(x, τ) = −[H0 + U0|φ0(x)|2]φ0(x)
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φ(x, τ + δτ)− φ(x, τ) = −[H0 + U0|φ0(x, τ)|2]φ0(x, τ)

=⇒ which is a discrete time-derivative version of Eq. (3.48).

3.3.5 Condensate Healing Length

Consider a condensate in a hard box, for large U0.

top: Condensate density |φ0|2 (brown) in a hard box (blue stripes). At the edges φ0 has
to vanish due to boundary conditions.

• Far away from the edges, the Thomas-Fermi approximation (3.46) gives us a density

n0 =
µ

U0
(3.49)

• Near the edge however, we can not neglect kinetic term. Rewrite (3.45) as

−~2

2m

∂2

∂x2
φ0(x) + U0[(φ0(x))2 − n0]φ0(x) = 0

Define φ0(x) =
√
n0f(xζ ) =⇒

−~2

2mU0n0ζ2
f ′′(

x

ζ
) + [f2 − 1]f = 0 (3.50)

This equation becomes scale-free if we set

Healing Length

ζ =
~√

2mU0n0
(3.51)

• This is the shortest scale on which the BEC can respond to perturbations in the bulk.
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3.3.6 Hydrodynamic equations and vortices

Let us rewrite the condensate wave function as

φ(x, t) =
√
ρ(x, t)︸ ︷︷ ︸

amplitude

e

iϕ(x, t)︸ ︷︷ ︸
phase φ ∈ C, ρ, ϕ ∈ R. (3.52)

The ρ, ϕ have the interpretation of

Hydrodynamic variables
atomic density ρ = |φ|2 (3.53)

and flow velocity v =
~
m
∇ϕ

To see that this makes sense we insert (3.52) into (3.3.3) split into real- and imaginary parts and
thus derive the

Hydrodynamic equations for a BEC

Continuity equation
∂ρ

∂t
= −∇ · (ρ · v) (3.54)

“Bernoulli’s eqn” m
dv

dt
= −∇[Pq +

1

2
mv2 + Uρ+ V (x)] (3.55)

with quantum pressure term Pq = −
~2∇2√ρ
2m
√
ρ

(3.56)

• Whenever Pq is small, we can think of the BEC as a “fluid”.

• quantum nature still has interesting consequence such as

Quantisation of circulation∮
C
↓

circulation

v · dx = (2πn)
~
m

= n(
h

m
)

↓
circulation quantum

(3.57)

Here n ∈ N0 is called the Winding number.

• Proof : show that
∫
L v · dx = ~

m [ϕ(b)−ϕ(a)] for a non-closed loop between two points a and
b. Then (3.57) follows because the phase at x has to be unique =⇒
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Example: Abrikosov-lattice of Vortices :

left: Abrikosov-lattice of vortices
(circles). Ω indicates and externally
enforced rotation of the BEC cloud.

A BEC brought to high circulation state n �> 1 forms an Abrikosov-lattice of n vortices,
each vortex-core has zero density ρ = 0 due to the undefined phase at that point:

left: vortex core

3.3.7 Condensate excitations

What happens to a stationary state (3.44) if it is slightly perturbed? Let us look for periodic (eigenmode)
solutions with Ansatz :

Perturbed BEC

φ(x, t) = e−
iµt
~ [φ0(x) + u(x)e−iωt − v∗(x)eiωt] (3.58)

• Be careful: In this section v has nothing to do with velocity.

• We need to include eiωt AND e−iωt because (3.3.3) couples φ with φ∗.

• Insert (3.58) into (3.3.3), use (3.45) then seperately consider coefficients of eiωt and e−iωt to
get the

Bogoliubov equations for elementary excitations of BEC[
− ~2

2m
∇2 + V (x) + 2U0|φ0(x)|2 − µ− ~ω

]
u(x)− U0φ0(x)2v(x) = 0,[

− ~2

2m
∇2 + V (x) + 2u0|φ0(x)|2 − µ+ ~ω

]
v(x)− U0φ

∗
0(x)2u(x) = 0. (3.59)

Here ω is the mode frequency.
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Example: Breathing mode of harmonically trapped BEC. Assume a BEC in a harmonic
trap has the Thomas-Fermi shape for ρ(x) = |φ0(x)|2 in (3.46) (brown). Solving (3.59), you
would then find one mode with shapes u (blue), v (red) ∈ R as shown below.

left: Breathing mode of a trapped
BEC

Using (3.58), we then find |φ(x, t)|2 ≈ |φ0(x)|2+2φ0(u−v) cos (ωt)+O(u2, v2) This represents
breathing oscillations that arise from a competition of trapping and repulsive interactions.

It turns out we find a breathing frequency (for large U0) of ω =
√

5ωtrap.
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3.4 Quasiparticles/quantized excitations

In section 3.3 we had assumed the gas is fully condensed and thus effectively replaced

ψ̂(x)︸ ︷︷ ︸
operator

→ φ(x)︸︷︷︸
complex function

, completely.

Let us now retain some possibly non-condensed atoms, by writing the

Field operator with fluctuations (c.f. Eq. (3.58))

ψ̂(x) = φ0(x) +
∑
n

un(x)α̂n − v∗n(x)α̂†n︸ ︷︷ ︸
χ̂(x)

(3.60)

In this expression:

ψ̂ Bose atomic field operator

〈ψ̂〉 = φ0 (still) condenstate mean field
un(x), vn(x) Bogoliubov mode function

α̂n, α̂
†
n Bogoliubov creation and destruction operators (Bosonic)

χ̂(x) fluctuation operator, assumed small (O(χ̂3) = 0)

We now insert (3.60) into Hamiltonian (3.37) and choose un, vn such that the Hamiltonian is
diagonalized.

Diagonalized: in terms of Fock states for Bogoliubov operators means it takes the form

Ĥ ≈
∑
n

εnα̂
†
nα̂n

This is achieved when un and vn fulfill the

57



Bogoliubov-de-Gennes (BdG) equations[
− ~2

2m
∇2 + V (x) + 2U0|φ0(x)|2 − µ− ~ωn

]
un(x)− U0φ0(x)2vn(x) = 0[

− ~2

2m
∇2 + V (x) + 2U0|φ0(x)|2 − µ+ ~ωn

]
vn(x)− U0φ

∗
0(x)2un(x) = 0

(3.61)

and

Orthonormality conditions∫
d3xφ∗0(x)un(x) =

∫
d3xφ∗0(x)v∗n(x) = 0 (modes are orthogonal to condensate)∫

d3x [un(x)u∗m(x)− vn(x)v∗m(x)] = δmn∫
d3x [un(x)vm(x)− vn(x)um(x)] = 0

(3.62)

Using (3.61) the Hamiltonian takes the form of a

Quasi-particle Hamiltonian

Ĥ = E[φ] +
∑
n

(µ+ ~ωn)α̂†nα̂n (3.63)

where we used the

E[φ] =

∫
d3x φ∗(x)

[
− ~2

2m
∇ + V (x) + U0|φ(x)|2φ(x)

]
Gross-Pitaevskii energy functional

(3.64)

• Eq. (3.63) takes the form of a Hamiltonian for non-interacting entities created by α̂†n.

• For that reason α̂n, α̂
†
n are called quasi-particle operators.

• Eq. (3.61) takes the same form as Eq. (3.59), which we got starting with a seemingly quite
different question. We will comment on this later.

• Eq. (3.62) ensure that the quasi-particles are Bosons:

[
α̂n, α̂

†
m

]
=

∫
d3x

∫
d3y

(
u∗n(x)um(y)

[
Ψ̂(x), Ψ̂†(y)

]
+ v∗n(x)vm(y)

[
Ψ̂†(x), Ψ̂(y)

])
=

∫
d3x

(
u∗n(x)um(x)− v∗n(x)vm(x)

)
Eq. (3.62)

= δnm. (3.65)
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• Using (3.62), we can ”invert” (3.60) [exercise] to find

α̂n =

∫
dx
[
u∗m(x)ψ̂(x) + v∗m(x)ψ̂†(x)

]
α̂†n =

∫
dx
[
um(x)ψ̂†(x) + vm(x)ψ̂(x)

] (3.66)

Hence we also call

um(x)− particle amplitude

vm(x)− hole amplitude

=⇒ A BdG excitation is a superposition of added & subtracted particles.

3.4.1 Phonons

Let us proceed to solve the BdG equations (3.61) for the simple case of a homogenous, constant
condensate =⇒ φ0(x) =

√
ρ

(indep of x)

; ρ = atom density.

left: This can be realistic when con-
centrating on a small piece of a large
BEC cloud. This would be called the
local density approximation (LDA).

For this case, we make the

Plane-wave Ansatz

uq(x) =
1√
V
ūqe

iqx vq(x) =
1√
V

v̄qeiqx (3.67)

• V is the quantisation volume

• q - wave number

• ūq, v̄q - are amplitudes, these are just complex numbers

Insert (3.67) into (3.61) and use − ~2

2m∇2uq(x) =
~2q2

2m︸ ︷︷ ︸
≡Eq

uq(x) etc., we can find the matrix equation

(
Eq + 2U0ρ− µ− ~ωq −U0ρ

−U0ρ Eq + 2U0ρ− µ+ ~ωq

)
︸ ︷︷ ︸

≡M

(
ūq
v̄q

)
=

(
0
0

)
. (3.68)

For this to have any non-trivial solution, we need det(M) = 0, hence

det(M) = −(~ωq)2 + (Eq + 2U0ρ− µ)2 − U2
0ρ

2 = 0. (3.69)
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For a homogeneous condensate we know that µ = U0ρ, which follows from Eq. (3.45). Using that,
we find for the excitations of the condensate the

Bogoliubov dispersion relation

εq ≡ ~ωq =

√
~2q2

2m

(
~2q2

2m
+ 2U0ρ

)
(3.70)

Using (3.62), (3.68) and (3.70) we can show, after defining the abbreviation ζq ≡ Eq + U0ρ, that

ū2
q =

1

2

(
ζq
εq

+ 1

)
, v̄2

q =
1

2

(
ζq
εq
− 1

)
. (3.71)

left: Combined plot of Bogoliubov en-
ergy εq (3.70) (brown), particle ampli-
tude ūq (violet) and hole amplitude v̄q
(green) (3.71).

In the figure we have used the definition of the

Speed of sound

c =

√
U0ρ

m
(3.72)

Comments about Bogoliubov excitations:

• for q � ξ, we have εq ≈ cq~ and |ūq|2+|vq|2 � 1. εq ≈ cq~ is a linear dispersion relation as for
sound-waves. |ūq|2 + |vq|2 ≈ Natoms, the number of atoms involved in an exciation (see yellow
box * below). So long wavelength excitations with q � ξ are collective excitations/ sound-waves.

• for q � ξ, we can approximate εq ∼ ~2q2

2m , which is the energy of a free particle. Also
|ūq|2 + |vq|2 → 1. This is a single-atom excitation (∼ 1 atom got kicked so hard, it no longer
feels the others).
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Number of excited atoms∗: Let us consider the number of excited atoms

Nexc =

∫
〈χ̂†χ̂〉dx (see(3.60))

Let |ψ 〉 = |N1N2... 〉 be the Fock state for occupation of Bogoliubov excitations. =⇒

Nexc =

∫
V
dx
∑
qq′

u∗q(x)uq′(x) α̂†qα̂q′
∼δqq′ in state|ψ 〉

+ vq(x)v∗q′(x) α̂qα̂
†
q′

=α̂†
q′ α̂q+δqq′


=
∑
q

(
|uq|2 + |vq|2

)
Nq +

∑
q

|vq|2. (3.73)

Since Nq here is the number of excitations, this motivates the allocation of |ūq|2 + |v̄q|2 as
“number of atoms within a single excitation”.

3.4.2 Time-dependence

The overall time-dependence of the field operator in Eq. (3.60) is

Time-dependence of BdG modes

ψ̂(x, t) = e−i
µ
~ t

[
φ0(x) +

∑
n

un(x)α̂ne
−iωnt − v∗n(x)α̂†ne

iωnt

]
(3.74)

• c.f. Eq. (3.58)

• to see this insert (3.60) into Eq. (3.38)
Heisenberg

using Eq. (3.3.3)
GPE

and Eq. (3.61)
BdG

3.4.3 Coherent vs incoherent excitation

We have now addressed two seemingly different questions:

(A) In section 3.3.7: If we slightly perturb the GPE solution φ(x, t) = φ0(x) + δφ(x, t), how does
the perturbation δφ evolve in time?

(B) In section 3.4: In a QFT problem, which fluctuation modes outside the BEC diagonalize the
Hamiltonian?

Seemingly different questions give the same BdG equations for condensate excitations, compare
(3.59) and (3.61).
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The reason is that (A) is included in (B). Consider a single Bogoliubov mode only (say n = 1).
Assume its quantum state is |ψ 〉 = |β 〉

↓
coherent state

where β ∈ C.

Then
〈ψ̂(x, t)〉

↓
Eq. (3.74)

= e−i
µ
~ t
[
φ0(x) + u1(x)βe−iω1t − v∗1(x)β∗eiω1t

]
which is a BEC mean field perturbation as in (3.59) (So here the population in mode number
one has phase-coherence with the BEC). Had we used ρ̂ =

∑
n pn|n 〉〈n | for mode one, we keep

〈ψ̂〉 = e−i
µ
~ tφ0(x) with no perturbation of the mean field itself, so in that setting the pn correspond

to incoherent thermal population.

3.4.4 The thermal cloud

In general (3.61) has to be solved numerically, but see Pethick & Smith for some analytical approx-
imation techniques. The numerical solution in a 1D trap gives the following:

left: BdG modes in 1D trap (violet)
are shown as black lines (un) and red
lines (vn). We also show the Thomas-
Fermi shape of the condensate (green).

As n→∞, the modes approach the following

un → ϕn (S.H.O states, see 1.9)

vn → 0

As for the homogeneous case, we see that high energy BdG modes essentially become like single-
particle excitations.

The modes now allow us to describe the “thermal cloud”: BEC experiments never reach T = 0,
hence we write
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Thermal cloud state

ρ̂ =
∑
N

PN|N 〉〈N | PN − see Eq. (3.5) (3.75)

for the state of thermal uncondensed atoms.

• We assume there is a (much larger) BEC component co-existing (not described by Eq. (3.75),
but Eq. (3.60), in ψ̂ = φ+ X̂).

Let us now try to determine the total atom density

n(x) = 〈ψ̂†(x)ψ̂(x)〉 = |φ0(x)|2 + 0
↓

Tr[ρ̂α̂]

+
∑
nn′

Tr
[
ρ̂(u∗n(x)α̂†n − vn(x)α̂n)(un′(x)α̂n′ − v∗n′(x)α̂†n′)

]
(3.76)

= |φ0(x)|2 +
∑
n

Tr
[
ρ̂
{(
|un(x)|2 + |vn(x)|2

)
α̂†nα̂n + |vn(x)|2

}]
, (3.77)

where, to reach the second line, we have used that the expectation value of terms like αnα
†
n′

in the Fock states appearing in (3.75) is zero, unless n = n′. We thus have a total

Atom density

ntot(x) = |φ0(x)|2︸ ︷︷ ︸
BEC

+
∑
n


(
|un(x)|2 + |vn(x)|2

)︸ ︷︷ ︸
thermal cloud

m̄n
↓

see Eq. (3.12) (b↔ n)

+ |vn(x)|2︸ ︷︷ ︸
quantum fluctuations


(3.78)

Example: Approximate v ≈ 0, un → ϕn =⇒ , then do some technical calculation to reach
the thermal cloud shape (spatial density of thermal atoms) nth(x) for Nth thermal atoms:

nth(x) =
Nth

π3/2RxRyRz
e
− x2

2R2
x e
− y2

2R2
y e
− z2

2R2
z . (3.79)

left: Thus the thermal cloud
shape is Gaussian, with widths

Ri =
√

2kBT
mωi

, which depend on the

temperature. Together with the con-
densate, we thus have a bi-modal
density distribution, which can often
be used to measure temperature T .

63



3.4.5 Superfluidity

We can give a phenomenological definition. A substance is a superfluid if it shows the following
properties:

(i) flow without friction through small capillaries

(ii) perfect heat conductivity (via convection)

(iii) rotation only via quantized vortices (see section 3.3.6)

Found e.g. in dilute gas BEC & cold liquid helium. How does it arise?

Critical velocity:

Consider a BEC through which we drag an obstacle (e.g. Laser potential V (x, t)) with velocity v.

left: Sketch of moving obstacle in BEC
medium in the lab-frame versus obsta-
cle rest frame.

Consider energy of gas in the two frames

Lab-frame Rest frame
Ground-state

(BEC only)
E′

(some internal energy)
E′ + 1

2 Ny
Natoms

m
↓

mass of one atom

v2

Excited state
(BEC plus one excitation p)

E′ + εp
↓

see Eq. (3.70)︸ ︷︷ ︸
V(x,t), Hamiltonian time-dependent

energy NOT CONSERVED

E′ + εp − p · v︸︷︷︸
Doppler shift

+
1

2
Nmv2

︸ ︷︷ ︸
V(x), energy conserved, can only

create excitation if ∆E=0

Energy needed to create excitation:

∆E = εp − p · v (3.80)

Smallest gap at p ‖ v =⇒ critical velocity for ∆E = 0 =⇒ 0 = εp−|p||v| =⇒ vcrit = Min
p

[
εp
|p|

]
.

If it moves slower than vcrit, the obstacle cannot create any excitation. From Eq. (3.70) we then
find
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Critical velocity: below vcrit, there is superfluidity

vcrit = Min
p


√

p2

2m

(
p2

2m + 2Uoρ
)

p

 =

√
ρUo
m

= c speed of sound (3.81)

(p↔ ~q)

• In a usual fluid, there are single particle excitations εp ∼ p2

2m for arbitrarily small p
(unlike here) =⇒ No superfluidity.

• Thus superfluidity relies on interactions.

3.4.6 Condensate stability

Lets return to Eq. (3.58) for perturbations of the mean field, the same conclusions can be found
from Eq. (3.60).

φ(x, t) = e−i
µ
~ t
[
φ0(x) + u(x)e−iωt − v∗(x)eiωt

]
• Solutions to the BdG equations (3.61) do not have to have real frequencies ω ∈ R, the

frequency can in general be complex ω ∈ C.

Example: Homogeneous condensate with attractive interactions U0 < 0

~ωq =

√
~2q2

2m

(
~2q2

2m
+ U0ρ

)
Im(~ωq) 6= 0 for q <

√
4|U0|ρm

~

• They also do not guarantee that Re[ω] > 0, which would make sure that the excitation has
in fact a higher energy than the BEC. For the following, let us write ω = ω′

Re
+ iω′′

Im
for the real

and imaginary parts of ω.

We can classify results into three cases:

ω′ > 0, ω′′ = 0: Usual stable case, oscillatory modes

ω′′ 6= 0: The condensate is dynamically (modulationally) unstable. Small perturbations in
Eq. (3.58) will grow exponentially with growth rate ∼ (ω′′)
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Examples:

homogeneous U0 −→ bright solitons
rotated BEC −→ vortices

BEC U0 > 0
Band-gap

optical-lattice−→ gap-solitons

Usually the end-product of this instability is a new (stable) non-linear solution of TIGPE.

ω′ < 0: The condensate is energetically unstable

– All is fine in Eq. (3.58), which assumes unitary evolution, but φ0(x) is NOT a local
minimum of E[φ] Eq. (3.64). Hence any dissipation will destroy φ0(x).

Examples: (i) Collapse of a homogenous BEC collapse with attractive interactions U0 < 0.
Here the initial state is dynamically and energetically unstable.

left: Density of initially almost ho-
mogenous BEC during dynamical in-
stability. Unstable modes grow into
bumps in time, the end-result is a
train of bright solitons plus excess
heating.

As an endproduct of the instability, we obtain Bright solitons: Non-linear solutions of TIGPE
for U0 < 0. Using φ0 ∼ sech(x) [soliton] in Eq. (3.61) instead of the initial homogenous state,
all BdG modes are stable in the final state.

(ii) A partially supersonic (vflow > c) flow of a BEC with repulsive interactions U0 > 0 . This
can be dynamically stable but is energetically unstable.

left: Sketch of condensate which
makes a subsonic-supersonic transi-
tion when flowing over an exter-
nal potential hump V (x) (green).
Density (blue), velocity |v| (violet)
can be inferred from Eq. (3.54) and
Eq. (3.55).

Again, we can use a Doppler shift argument as in section 3.4.5 ~ω′ = ~ω − vk =⇒ vcrit
previous section = some phonons become energetically unstable.

We would reach similar conclusions looking at quantized, incoherent excitations.

How do they all (mean-field BEC, thermal & quantum excitations) play together in a time-
dependent manner? −→ Next chapter.
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3.5 Quantum Field theory of Bose-Einstein Condensates

• – In section 3.4 we dealt with non-interacting quasi particles.

– There also was no conversion from condensed to uncondensed component (heating).

• This section discusses one QFT method that can address both, and mentions few others.

3.5.1 Hartree-Fock Bogoliubov Method

We start again with the Heisenberg equation for the field operator (3.38).

i~ ˙̂
ψ = Ĥ0ψ̂ + U0ψ̂

†ψ̂ψ̂ (3.82)

and take the expectation value, using ψ̂(x, t) = φ(x, t) + χ̂(x, t), Eq. (3.60), assuming 〈χ̂〉 = 0

φ̇(x, t) = Ĥ0φ(x, t) + U0〈(φ? + χ̂†)(φ+ χ̂)(φ+ χ̂)〉 (3.83)

= Ĥ0φ(x, t) + U0[|φ(x, t)|2φ(x, t) + 2〈χ̂†χ̂〉φ(x, t) + 〈χ̂†χ̂χ̂〉+ 〈χ̂χ̂〉φ∗(x, t) + 〈χ̂†χ̂χ̂〉]

We in general do not know 〈χ̂†χ̂〉. Let us define

Normal correlation function:

GN (x,x′) = 〈χ̂†(x′)χ̂(x)〉 (3.84)

Anomalous correlation function:

GA(x,x′) = 〈χ̂(x′)χ̂(x)〉 (3.85)

• Now we see that we can express pieces of Eq. (3.83) using GN (x,x) and GA(x,x).

• For 〈χ̂†χ̂†χ̂〉 we use
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Wick’s Theorem For a Gaussian quantum state we have

〈Ô1Ô2Ô3〉 = 〈Ô1Ô2〉〈Ô3〉+ 〈Ô1〉〈Ô2Ô3〉+ 〈Ô1Ô3〉〈Ô2〉 − 2〈Ô1〉〈Ô2〉〈Ô3〉 (3.86)

〈Ô1Ô2Ô3Ô4〉 = Ô1Ô2Ô3Ô4 + Ô1Ô3Ô2Ô4 + Ô1Ô4Ô2Ô3 + 〈Ô1〉〈Ô2〉〈Ô3〉〈Ô4〉

Here ÔAÔB = 〈ÔAÔB〉 − 〈ÔA〉〈ÔB〉 is called a contraction.

• If the operators Ôk are Fermionic, there are some additional minus signs. For each term on the
rhs. of (3.86), first reorder the Ôk by swapping neighbors such that those to be contracted are
adjacent. For each swap, multiply a factor (−1).

BONUS MATERIAL, Gaussian quantum state:
Single mode example: ρ = N exp(−n̄â†â− 1

2m̄(â†)2 − 1
2m̄
∗â2)

e.g. a Coherent State or a thermal State: m̄ = m̄∗ = 0, n̄ = −β(ε− µ) [See Eq. (3.4)]

Many mode generalisation:

ρ̂ = N exp(
2M∑
i,j=1

KijĈ
†
i Ĉj) Ĉ =



â1

.

.

.
âM
â†1
.
.
.

â†M


(3.87)

• See e.g. Gardiner/ Zoller “Quantum Noise” 3rd ed. page 119

• See Blaizot and Ripka “Quantum theory of finite systems”(P. 93, Eq (4.47))

• Many variants of Wick’s theorem exist all over QFT. They all express the final result of
bringing operator products involving â, â† into some default order.

• Using Wick’s theorem in the form above, we see 〈χ̂†χ̂χ̂〉 = 0 since 〈χ̂〉 = 0

We arrive at a
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Modified GPE

i~
∂φ(x, t)

∂t
= H̄0φ(x, t) + U0|φ(x, t)|2φ(x, t) + 2U0

≡ḠN (x)︷ ︸︸ ︷
GN (x,x, t)φ(x, t) + U0

≡ḠA(x)︷ ︸︸ ︷
GA(x,x, t)φ∗(x, t)

(3.88)

• We can see that GN (x,x) = nunc(x) is the density of uncondensed (thermal) atoms, by
comparison with the discussion in section 3.4.4.

• The interpretation of the term ∼ GN , would thus be an interaction between condensed and
un-condensed atoms.

• To make use of Eq. (3.88), we need to know GN (x,x, t) and GA(x,x, t)

We can get those from the Heisenberg equation for χ̂†(x′)χ̂(x) and χ̂(x′)χ̂(x) :

Hartree-Fock Bogulibov equations

i~
∂GA(x,x′)

∂t
= 〈[χ̂(x′)χ̂(x), Ĥ]〉 (3.89)

= [H0(x) +H0(x′)]GA(x,x′) + 2U0

[
|φ(x)|2 + |φ(x′)|2 + ḠN (x)

+ ḠN (x′)
]
GA(x,x′) + U0

[
φ(x)2G∗N (x,x′) + φ(x′)2GN (x,x′)

+ ḠA(x)G∗N (x,x′) + ḠA(x′)GN (x,x′)
]

+ U0

[
φ(x)2 +GA(x,x)

]
δ3(x− x′)

i~
∂GN (x,x′)

∂t
= [Ĥ0(x)− Ĥ0(x′)]GN (x,x′) + 2U0

[
φ(x)|2 − |φ(x′)|2 + ḠN (x)

+ ḠN (x′)
]
GN (x,x′) + U0

[
ḠA(x)G∗A(x,x′)− ḠA(x′)GA(x,x′)

]
+ U0

[
φ(x)2G∗A(x,x′)− φ∗(x′)GA(x,x′)

]
(3.90)

• These form a coupled system of equations together with (3.88).

• We have again used Wick’s theorem on terms like 〈χ̂†χ̂†χ̂χ̂〉

• The general idea where

1. equation for 〈ψ̂〉 couples to

2. 〈 ˆ
ψ†ψ̂〉 couples to

3. 〈ψ̂†ψ̂ψ̂〉

is called cumulant expansion. It has to be truncated at some order, here this is done by using
Wick’s theorem.
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We can define:

• Condensate density |φ(x)|2, and condensate number Ncond =
∫
|φ|2dx

• Thermal density ḠN (x) and thermal number Nunc =
∫
ḠN (x)dx

• In the HFB equations (3.88) and (3.89), terms have the following interpretation (please see
color file or printout)

– · · · interactions between condensed and uncondensed atoms

– · · ·interactions of uncondensed atoms among each other

– · · · conversion of condensed and uncondensed atoms (heating)

Example, Relation to Bogulibov equations (3.61): Let us consider |ψ 〉 = 0, the
Bogulibov vacuum with zero quasiparticles in any mode, as our initial-state (eternal state in
thre Heisenberg picture). Then we can see that

GN (x,x′) =
∑
n

vn(x′)v∗n(x), (3.91)

GA(x,x′) = −
∑
n

un(x′)v∗n(x). (3.92)

For these GA, GN , a lengthy calculation gives from HFB equations Eq. (3.89):

i~ĠN (x,x′) = 0 (3.93)

i~ĠA(x,x′) = −2µGA(x,x′)→ GA(x,x′, t) = e
i2µt
~ GA(x,x′, 0) (3.94)

To reach this we ignoreG relative to φ2 (=fluctuations are small) and assume φ(t) = φ0(t = 0)
•Thus the Bogulibov vacuum is a steady state of the HFB-equations.

3.5.2 Depletion and Renormalisation

Let us further look at the density of uncondensed atoms nunc(x) = GN (x, x) in the Bogoliubov
vacuum |ψ 〉 = | 0 〉. Let us calculate nunc(x) for a homogenous BEC, with constant density ρ, as
used in section 3.4.1:

nunc =
∑
n

|vn(x)|2 → 1

V
∑
q

v2
q −→

3D

1

V

∫ ∞
q=0

dq q2(4π)
(Density of states)

D
= 2π
L

3
v2
q (3.95)

[We have converted sum→ integral, using the density of states D for quantised particles in 3D box
(Ki = nπ

L ) [But only one ki per cell not two (±|ki|)]]

=
1

2π2

∫ ∞
0

dq q2v2
q
Eq. (3.71)

=
8(mU0ρ)

3
2

3~3π2

70



Using also U0 = 4π~2as
m , we find the

Condensate Depletion:

nunc

ρ
=

8

3
√
π

(ρa3
s)

1
2 (3.96)

• Depletion implies that, even though we are in the BdG vacuum with zero phonon excitations,
interactions cause some atoms to remain outside of the condensate.

• Typical numbers: as = 5.5nm for Rubidium, ρ = 1019/m3 =⇒ nunc
ρ = 0.2% uncondensed

density.

Let us also calculate

ḠA(x) = GA(x, x) =
∑
n

un(x)v∗m(x)
trying as above

= ∞ We have a divergent integral

cut-off integral at K
= − 4

π2

∫ K

0
dq q2uqv

∗
q

large K
= −4mU0ρK

π2~2
≡ −κU0ρ (3.97)

This divergence has the same cause as in the other local quantum-field theories (e.g. particle
physics): The implicit mathematical (but not physical) assumption that the theory is valid up to
arbitrarily high energy scales. Solution: Renormalisation = we absorb “infinities” (in our case K)
into parameters into the Hamiltonian (rather than having them in observables) and define the

Renormalised interaction U

U0 =
U

1− κU
where κ =

4mK

π2~2
(3.98)

• κ “infinite”, U0“infinite”
(parameter in Ĥ)

, U “finite”
(observable quantity)

• “Infinite” means ∞ in the limit K →∞

• To see that Eq. (3.98) makes sense, we can calculate e.g. the Born scattering amplitude from
Ĥ
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Example, Renormalised mean-field interaction in modified GPE Eq. (3.88):

i~φ̇ = Ĥ0φ+ U0|φ|2φ+

lets ignore ḠN , assuming small︷ ︸︸ ︷
2U0GNφ +U0ḠAφ

∗
0 (3.99)

We now use Eq. (3.97) with the replacement U0 → U

ḠA = −κUρ (3.100)

in (3.99) to replace U0 → U . Then

i~φ̇ = Ĥ0φ+ (U0(1− κU))︸ ︷︷ ︸
=U from Eq. (3.98) , which is finite

|φ|2φ+ 2UḠNφ (3.101)

(Steps in brown a is allowed because perturbations χ̂ (hence GN , GA, ḠN , ḠA) are “small”)
• For numerical implementation : K frequently small enough that renormalisation can be ignored.

Appraisal of HFB:

PROS:

• Seemingly straightforward implementation

• Easy implementation conceptually

• Includes repulsion between BEC and thermal cloud

CONS:

• Subtleties with renormalisation

• Excitations in this formalism have an energy gap, which means that Eq → nonzero for q→
0. However they should be gapless, according to a Hugenholtz-Pines theorem (related to the
Goldstone theorem).

• Computationally hard in general 3D (in which case correlation functions GA, GN are 6D.

• No χ̂†χ̂χ̂ terms
due to assumption of Gaussian state/ use of Wick theorem. =⇒ Absence of phonon damping:

⇒ This led to the design of various ”fixes” of HFB and alternatives. Some of those are listed below.
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3.5.3 Other Bose-gas quantum field methods

HFB is straightforward to derive but has some issues listed on the previous page. Let us thus list
some alternative methods to study quantum-field corrections beyond the GPE, or fully quantum
models.

I: Truncated Wigner approximation:

• We write W (α, α∗) = F [Λ̂(α, α∗), ρ̂(t)], where F denotes some functional, Λ is an operator
basis and ρ̂ the time evolving density matrix. In essence this is using the Wigner function
(2.49) in a many-body setting.

• We next convert the time evolution equation for the density matrix into one for the Wigner
function: ˙̂ρ=... → Ẇ = ....

• The result can be mapped to a set of stochastic differential equations i~α̇(x) = ...

• These take the same form as the GPE + random noise on the initial state.

• We can obtain all quantum observables, which are correlation functions such has 〈ψ̂†(x′)ψ̂(x)〉
from corresponding classical correlation functions over the noisy wave function, e.g. 〈ψ̂†(x′)ψ̂(x)〉 =
α∗(x′)α(x)− 1

2“δ(x− x′)”.

II: t-DMRG:

This is short for time-dependent density matrix renormalisation group. We discretise the full
quantum many body problem (3.38) for example in the position basis: Ψ̂(x)→ Ψ̂(xk), and then use
an approximate method invented in the quantum information and condensed matter communities.
It works well in 1D and if there is “not too much entanglement” in the system.

III: MCTDH(B):

Multi-configurational time-dependent Hartree for Bosons. Starts with a more complicated Ansatz
than Eq. (3.27) into the many-body SE, that allows multiple strongly occupied states.

IV: Few exact solutions:

In some cases there are a few exact solutions of interesting many-body problems. One example is
the exactly one dimensional system with Hamiltonian

H̄ = −
N∑
n=1

~2

2m

∂2

∂x2
n

+
N∑

n,m=1

U0

2
δ(xn − xm) (3.102)

This is the first quantised Hamiltonian that we get for a bunch of Bosons in 1D, with no external
potential V (x) = 0 and contact interactions U just as discussed in section 3.3.1. For the case
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U0 < 0 (attractive interactions), this is called Lieb-Liniger Hamiltonian, and has quantum soliton
solutions:

ψ(x1, ..., xN ) ∼ eiKXCM exp

−m|U0|
2~

∑
i<j

|xi − xj |

 (3.103)

[Compare assignment 1, Q1(ii) and last page of week 7]
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4 Degenerate Fermi Gases

4.1 Ideal Fermi Gases

In section 3.2 we explored what happens to N non-interacting Bosons as the temperature is de-
creased T ↓ 0. Now we follow the same question for Fermions, thus using the Fermi-Dirac distri-
bution [Eq. (3.11)]:

m̄b =
1

exp[β(εb − µ)] + 1

• First difference: m̄b > 0 ∀εb, µ→ no constraint on µ in contrast to Bose case.

• We can also much more easily take the limit

lim
T→0

m̄b =

{
+1 εb < µ

0 εb > µ

• Let us plot Eq. (3.11) for various parameters
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We see that for T = 0, all states with energy below µ are occupied, and above are not. This
sharp transitions “softens” up, as we increase the temperature.

• We again find, that the Fermi-Dirac distribution approaches the classical Boltzmann distri-
bution, once states are weakly occupied (mn � 1→ exp [· · · ]� 1) and energies much higher
than µ.

It is clear in the plot above, that E = µ seems to be a special energy. To figure out what it
means, lets look at non-interacting Fermions in a 3D box potential of cube-side-length L with spin
s (|~s| = 1

2).

left: Particle in a cubic box: We recall that wave-numbers
in trigonometric eigenfunctions sin(klx) are quantized in
each spatial dimension with condition

kl =
nlπ

L

l ∈ {x, y, z}

nl = 1, 2, ...∞

Let us first consider the T = 0 case. As before in our discussion of Bosons, µ sets the total (mean)
number of particles according to

N =
∑

all states b

m̄b (4.1)

⇒N here
=

∑
nx,ny ,nz ,s

m̄nx,ny ,nz ,s (4.2)

At zero temperature, we have simply

m̄nx,ny ,nz ,s =

{
1 En < µ

0 En ≥ µ

where En = n2π2~2

2mL2 is the particle in the box energy. Since the latter is always positive, we see the
first important difference to the Bose case, that we require µ > 0 in order to have any particles.
Then

⇒ N =
∑

nx,ny ,nz ,s

m̄nx,ny ,nz ,s ≈
2

8

∫
d3n m̄n (4.3)

=
4π

4

∫ nmax

0
dn n2 (use 3D spherical coordinates) (4.4)

=
1

3
πn3

max (4.5)

where nmax =
√

2mL2µ
π2~2 . At the first ≈ we approximate the sum by an integration. We get a

factor of 2 from summation over the two spin-states ms = +1/2,−1/2 , and we get a factor of 1/8
since the original sum runs only over positive nx, ny, nz, while the integration runs over all 8 sign
quadrants. In the second line, we built in that m̄ will be zero for |n| > nmax
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Altogether we obtained N as a function of µ and can then solve for µ to find the

Fermi-energy (for non-interacting s = 1
2 Fermions in a box)

µ0 = EF = (3π2)2/3 ~2

2m

(
N

V

)2/3

, V = L3 (4.6)

• Thus at T = 0 (or for kBT � EF ), the Fermions occupy all energy states up to (approx
up to) EF . See blue line (brown line) in the earlier figure. This configuration, where µ is
somewhat more important for the distribution than T , is called degenerate Fermi gas (DFG).

• In phase space, the surface where particles have exactly the Fermi energy EF , is called
Fermi surface.

• The transition to a DFG is less sharp than for a BEC, roughly we can say that the degeneracy
temperature to DFG is

kBT ≈ EF (4.7)

• Had we used only a single spin-state, the pre-factor would be (3π2)2/3 → (6π2)2/3, we shall
require this later. We also define the

Fermi-momentum or Fermi-wavenumber via

~2k2
F

2m
=
p2
F

2m
= EF , i.e. momentum at Fermi surface (4.8)

kF = [(3π2)ρ]1/3, ρ =
N

V
(density) (4.9)

Examples:
Electrons in a conductor: Iron (Fe) has a mass density of ρ ∼ 7.8 g/cm3, which gives
roughly an atom number density of ρFe ≈ 8.3×1028/m3. There are two conduction electrons

per atom, hence ρe− = 16.6 × 1028/m3. Using Eq. (4.7) and Eq. (4.6) we can find that
TF ≈ 1.3 × 105K and EF ≈ 2-10 eV. ⇒ Conduction electrons are DFG at all reasonable
temperatures (where the metal still exists).

Cold Fermionic atoms: E.g. 6Li. In atom traps (as discussed for BEC) the density is very
low ρ ≈ 1017/m3. Using the equations above, we find TF ≈ 80 nK, so this is again the same
range of temperatures as for BEC. We shall later re-calculate EF in a harmonic trap, see
Eq. (4.17), which would be more appropriate for this case.

• We see that how cold is cold enough for degeneracy of Fermions strongly depends on the
system.
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4.2 Degeneracy Pressure

One consequence of populating all states up to energies EF is that these particles may move “fast”
and hence contribute to significant pressure.

left: pressure = elastic collisions off wall

Basic thermodynamic P, V,E relation

P · V =
2

3
N〈εkin〉, P → Pressure

For the DFG of particles in box

〈εkin〉 =
2

8

∫
d3n E(n)

N
,

(
E(n) =

n2π2~2

2mL2

)
=

4π

4

(
π2~2

2mL2

)∫ nmax

0 dn n4

N

=
(exercise)

3

5
EF

We arrive at the

Fermi-pressure , also called degeneracy pressure:

PF =
2

5

(
N

V︸︷︷︸
ρ

)
EF ∼ ρ5/3 (4.10)

• This is valid for T . TF and unlike the classical case, there is non-zero pressure all the way
to T = 0.

• You can think of this as Fermions resisting being sqeezed into “same state”. (But note, there
are no interactions.)
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4.3 Applications in Astrophysics

4.4 White dwarf stars

• In our sun, inward gravity is balanced by outward pressure and radiation pressure due to
fusion reaction H+H → He sustaining temperature T .

• When fuel runs out, heavy stars shrink and get hotter, then do fusion of He → C,...,Fe.

• The latter won’t work for solar-mass star, because they are too light, so we can ask what
happens when they run out of H, thus only contain He, and can no longer provide fusion? ⇒
In some cases we get a white-dwarf where gravity is balanced by Fermi-pressure (4.10).

Stellar DFG: Assume a compressed star with mass M = 1030 kg, central density ρcenter = 1010

kg/m3, temperature T = 107 K.
[

c.f Sun M� = 2×1030 kg, ρcenter = 1.6×105 kg/m3, T = 1.57×107

K
]
. We assume the old star contains now only ionized Helium.

⇒M ≈ Nelecme +Nnucleonsmp

= Nelec(me + 2mp)

≈ 2Nelecmp

Estimate number density of electrons roughly (turns out, pressure by He nuclei is negligible),

ρe =
N

V
=

M/2mp

M/ρcenter
=
ρcenter

2mp
≈ 3× 10−9electrons/fm3

Fermi temperature TF
Eq. (4.7)

= 8.8× 109 K
⇒ Despite being very hot, electrons at these high densities form DFG!

Stable equilibrium radius R of star (simplify star as a uniform sphere):

0 = dE =
∂

∂R

(
−3

5

M2

R
G︸ ︷︷ ︸

Egrav

)
dR −PF (R)(4πR2dR)︸ ︷︷ ︸

using dE=−PdV from thermodynamics

(4.11)
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We can solve this for the

White-dwarf radius:

R∗ = N ~2

Gmem
5/3
He M

1/3
(4.12)

• Here N = 3(6π2)1/3 ≈ 11.69 is a numerical pre-factor. Proof: Assigment 5. Test: Sirius B,
M = 1.05M�, R = 5100 km (Formula (4.12) gives 7030 km)

4.4.1 Relativistic DFG

For very dense (massive) white dwarfs, e− near the Fermi surface become so fast that they have to
be treated relativistically. We have to recalculate section 4.1 and section 4.2 using

Ekin = mc2

(√
1 +

(
p

mc

)2

− 1

)
. (4.13)

After a technical calculation, we find the relativistic Fermi-pressure

PF ∼ const. · ρ4/3 (4.14)

If we redo 4.11 with this, we find there is no stable R∗ for a stellar mass above the

Chandrasekhar-limit:
M ≈ 1.44M� (4.15)

where M� is the solar mass. This is the maximal mass for white dwarf stars.

4.4.2 Neutron stars

• For heavier stars, e− degeneracy pressure cannot halt gravitational collapse once fusion runs
out.

• Once matter reaches density of ρ ∼ 1017 kg/m3 (density of nuclei), electrons and protons
form neutrons via inverse beta decay
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• At equal density, PF from neutrons is me
mp

times that of electrons, and thus intrinsically much

smaller, see Eq. (4.6)-(4.10). However, at some point the density becomes so high that also
the degeneracy pressure PF of neutrons becomes relevant, and may halt collapse.

Neutron star:
The result, when all matter is converted to neutrons and neutron degeneracy pressure has
halted gravitational collapse. Their typical mass range is

1.4M� < M < 3M�,

with a radius of
R ∼ 20km.

• If neutron Fermi-pressure is overcome as before in section 4.4.1 (by neutrons becoming rela-
tivistic) → total gravitational collapse, black-hole.

4.5 Electron gas in metals

• Alkali metals or Copper, Silver, Gold: 1 valence e− per atom. Picture:

• Ions bound by “immersion” in electron gas (metallic binding)

• Electron-electron Coulomb interactions are screened due to background ion sea and hence
weak

• Electron-ion interactions: electrons aren’t really “free”, but see periodic potential V (x) =
V (x + d)

Bloch theorem: Eigenstates for electrons in the periodic ion potential are of the form

φk,j(x) = uj(x)eik·x (4.16)

where uj(x) = uj(x + d), i.e the function u possesses the same periodicity properties as the
ionic potential V (x)
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Gives rise to band-structure5 (note, energies for negative k are the same E(−k) = E(k)):

Example, solid material properties:

• From numbers in example on pg. 73, valence electrons form a degenerate Fermi-gas. 3
pictures distinguish:

In the sketches above, blue lines are the bands. We then draw the Fermi distribution func-
tion Eq. (3.11) as green line, with energy axis vertical, and population axis horizontal (so
transposed compared to the figures at the beginning of “week 9”).

4.6 Ultra-cold atomic Fermi-gas

• As in section 3.2, we now focus on a dilute gas of ultra-cold atoms in a harmonic trap, but
here now fermionic atoms.

• Recall that compound objects of an even number of constituent Fermions are Bosons, while
those of an odd number of constituent Fermions are Fermions. Since all items making up

5Top band E(k) curve should be flipped.
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andatom are Fermions (electrons and nucleons, or more fundamentally, electrons and quarks),
we need Nelec +Nprotons +Nneutrons to be odd for a fermionic atom. Since Nelec = Nprotons for
neutral atoms, the sum of the two is always even. Thus fermionic atoms are all those with
an odd number of neutrons.

• We assume spin-polarization for now, (e.g all ↑).

• We neglect interactions (but show shortly this is even realistic when all | ↑〉).
Expected picture:

• At t = 0, m̄b = 1 up to µ = EF .

• Harmonic trap Enx,ny ,nz = ~ω(nx + ny + nz)

⇒ N(µ) =
∑

nx,ny ,nz

1 (with (nx + ny + nz) <
µ

~ω
) = Volume of the green object above

= (µ/~ω)3/6

With same reasoning as before, we obtain the

Fermi energy in trap
EF = ~ω(6N)1/3 (4.17)

• Using numbers as for the degeneracy temperature of Bose-atoms earlier [after Eq. (3.14)], we
obtain TF ≈ 187 nK (N = 10000, ω = (2π)100 Hz)

• Seems slightly “easier” to reach than BEC, but making a degenerate Fermi gas of cold atoms
turned out harder.
Reasons:

(i) Evaporative cooling (see PHY402 p.89) relies on interactions for remnant atoms to
rethermalize.
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(ii) Fermi-blocking (section 2.2.4): atom has to scatter exactly into the right “empty” state.
We see in the next section that spin-polarized ultracold Fermions barely interact.

• Solution: e.g sympathetic cooling: mix Bosons and Fermions, cool Bosons, Fermions can
interact with Bosons, thus cool down together.

4.7 Ultra-cold Fermion interactions

Let us revisit quantum scattering theory as in section 3.3.1.

The wavefuntion corresponding to this cartoon is

ψ0(r) = exp(ikz) +
f(θ)

r
exp(ikr)

where r = rB − rA is the relative coordinate between the two collision partners, and r, θ, (ϕ) the
corresponding 3D spherical coordinates.

For Fermions, to fulfill the anti-symmetrisation requirement, we need ψ(r)
!

= −ψ(−r).
We could try the usual trick:

ψ(r) =
1√
2

(
ψ0(r)− ψ0(−r)

)
. (4.18)

Note

ψ0(−r) = exp(−ikz) +
f(θ + π)

r
exp(ikr).

But for S-wave scattering (see pg. 42), f(θ) = const. (indep. of θ), so construction doesn’t work,
because the scattering part of the wavefunction vanishes in (4.18). We would need f(θ) = −f(θ+π),
which would be true only for P-wave scattering (l = 1 relative angular momentum).
But our arguments to neglect P-wave scattering in the ultra-cold regime in section 3.3.1. hold also
for Fermions.

No s-wave scattering or identical Fermions⇒ Ultra-cold, spin-polarized Fermions are
to a very good approximation effectively non-interacting.
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• It implies that results such as Eq. (4.17) are actually useful.

• Importantly, the basic interatomic interaction potential as sketched in section 3.3.1 [Eq. (3.19)]
would not be much different between Bosonic or Fermionic isotopes of the same atom. The
statement above only arises effectively in ultra-cold scattering, since the Fermion symmetry of
the many-body wave-function makes it less likely at cold temperatures for the two Fermions
to be ever close to each other.

• The situation changes if we have 2 spin-states ↑, ↓, which can take care of symmetrization in
(4.18) ⇒ then S-wave interactions are possible.
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4.8 Trapped Atomic Fermi Gases

Now we explore the ultra-cold atomic Fermi gas further, within a harmonic trap, but initially
neglecting interactions (as justified in section 4.7). We then find

left: Non-interacting ground state: All single particle
states |ϕn 〉 up to E = EF are filled with exactly one atom
(or (2S + 1) atoms if we consider them to have spin S).

This motivates us to define the

Fermi-Sea State:

|FS 〉N =

N−1∏
n=0

â†n| 0 〉 (4.19)

N = Atom-number and En < EF (N)

Using the Fermi-field operator

Ψ̂(x) =
∑
n

ϕn(x)ân, (4.20)

we obtain a total density

n(x) = 〈FS|ψ̂†(x)ψ̂(x)|FS〉 =
exercise

∑
n

|ϕ(x)|2. (4.21)
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left: Results of (4.21) are
plotted on the left for differ-
ent numbers of atoms. The
oscillations visible for smaller
N are called Friedel Oscilla-
tions.

4.8.1 Thomas-Fermi-approximation

To find the density shape shown as the blue line (for many atoms) in the figures above, we can again
use the Thomas-Fermi approximation, see section 3.3.4, however in a slightly different formulation.

Let us assume a large gas, so that we can use the local density approximation. This means we use
the results derived in section 4.1, which were assuming a homogeneous system, by instead inserting
a slowly varying density N/V → n(r).

From Eq. (4.6) and Eq. (4.8) we can then find relations between a local Fermi wavenumber/mo-
mentum and density and local Fermi-energy, as:

n(r) =
k3
F (r)

6π2

(ignoring spin)

, εF (r) =
~2kF (r)2

2m
. (4.22)

The equillibrium density is such that adding one more atom has the same energy everywhere, thus:

~2k2
F (r)

2m
added on

Fermi surface

+ V (r)
trap

= µ (4.23)

Solving for n(r) gives us the

Thomas-Fermi profile for Fermi gas

n(r) =
1

6π2
(
2m

~2
[µ− V (r)])

3
2 if µ > V (r) else n(r) = 0 (4.24)

• This gives the blue line in the previous figure.

• Note for BEC we have [µ− V (r)]1.

We can extend this local semiclassical/like WKB approach to include the momentum distribution
and finite temperature effects with the resultant
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Semiclassical distribution function for a Fermi gas:

f(r,p) =
1

exp[β( p2

2m + V (r)− µ)] + 1
(4.25)

• From this we can obtain the total atom number

N =
1

(2π~)3

∫
d3rd3pf(r,p) (4.26)

or density/momentum density

n(r) =
1

(2π~)3

∫
d3pf(r,p) (4.27)

ñ(p) =
1

(2π~)3

∫
d3rf(r,p) (4.28)

• The same view-point adopted here can give the Thomas-Fermi profile for bosons, derived with
different methods for Eq. (3.46). In a (locally) homogeneous BEC there is no kinetic energy,
but instead interaction energy U0n(r), unlike the Fermionic case. Replacing in Eq. (4.23) the

Fermi-(kinetic) energy
~2k2

F (r)
2m by U0n(r), we then find Eq. (3.46).

4.8.2 Excitations of the ideal gas

The simplest excited state of |FS〉 is obtained, when we move any atom with E < EF to E > EF .

left: Excitation of a degenerate Fermi gas, an
atom has jumped from state nh (h for hole) to ne
(e for excited).

In this we are actually doing two things: creating a hole at nh (oscillator quantum number) and
excited atom at ne.

We can consider these both separately as excited states of a system with N − 1 atoms (for the
hole) or N + 1 atoms (for the excited atom). Energy of hole: E[ânh |FS〉N ] − E[|FS〉N−1] =
EF − Enh = EF − ~ω(nh + 1

2)

Similarly for excitation E[â†ne |FS〉N ]− E[|FS〉N+1] = Ene − EF

If we denote by nF the oscillator state quantum number up to which all states are filled in the
Fermi sea, we have
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Energy of particle or hole excitation

En = ~ω|n− nF | (4.29)

(homogeneous system would have εk =
~2|k2−k2

F |
2m )

4.9 (Weak) Repulsive interactions in spin mixtures

• So far, we only considered non-interacting Fermi gases, which as per the discussion in sec-
tion 4.7, is actually realistic for a cold single species gas.

• For two species (e.g. N2 atoms in one spin state | ↑ 〉 and N
2 atoms in another | ↓ 〉) interactions

become relevant since | ↑ 〉 atoms do have s-wave interactions with | ↓ 〉 atoms.

• Thus also evaporative cooling works again.

• Let us assume interactions are fully repulsive everywhere, that is U(r) > 0 ∀r.

4.9.1 Landau Fermi Liquid

Let us consider “slow” turning on of interactions, so we start with perturbation theory. We use the

Hamiltonian for spin-mixture of a Fermi-gas

Ĥ =

∫
d3x

{ ∑
s=↑,↓

ψ̂†s(x)H0ψ̂s(x) + U0ψ̂
†
↑(x)ψ̂†↓(x)ψ̂↓(x)ψ̂↑(x)

}
. (4.30)

• The field operator now has a spin index

ψ̂s(x) =
∑
n

âs,n ϕn(x)χs

(χs = spinor i.e. s = ↑ −→
(

1
0

)
and s = ↓ −→

(
0
1

)
)

(âs,n| 0 〉 = |n, s 〉, n→ trap single particle state, s = | ↑ 〉, | ↓ 〉)

• We have,
{ψ̂s(x), ψ̂†s′(x

′)} = δss′δ
(3)(x− x′). (4.31)

• The Hamiltonian already includes the fact that only atoms in two different spin-states can
interact, see section 4.7.

For simplicity, we only consider a homogeneous system, with the following expansion for the
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Fermion field operator:

ψ̂s(x) =
∑
k

âs,k
√

2π
3 ϕk(x)︸ ︷︷ ︸
planewaves

χs, ϕk(x) =
1√
V
eikx, (4.32)

where V is a box-normalisation factor.

Using

(2π)3δ3(x) =

∫
d3x eikx

we obtain,

Momentum-space Hamiltonian for the spin-mixture

Ĥ =
∑
k

~2k2

2m
(â†↑kâ↑k + â†↓kâ↓k)︸ ︷︷ ︸

Ĥ0

+
U0

V
∑

k1,k2,k3,k4:
k1+k2=k3+k4

â†↑k3
â†↓k4

â↓k2 â↑k1

︸ ︷︷ ︸
V̂

(4.33)

From this Hamiltonian, let us first find the energy of the unperturbed/ non-interacting Fermi-sea
itself. The expectation value is

E(0) =〈FS|
∑
k

~2k2

2m
(â†↑kâ↑k + â†↓kâ↓k)|FS〉 (Ĥ0 only!)

=(4π)

∫ kF ,↑

0
dkk2 D

↓
density
of states

~2k2

2m
+ (4π)

∫ kF ,↓

0
dkk2D

~2k2

2m

=
Eq. (4.6),Eq. (4.8)

D=V/(2π)3

3

5
(EF↑N↑ + EF↓N↓)

In the second equality, we used the fact that number operators give 0 for wave-numbers above
the Fermi-level and 1 below. Then we also already did the angular integration in spherical 3D
coordinates for k. Since energies are apparently separately found for each spin species, we have
also derived the

Total energy of an ideal Fermi gas

ETot =
3

5
EFN (4.34)

Now let us find the change of the energy due to some small interactions U0 using Rayleigh-
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Schödinger perturbation theory. The first order energy correction, as usual, is:

E(1) = 〈FS|V̂ |FS〉 =
k1=k3,
k2=k4

U0

V

∑
k1,k2

〈â†↑k1
â↑k1〉〈â

†
↓k2
â↓k2〉 =

U0

V
N↑N↓ (4.35)

Below the first equality, we indicate that for a non-vanishing matrix elements, indices in V̂ have to
be equal as shown. We show (4.35) here mainly as example for perturbation theory in a many-body
context.

Let us also look in the first order correction to the quantum state |FS 〉:

The formula you know from basic quantum mechanics perturbation theory is:

|n(1)〉︸ ︷︷ ︸
perturbed state

=
∑
k 6=n

〈 k(0) |V̂

unpert. state︷ ︸︸ ︷
|n(0) 〉

E
(0)
n − E(0)

k

|k(0)〉︸ ︷︷ ︸
basis

(4.36)

In our many-body context this translates to

|FS(1) 〉 =
′∑
N

〈N |V̂ |FS(0) 〉
E(0) − EN

|N 〉 (4.37)

• The prime ′ on the sum shall denote that the sum does not include the state |FS 〉 itself.

• We use Fock-states |N 〉, see Eq. (2.2), for Fermions, taking into account occupations of
different spin states also.

• We find

EN =
∑
k

~2k2

2m
(Nk↑ +Nk↓)

• For V̂ , see Eq. (4.33).

Let’s evaluate the required Matrix elements:

〈N |V̂ |FS(0) 〉 =
U0

V

∑
k1,k2,k3,k4:

k1+k2=k3+k4

〈N |â†↑k3
â†↓k4

â↓k2 â↑k1 |FS(0) 〉︸ ︷︷ ︸
we need |k1|,|k2|<kF︸ ︷︷ ︸

we need k1=k3,k2=k4

Or, |k3|,|k4|>kF

(4.38)

Below the braces we indicate conditions for operators acting on states to gives something non-zero.
One choice, k1 = k3, k2 = k4 is boring, because we end up coupling |FS 〉 with itself. However
for the second choice |k3|, |k4| > kF we mix |FS 〉 with the “double particle-hole excitation” state
sketched below:
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left: Double particle-hole excitation:
A state with the filled Fermi sea, but
then two atoms at momenta k1 and
k2 were removed, and lifted above the
Fermi surface to k3 and k4.

Let us give this is definition:

Particle-hole state

| (k3 ↑)e︸ ︷︷ ︸
excitation with
wave-vector k3

(k4 ↓)e (k2 ↓)h (k1 ↑)h︸ ︷︷ ︸
hole with

wave-vector k1

〉 (4.39)

eg: spin↑ spin↓

The perturbed Fermi-sea from Eq. (4.37) thus is

|FS(1) 〉 = |FS(0) 〉+
U0

V

∑
k1+k2=k3+k4

| (k3 ↑)e(k4 ↓)e(k2 ↓)h(k1 ↑)h 〉

E(0) − [
∑

l=1,··· ,4
~2|k2

l−k
2
F |

2m + E(0)]
(4.40)

It is said that the interactions dress the FS with particle+hole pairs: A

Fermi-liquid is a Fermi sea, which interactions dress with particle+hole pairs as in
Eq. (4.40).

This leads to a softening/smearing out of the Fermi edge even at T = 0:
left: Fermion energy distri-
bution without interactions
(left), and with weak re-
pulsive interactions (right),
forming a Fermi-liquid. Par-
ticle and hole excitation be-
comes increasingly unlikely
away from the Fermi surface,
due to the energy denomina-
tor in (4.40).
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Similarly to the ground-state, in the Fermi-liquid, also excited-states get dressed with other excited
many-body states.

Fermi liquid theory can be understood as free fermions | k, σ
spin
〉 evolving into fermionic quasi-particles

with the same momentum and spin, due to interaction/dressing. These have a slightly modified
effective mass m∗.

Quasi-particle cartoon:

• Most properties of Fermi-liquid system are (surprisingly) similar to the non-interacting cases.

• Applied to electrons in a metal, this describes most non-superconducting metals.

• Cold-atom experiments:
See Nascimbine et al. Nature 463 1057 (2010).
Horikoshi et al. Science 327 442 (2010).
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Week 11
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

4.10 Attractive interactions, pairing

Lots of credit: Gora Shlyapnikov “Ultracold quantum gases, Degenerate Fermi gases”.
Part-II (internet).

• On first sight our previous discussion should be equally valid for weak attractive interactions
(U0 < 0 in Eq. (4.33)).

• However, another phenomenon precludes this, by making a filled Fermi-sea up to EF , a bad
starting point: Superfluid pairing.

4.10.1 Two-body Cooper-pairing

• The same pairing phenomenon gives rise to superconductivity in condensed matter systems
(example D in section 2.3.1, free electron gas), we will discuss the condensed matter case
here, not the cold-atom case, for a reason given at end of this section.

Assume a degenerate Fermi system at T = 0 =⇒ all momentum states filled up to kF . We
assume for simplicity that these particles don’t interact, but importantly Pauli-block all states up
to |k| = kF . (see section 2.2.2):

Now we add two interacting particles on top of this Fermi-sea, with Hamiltonian

Ĥ = − ~2

2m

(
∇2

x1
+∇2

x2

)
+ V (x1 − x2︸ ︷︷ ︸

≡ r

). (4.41)
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We make the Ansatz

ψ0(x1,x2) =
1
√

2π
3

∫
d3k

gk√
V

cos(k · (x1 − x2))︸ ︷︷ ︸
symmetric

1√
2

[
| ↑↓〉 − | ↓↑〉︸ ︷︷ ︸
anti-symmetric

]
(4.42)

for the complete wavefunction including relative motion and spin, but ignoring the irrelevant
center-of-mass co-ordinate. Note that the Ansatz has the correct symmetry for Fermions.

Insertion into relative-motion Schrödinger equation following from (4.41):∫
d3k

~2k2

m︸ ︷︷ ︸
≡ 2εk

gk cos(k·(x1−x2))+V (x1−x2)

∫
d3k gk cos(k·(x1−x2)) = E

∫
d3k gk cos(k·(x1−x2)).

(4.43)
(Ĥ is spin independent)

• Write cos(kr) = 1
2(eikr + e−ikr), then apply on both sides 1√

2π
3

∫
d3re−ik

′r... and use that∫
d3rei(k

′−k)r = (2π)3δ(k′ − k):

2εk′
(gk′ + g−k′ )

2︸ ︷︷ ︸
= gk′ assume

symmetric

−Egk′ = − 1

(2π)3

∫
d3k

∫
d3r e−ik

′
rV (r)

gk
2

(eikr + e−ikr). (4.44)

We define:

Vk′k =
1

(2π)3

∫
d3re−ik

′
rV (r)eikr

and then can write (4.44) as

=⇒ gk′ (2εk′ − E) = −1

2

∫
d3k (Vk′kgk + Vk′ (−k) gk). (4.45)

Before proceeding, let us now ask how or why our two Fermions on top of the Fermi sea would
interact, for the specific case of electron in a solid crystal.
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Electrons in crystal:

• Surprisingly these effectively experience a weakly attractive interaction due to
phonon-exchange.

• Negative charge of electron causes distortion of positively charged ion lattice with a
lot of delay, due to inertia of the ions. The resulting local excess charge after the ions
have finally moved, can attract another electron, see sketch.

• This effect can even be dominant over the direct e− − e− Coulomb repulsion for large
distances between the electrons, since the direct Coulomb interaction is heavily screened
by the crystal ions.

• A QM treatment of the phonon mediated interactions in the figure, gives an energy
cutoff for these interactions at the Debye frequency ~ωD, or equivalently a momentum
cutoff ≡ ∆k.

We thus take an attractive interaction for Vk′k and assume it to be constant below the cutoff for
simplicity:

Vk′k =

{
−|V | ; kF < |k|, |k

′ | < kF + ∆k ← Debye cutoff

0 ; otherwise
(4.46)

Hence Vk′k = Vk′ (−k). Setting Vk′k = 0 for |k|, |k′ | < kF incorporates the fact that due to the
filled Fermi sea in the background, electrons cannot get scattered to these momenta through any
interaction 6.

Our Schrödinger equation (Eq. (4.45)) can then be written as

gk′ =
+|V |

(2εk′ − E)

∫
d3k

∣∣∣∣
k:kF<|k|<kF+∆k

gk (4.47)

Next we perform the integral
∫
d3k on both sides and cancel terms

∫
d3kgk, to reach

1

|V |
=

∫
d3k

∣∣∣∣
k:kF<|k|<kF+∆k

1

(2εk − E)
.

We convert the integral to spherical polar coordinates and reach

1

|V |
= (4π)

∫ kF+∆k

kF

dk
k2

(2εk − E)
. (4.48)

6Note, that we can interpret k as indicating both(∗), the relative momentum of the pair prel = ~k, or the
momentum of one of the members of the pair, e.g. p1 = ~k (the other member has momentum p2 = −p1 in that
case. The constraints written above on possible values of k arise from the latter view.
(∗)[This slightly confusing fact is due to the need to have CM momentum kCM ≈ 0 and the relative momentum being
defined as prel = (p1 − p2)/2. See some texts on QM of the two-body problem. One way to justify this, is that we
want

[
r̂, p̂rel

]
= i~, where r̂ = x̂1 + x̂2]
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Change integration variable to energy dk = m/~2k dε

1

|V |
=

(
4πm

~2

)∫ εF+~ωD

εF

dε

≈ kF due to ~ωD � εF︷︸︸︷
k

(2ε− E)
. (4.49)

We finally arrive at

1

|V |
= N

∫ εF+~ωD

εF

dε

(2ε− E)
=
N
2

log

(
2EF − E + 2~ωD

2EF − E

)
, (4.50)

where we have used the shortcut notation N = 4πmkF /~2. For N|V | � 1 (weak coupling
approximation), we can solve this for E and then obtain the

Cooper pair energy:

Epair = E = 2EF − 2~ωD exp

[
− 2

N|V |

]
. (4.51)

(size � inter-particle distance in medium)

Comments:

• E < 2EF for arbitrarily weak interactions. This signals an instability of the Fermi-sea towards
bound states (Cooper pairs) (relative to EF ). (Unlike the repulsion case, non-interacting
scenario is not a good starting point here.)

• A cooper pair is a bound state of Fermions above the Fermi sea, bound together by very weak
attractive, phonon-mediated interactions.

• In the discussion in this section, we only concluded that the Cooper pair is a bound-state
since the pairing gives a negative energy shift to the energy of two unpaired Fermions on
the Fermi surface. This view is further corroborated when evaluating the coefficients gk to
first write the wave function of a Cooper pair first in Fourier space, and then in position
space. One finds a wavefunction for relative motion ψ0(x,y) 1√

2
(| ↑↓ 〉−| ↓↑ 〉), with symmetric

ψ0(x,y), that goes to zero for large |x−y|, hence is a bound state. See [A. Kadin, Journal of
Superconductivity and Novel Magnetism, “Spatial Structure of the Cooper Pair’’ (2007)] for
a discussion of the spatial Cooper pair wave function.

• For repulsive interactions E > 2EF (no problem).

• Without blocked Fermi-sea (let
∫ ~ωD

0 dε in Eq. (4.50)), we get E > 0 (no bound states).

• The size (orbital radius)( of a Cooper pair is typically much larger than the inter-particle
distance in medium.

• Without Debye cutoff: Eq. (4.50) is UV divergent→ need regularisation/renormalisation, see
section 3.5.2.
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The last point is the reason why we did the calculation for a solid-state setup rather cold atom
Fermion gases: In the Fermi-gas there is no natural cutoff, so the calculation would need renormali-
sation, which we want to avoid here. But Cooper-pairs form in cold atomic Fermi gases for the same
reason as in an electron gas. One finds a

Cooper pair energy in an atomic Fermi gas that is a spin-mixture of ↑ and ↓:

Epair = E = 2EF − 2EF exp

[
− π

2kF |as|

]
. (4.52)

This sets the right order of magnitude.

• Roughly, to reach this keep variable k in Eq. (4.49), change cutoff from ~ωD to → EF and
use |V | = 4π~2|as|/m.

4.10.2 Many Cooper pairs

• In the previous section we saw that an attractively interacting degenerate Fermi-gas is un-
stable to pair formation, but we dealt with a single pair. What happens for many?

• Tight pairs (molecules) would be Bosons, they could condense. What does that cause? But
these pairs are not that tightly bound....

• Also: Now we also want to include all versus all interactions, not just among a single pair as
in section 4.10.

As we did in section 3.3.2 for a BEC, we want to build the statements above into a useful math-
ematical Ansatz for the many-body wave function. Unlike there, we would want to now describe
the condensation of pairs.

In first quantization, we could write

ψ(x) = P̂F [ψ0(x1, x2)ψ0(x3, x4)...ψ0(xN−1, xN )] , (4.53)

where ψ0 is the pairing wave function we had found in section 4.10.1. Here, P̂F is the anti-
symmetrisation operator introduced in Eq. (2.1).

We could write Eq. (4.53) more elegantly as

ĉ†
N

| 0 〉

for N Cooper pairs, with

ĉ† =

∫
d3x

∫
d3yψ0(x,y)Ψ̂†↑(x)Ψ̂†↓(y), (4.54)
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the Cooper-pair creation operator.7

Using the operator (4.54), we could write a Cooper pair condensate as a

Coherent state of pairs

|ψBCS〉 = N eγĉ† | 0 〉 (4.55)

where, N is normalisation factor, and γ the complex number characterising the coherent
state (c.f. α in (2.42)).

• If ĉ† was a bosonic operator, this would be analogous to our earlier treatments of BEC. But in
general, we can neither clearly associate commutation, nor anti-commutation relations with
ĉ†.

• We need some more powerful theory....

4.10.3 BCS-Theory

Let us consider the BCS Many-body theory of Fermion pairing due to Bardeen-Cooper-Schrieffer,
which also explains superconductivity. Instead of attempting to deal with Cooper pairs, this starts
out with the following trick Where for a BEC, we had assumed a non-zero mean-field, now we can
assume a

non-zero pairing-field: (also “Order parameter”)

0 6= ∆(x) = U0〈Ψ̂↑(x)Ψ̂↓(x)〉 (4.56)

• It shall turn out only after we did the ensuing calculation, that this assumption is in fact
related to Cooper pairing.

• Clearly (4.56) involves an assumption on the many-body quantum state. All states that we
find in the following, have to be checked for consistency with (4.56) in the end.

• For the moment just take (4.56) as a mathematical assumption, and let’s see where it leads
us....

7To see that this name makes sense, write ĉ†| 0 〉 and apply the field operators to the vacuum to reach a Fermionic
Fock state |y ↓, z ↑ 〉 expressed using the position basis. Then write the position-space representation: 〈x′y′ |ĉ†| 0 〉.
Using 〈x |x′ 〉 = δ(x− x′), you should find the result discussed at the end of section 4.10.1.
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From these initial considerations, we will now approximately diagonalize the interacting
Hamiltonian (4.30) with U0 < 0, assuming equal numbers of ↑, ↓ Fermions in a homogeneous
system.

We “simplify” the interaction term as

U0Ψ̂†↑(x)Ψ̂†↓(x)Ψ̂↓(x)Ψ̂↑(x) ≈ 1

2

{
〈Ψ̂†↑(x)Ψ̂†↓(x)〉Ψ̂↓(x)Ψ̂↑(x) + 〈Ψ̂↓(x)Ψ̂↑(x)〉Ψ̂†↑(x)Ψ̂†↓(x) + 〈Ψ̂†↑(x)Ψ̂↑(x)〉ψ†↓(x)Ψ̂↓(x)

(4.57)

+ 〈Ψ̂†↓(x)Ψ̂↓(x)〉ψ†↑(x)Ψ̂↑(x)−
(
〈Ψ̂†↑(x)Ψ̂↓(x)〉ψ†↓(x)Ψ̂↑(x) + 〈Ψ̂†↓(x)Ψ̂↑(x)〉ψ†↑(x)Ψ̂↓(x)

)}
.

(4.58)

Comments:

• This is motivated again by Wick’s theorem (3.86), use Fermionic signs as discussed
earlier.

• Wick’s theorem gets some minus signs when Fermions are involved.

• The red factor of 1/2 is required to make the assumption consistent with Wick’s theo-
rem. I am confused as it is not there in some of the literature.

We further define:

Hartree fields U↑(x) = U0〈Ψ̂†↑(x)Ψ̂↑(x)〉 (same for ↓) (4.59)

Fock fields F↑(x) = U0〈Ψ̂†↑(x)Ψ̂↓(x)〉 (same for ↑↔↓) (4.60)

• In the paired state (Eq. (4.55)), F↑,↓ = 0 (Proof → Assignment 6).

• In a homogeneous system, ∆(x) = ∆ (∆ ∈ R), U↑(x) = U↓(x) = U can be constant. Note:
U 6= U0, but includes it.

From (4.58) we now have:

U0Ψ̂†↑(x)Ψ̂†↓(x)Ψ̂↓(x)Ψ̂↑(x) ≈ ∆∗Ψ̂↓(x)Ψ̂↑(x) + ∆Ψ̂†↑(x)Ψ̂†↓(x)

+ U
(
Ψ̂†↑(x)Ψ̂↑(x) + Ψ̂†↓(x)Ψ̂↓(x)

)
.
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Finally, we re-assemble the Hamiltonian (4.30) and augment it to a grand-canonical one K̂ =
Ĥ − µN̂ :

K̂ =
∑
s=↑,↓

∫
d3x Ψ̂†s(x)

[
− ~2∇2

2m
+ U − µ

]
Ψ̂s(x)

+

∫
d3x
[
∆∗Ψ̂↓(x)Ψ̂↑(x) + ∆ Ψ̂†↑(x)Ψ̂†↓(x)

]
.

In the homogeneous case, it is again simpler to work in the momentum basis. As we did for (4.33),
we reach the

BCS/pairing Hamiltonian:

K̂ = ĤBCS =
∑

k,s=↑,↓
ξkâ
†
σkâσk + ∆

∑
k

(
â↓kâ↑(−k) + â†↑(−k)â

†
↓k
)

(4.61)

where,

ξk =
~2k2

2m
+ U − µ.

• In section 3.4, we had kept only Bose-gas excitations up to order χ̂2, and then diagonalized
the Hamiltonian using the Bogoliubov transformation (e.g. Eq. (3.66)).

• This trick works generically for Hamiltonians up to quadratic in â, â†, thus also here, for
Eq. (4.61) . Here we define the

Bogoliubov-transformation (BCS-system)

α̂↑k = ukâ↑k − vkâ
†
↓(−k)

α̂↓k = ukâ↓k + vkâ
†
↑(−k) (4.62)

Comparison to BEC: In Chapter-3, we were more ambitious and did the Bogoliubov
transformation directly for an inhomogeneous system. For the homogeneous case, Eq. (3.66)
gives:

α̂k = ukâk + vkâ
†
k, (4.63)

which is quite similar to (4.62). To reach this, use Ψ̂(x) =
∫
d3k âk√

2π
3ϕk(x) and the definition

of a δ function.

The quasi-particle operators (Eq. (4.62)) should satisfy Fermi commutation relations:{
α̂sk, α̂

†
s′k′

}
exercise

== (u2
k + v2

k)δkk′ δss′ .
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We thus have to require the normalisation u2
k + v2

k = 1.

Using the latter, we can derive the

inverse Bogoliubov transformation (Proof → exercise, signs might be wrong)

â↑k = ukα̂↑k − vkα̂
†
↓(−k)

â↓k = ukα̂↓k + vkα̂
†
↑(−k). (4.64)

Inserting Eq. (4.62) into Eq. (4.61) gives

K̂ =
∑
k

{[(
ξkuk + ∆vk

)
uk −

(
ξkvk −∆uk

)
vk
](
α̂†↑kα̂↑k + α̂†↓kα̂↓k

)
+
[(

∆vk + ξkuk

)
vk −

(
∆uk − ξkvk

)
uk

](
α̂†↓kα̂↑(−k) + α̂†↑(−k)α̂↓k

)
+ 2ξkv

2
k − 2∆ukvk

}
(steps see p.786)

Detailed steps: Note: (uk = u−k, vk = v−k from parity invariance).

K̂ =
∑
k

ξk

[( â†↑k︷ ︸︸ ︷
ukα̂

†
↑k − vkα̂↓(−k)

)( â↑k︷ ︸︸ ︷
ukα̂↑k − vkα̂

†
↓(−k)

)
+
( â†↓k︷ ︸︸ ︷
ukα̂

†
↓k + vkα̂↑(−k)

)( â↓k︷ ︸︸ ︷
ukα̂↓k + vkα̂

†
↑(−k)

)]
+ ∆

[(
ukα̂↓k + vkα̂

†
↑(−k)︸ ︷︷ ︸

â↓k

)(
u−kα̂↑(−k) − v−kα̂

†
↓k︸ ︷︷ ︸

â↑(−k)

)
+
(
u−kα̂

†
↑(−k) − v−kα̂↓k︸ ︷︷ ︸
â†↑(−k)

)(
ukα̂

†
↓k + vkα̂↑(−k)︸ ︷︷ ︸

â†↓k

)]

=
∑
k

ξk

[
u2
kα̂
†
↑kα̂↑k − ukvkα̂

†
↑kα̂
†
↓(−k) − ukvkα̂↓(−k)α̂↑k + v2

kα̂↓(−k)α̂
†
↓(−k)

+ u2
kα̂
†
↓kα̂↓k + ukvkα̂

†
↓kα̂
†
↑(−k) + ukvkα̂↑(−k)α̂↓k + v2

kα̂↑(−k)α̂
†
↑(−k)

]
+ ∆

[
u2
kα̂↓kα̂↑(−k) − ukvkα̂

†
↓kα̂
†
↑(−k) + ukvkα̂↑(−k)α̂↓k − v2

kα̂
†
↑(−k)α̂↓k

+ u2
kα̂
†
↑(−k)α̂

†
↓k + ukvkα̂

†
↑(−k)α̂↑(−k) − ukvkα̂↓kα̂

†
↓k − v

2
kα̂↓kα̂↑(−k)

]
(

Use
∑
k

ξkα̂
†
(−k)α̂(−k) =

∑
k

ξkα̂
†
kα̂k, since ξk = ξ−k

)
=
∑
k

[
ξk(u2

k − v2
k) + 2∆ukvk

](
α̂†↑kα̂↑k + α̂†↓kα̂↓k

)
+ 2ξkv

2
k − 2∆ukvk︸ ︷︷ ︸

from commutators

+
[
2ξkukvk − (u2

k − v2
k)∆

](
α̂†↓kα̂

†
↑(−k) + α̂↑(−k)α̂↓k

)
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By demanding the

Bololiubov de Gennes equations (BCS, Fermions)

ξkuk + ∆vk = εkuk

−ξkvk + ∆uk = εkvk. (4.65)

We diagonalize the Hamiltonian into

K̂ = E0 +
∑
k,s

εkα̂
†
k,sα̂k,s (4.66)

where, E0 =
∑

k 2(ξkv
2
k −∆ukvk).

• This again has the form of non-interacting quasi-particles.

To find out more about the excitations of the system, we have to solve Eq. (4.65). In matrix form(
ξk ∆
∆ −ξk

)(
uk
vk

)
= εk

(
uk
vk

)
. (4.67)

Using also u2
k + v2

k = 1, we proceed as for (3.68). The solutions are:

u2
k =

1

2

(
1 +

ξk
εk

)
, v2

k =
1

2

(
1− ξk

εk

)
, εk =

√
ξ2
k + ∆2 (4.68)

for particle amplitude uk, hole amplitude vk and dispersion relation, quasiparticle-energy εk.

• Recall ξk = ~2k2/2m+ U − µ = ~2k2/2m− µ̃ (see Eq. (4.61)), using µ̃ = µ− U .

• µ̃ is the Fermi-energy at T = 0.

103



Picture in momentum space:

• kf comes in via µ = EF .

• Behavior of u, v logical from particle/hole excitation interpretation (look at α†). Above the
Fermi energy, there are no holes to make.

• Crucial feature of dispersion relation is the energy gap εmin = ∆. Thus, if ∆ > 0, εk is never
zero.

Discussion of diagonalized Hamiltonian (4.66):

Ground state:

Already from (Eq. (4.66)), we can understand the system better:

• As was the case for Bose-gas, the ground state of the system is one with no quasi-particles
(c.f. Eq. (3.63)). We call this state the quasi-particle vacuum |ψ0〉, and define it via

α̂sk|ψ0〉 = 0. (4.69)

(compare α̂sk| 0 〉 = 0 for the bare vacuum)

• We can easily write one such state explicitly, namely

|ψ0〉 =
∏
k′s′

α̂k′s′ | 0 〉 (4.70)

Reason: This works since α̂2
sk = 0 (from {α̂sk, α̂sk} = 0).

We can then use Eq. (4.62) to explicitly obtain the

BCS state:
|ψBCS〉 = |ψ0〉 =

∏
k

(
uk + vkâ

†
k↑â
†
(−k)↓

)
| 0 〉. (4.71)
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• To see this, start by first evaluating α̂↓(−k)α̂↑(k)| 0 〉 = · · · = vk(uk + vkâ
†
k↑â
†
(−k)↓)| 0 〉. Then

do the same for all other k′. Finally a factor
∏

k vk is taken care of by normalising the state.

• Each possible pair can be either occupied (v) or unoccupied (u).

Ground state energy:

We can now verify that the pairing assumption ∆ 6= 0 has lowered the energy compared to the
unpaired Fermi-sea.

〈ψBCS|K̂|ψBCS〉 − 〈FS|K̂|FS〉 =
∑
k

(
2ξkv2

k − 2∆ukvk︸ ︷︷ ︸
E0, see (4.66)

)
−
|k|<kF∑

k

2︸︷︷︸
spin

↑↓

ξk︸︷︷︸
energy relative

to Fermi-sea

=
~2k2

2m
− µ̃ =

~2

2m
(k2 − k2

F )

=
∑
k

{
2vk (ξkvk −∆uk)︸ ︷︷ ︸

= −εkvk
Eq. (4.65)

}
−
|k|<kF∑

k

2ξk
∗
=

|k|<kF∑
k

{
− 2εkv

2
k − 2ξk

}

Eq. (4.68)
==

|k|<kF∑
k

(−εk
(

1− ξk
εk

)
− 2ξk) =

∑
k

(
−ξk︸︷︷︸
> 0

−
√
ξ2
k + ∆2

)
︸ ︷︷ ︸

< 0

(*): The reason we can restrict the first sum also to |k| < kF is that v2
k → 0 for |k| > kF ,

see figure on page 98

• Overall we lower the total energy of the system only for a non-zero gap ∆.

We can now finally actually see that the BCS state we got is the pair-coherent state we guessed in
Eq. (4.55). By going to Fourier-space, we can rewrite the pair operator

ĉ† =

∫
d3x

∫
d3yψ0(x,y)Ψ̂†↑(x)Ψ̂†↓(y) (see Eq. (4.54))

as

ĉ† =
∑
k

ϕkâ
†
↑kâ
†
↓(−k). (4.72)

105



(see details A below). Then, using Campbell Baker Hausdorff formula (see assignment 2) and

[â†kâ
†
(−k), â

†
k′
â†

(−k′ )] = 0 (see details A&B below)

N eγĉ† = N e
∑

k γϕkâ
†
↑kâ
†
↓(−k)

(∗)
==N

∏
k

e
γϕkâ

†
↑kâ
†
↓(−k)

Fermions
== N

∏
k

(
1 + γϕkâ

†
↑kâ
†
↓(−k)

)
.

With moving N into the product (detail C below), we reach the the form

BCS state as coherent pair state

|ψBCS〉 = eγĉ
† | 0 〉 =

∏
k

(
uk + vkâ

†
↑kâ
†
↓(−k)

)
| 0 〉 (4.73)

Proof details
A:

ĉ† =

∫
d3x

∫
d3yϕ0(x,y)Ψ̂†↑(x)Ψ̂†↓(y)(

Use Ψ̂↑(x) =
∑
k

1
3
√

2π
â↑k

eik·x√
V

)
=

1

V
∑
k,k′

1

(2π)3

∫
d3x

∫
d3yϕ0(x− y)e−ik·xe−ik

′ ·yâ†↑kâ
†
↓k′

change to relative and C.M. co-ordinates r = x− y, R = (x + y)/2

=
1

V
∑
k,k′

1

(2π)3

∫
d3r

∫
d3Rϕ0(r)e−ik·(R−

r
2

)e−ik
′ ·(R+ r

2
)â†↑kâ

†
↓k′

=
1

V
∑
k,k′

( ∫
d3r

3
√

2π
ϕ0(r)e−i(

k
′
−k
2

)·r︸ ︷︷ ︸
F.T. ϕ̃0

(
k
′ − k

2

)
)( ∫

d3R
3
√

2π
e−i(k+k

′
)·R︸ ︷︷ ︸

=
3
√

2πδ(k + k
′
)

)
â†↑kâ

†
↓k′

=
∑
k

ϕkâ
†
↑kâ
†
↓(−k) with ϕk =

˜3
√

2πϕ0(−k)

V
.

B: [
â†↑kâ

†
↓k, â

†
↑k′ â

†
↓k′
]

= â†↑kâ
†
↓kâ
†
↑k′ â

†
↓k′ − â

†
↑k′ â

†
↓k′ â

†
↑kâ
†
↓k

use anti-
==

commutators
0

C: Determine N for which |ψpair 〉 ≡ N
∏

k

(
1 + γϕkâ

†
↑kâ
†
↓(−k)

)
is normalized 〈ψpair |ψpair 〉 = 1.

Let us rewrite | 0 〉 = | 0k↑, 0k↓, 0−k↑, 0−k↓ 〉 ⊗ | 0other k 〉, where we have singled out the Fock space
occupations for the forward and backward direction of a specific k, with all possible spins. Since
â±k′ for any other k′ 6= k do not affect this sub-space, we can calculate normalisation separately
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in each of these segments. Then

〈ψpair |ψpair 〉 = N 2
∏
k,k′

〈 0 |
(
1 + γ∗ϕ∗kâ↓(−k)â↑k

) (
1 + γϕkâ

†
↑kâ
†
↓(−k)

)
| 0 〉

= N 2
∏

k,k′(halfspace)

〈 0 |
(
1 + γ∗ϕ∗kâ↓(−k)â↑k

) (
1 + γ∗ϕ∗−kâ↓(k)â↑(−k)

)
×
(

1 + γϕ′kâ
†
↑k′ â

†
↓(−k′)

)(
1 + γϕ−k′ â

†
↑(−k′)â

†
↓k′
)
| 0 〉 (4.74)

In the second equality we have split the products over k such that the symbol only contains half
of space (say with positive kx) and the pieces in the other half are made explicit by writing a part
with k → (−k). We can now collect the combination in which operators may act so that rhs and
lhs are not orthogonal in the end. You shall find

〈ψpair |ψpair 〉 = N 2
∏

k,k′(halfspace)

(
1 + |γ|2|ϕk|2

) (
1 + |γ|2|ϕ′k|2

)
= N 2

 ∏
k(halfspace)

(
1 + |γ|2|ϕk|2

)2

ϕk=ϕ−k
= N 2

∏
k

(
1 + |γ|2|ϕk|2

)
(4.75)

We now see that a way to normalize the state is the choice N =
∏

k
1√

1+|γ|2|ϕk|2
. Inserting this into

|ψpair 〉 and distributing each factor for k from N onto the main expression gives the form (4.73)
if we call uk = 1/

√
1 + |γ|2|ϕk|2 and vk = γϕk/

√
1 + |γ|2|ϕk|2.

4.10.4 Self consistency of BCS-Theory

Before we move to the consequences of the gap, let us calculate it. (Recall, we just assumed
〈Ψ̂Ψ̂〉 = ∆ at the onset of section 4.10.3.)

Recall that the BCS calculation started with an input non-vanishing pairing field ∆ = U0〈Ψ̂↑(x)Ψ̂↓(x)〉.
Now we have actually found the quantum ground state with which to evaluate the right hand side,
namely (4.71). That state depends on u, v and these in turn depend on ∆ through (4.65). We now
have to check that the theory is self consistent, which means we can correctly get ∆ out, when we
evaluate U0〈Ψ̂↑(x)Ψ̂↓(x)〉.

Starting state (**): We assume 〈 〉 pertains to a Fock-state (or thermal mixture of those)
with Nk Bogoliubov excitations in mode k. For all Nk = 0, this includes the BCS ground
state (4.71).

Let us evaluate the pairing field. Since we are in a homogenous system ∆(x) does not depend on x
and is equal to its mean value over space ∆ =

∫
d3x ∆(x)/V, where V is some quantisation volume.
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Then

∆ = U0

∫
d3x〈Ψ̂↑(x)Ψ̂↓(x)〉/V =

U0

V
∑
k

∑
k′

〈â↑kâ↓k′
∫
d3x

exp [i(k + k′)x]

V︸ ︷︷ ︸
=δk,k′

〉

=
U0

V
∑
k

〈â↑kâ↓(−k)〉

Eq. (4.64)
==

U0

V

∫
d3k
〈(
ukα̂↓(−k) + vkα̂

†
↑k
)(
ukα̂↑k − vkα̂

†
↓(−k)

)〉
(**)
==−U0

V
∑
k

ukvk(1− 2Nk)

where,

Nk =
1

exp(εk/kBT ) + 1
.

We have ukvk = ∆/2εk from Eq. (4.68), hence

∆ = −U0

V
∑
k

∆

2εk
(1− 2

1

exp(εk/kBT ) + 1
). (4.76)

We divide both sides by ∆, use U0 = −|U0| and reform exp into tanh and turn the sum into an
integration to reach

the gap-equation (consistency condition)

|U0|
∫

d3k

(2π)3

tanh(εk/2kBT )

2εk
= 1. (4.77)

• Here we really needed U0 < 0, else this would not have a solution. That means that for
repulsive interactions, our assumption of pairing ∆ 6= 0 could never be consistent.

At zero temperature:

|U0|
∫

d3k

(2π)3

1

2
√

∆2
0 + ξ2

k

= 1. (4.78)

The main contribution to the integral is from |k| ≈ kF (there the denominator is smallest, see
picture of ∆ earlier). Near kF , we Taylor expand ξk to first order:

ξk ≈
~2k2

F

2m︸ ︷︷ ︸
EF

+
~2

m
kF︸ ︷︷ ︸

~vF

(k − kF ) +O(k − kF )2 + U − µ︸︷︷︸
=EF

. (4.79)

Also assuming small U , we then reach

|ξk| ≈ ~vF (|k| − kF )� EF . (4.80)
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and can find

=⇒ |U0|(4π)

∫ cutoff︷︸︸︷
κ

0
dk

k2

2
√

∆2
0 + (~vF )2(k − kF )2

nasty
==

integration
λ ln

(
εcut
∆0

)
!

== 1

where, after inserting U0 = 4π~2as/m,

λ =
2kF |as|
π

. (4.81)

We choose an energy-cutoff εcut = EF = ~2κ/2m, then find

zero-temperature gap:

∆0 = EF exp

(
− π

2kF |as|

)
� EF . (4.82)

• Comparison with Eq. (4.52) now gives a neat interpretation: Since ∆0 = 1/2|Epair − 2EF |,
i.e., half the binding energy of a Cooper pair: Excitations become gapped, since in order to
make one, I would have to break a pair.

• Since we have found that ∆ 6= 0 in the end, we have in retrospect justified our initial assump-
tion in (4.56). Thus the equation turned out self-consistent (iff, ∆ is chosen as (4.82)).

We could also evaluate ∆ from Eq. (4.77) for T > 0 and would find

finite-temperature gap

∆ = 3.06Tc

(
1− T

Tc

)1/2

(4.83)

and critical temperature
Tc ≈ 0.57∆0 � TF . (4.84)

4.10.5 Fermionic superfluidity and superconductivity

Now we come to the main consequence of the paired ground-state and gapped excitation spectrum:
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Return to our discussion in section 3.4.5 of conditions “when an obstacle with velocity v can create
excitations within the quantum gas”. Nothing there was specific to Bosons, so also for Fermions
no excitations are possible below an obstacle velocity of

vcrit = min
k

(
εk
~k

)
. (4.85)

Wee see from Eq. (4.68) (and the plot underneath it), that

Fermion critical velocity for superconductivity

vcrit =
∆

~kF
. (4.86)

Superfluidity arises here because we cannot create excitations of our Cooper-pair condensate.

Because the condensate again has a coherent order parameter ∆(r) = 〈Ψ̂↑(r)Ψ̂↓(r)〉 ∈ C, we again
have the consequence of quantized-circulation =⇒ vortices just as in a BEC.

This is used as an experimental signature of Fermionic superfluidity.

4.11 Outlook

• We looked only at N↑ = N↓ = spin-balanced Fermi gases. New physics for spin-imbalanced
N↑ 6= N↓, or impurities N↑ = 1, N↓ = N − 1 → Polarons.

• Fermionic superfluidity and superconductivity are probably one of the most involved and
surprising quantum-many-body effects.

The effect is not there at all in a two-body picture.
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Week 12
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

5 Quantum Simulations

We have seen that solving quantum many-body problems almost always requires smart approxi-
mations (〈ψ̂〉 ≈ φ, 〈ψ̂ψ̂〉 ≈ ∆) or validity of perturbation theory. In principle, we could use a brute
force approach

|ψ(t) 〉 =
∑

N1...Nn

cN1...Nn(t)|N1 . . . Nn 〉︸ ︷︷ ︸
Eq. (2.2)

(5.1)

and solve the

Many-body SE in the Fock-state representation

i~ċN1...Nn(t) =
∑

N ′1...N
′
n

〈N1 . . . Nn |Ĥ|N ′1 . . . N ′n 〉cN ′1...N ′n (5.2)

• Exercise: derive this from i~| ψ̇(t) 〉 = Ĥ|ψ 〉.

However, even if we allow at most N particles in M modes (single particle basis states), we have

Dimension of Fock space d: Fock-space dimension for max N bosons in M modes

d = (N + 1)M (5.3)

• e.g 9 particles, 10 modes ⇒ d = 1010. Assuming a complex number is 16 Bytes, this corresponds
to 150 GB of storage. A many-body state thus very quickly cannot fit into a computer. ⇒
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Quantum simulation concept: (Richard Feynman)
Find an experimentally accessible system, with the same Hamiltonian (mathematically) but
on which we can do easier measurements and where parameters in the Hamiltonian are ex-
perimentally controllable.

• Disambiguation: the term “quantum simulation” can also refer to numerical simulation of
any quantum problem.

• We now will sketch two examples using cold degenerate gases.

• Before that, let us revisit atomic interactions.

5.1 Fano-Feshbach Resonances

• So far, we have ignored electron spin dependence of atomic interactions (we had only looked
at symmetry (boson/fermion)).

• In reality, interactions depend slightly on electron-spin.

• Careful: In chapter 4, when discussing atomic spin, we referred to two selected Hyperfine-states
e.g

| ↑ 〉 =
∣∣∣F =

1

2
,mF = +

1

2

〉
and, | ↓ 〉 =

∣∣∣F =
1

2
,mF = −1

2

〉
The states entering scattering properties are (pair) electron spin singlet |S 〉 = | s = 0,ms = 0 〉
and triplet |T 〉 = | s = 1,ms = +1, 0,−1 〉.

• Due to unspecified nuclear spin, both | ↑↑ 〉, | ↓↑ 〉 may contain both |S 〉, |T 〉.

• Energy of |S 〉, |T 〉 depends differently on magnetic field through Zeeman-shift (see PHY402,
pg. 25).
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Multi-channel scattering: (channel “=” certain choice of initial/final state quantum
numbers) We can have the following picture: To find scattering length as (| ↑↓ 〉):

• Consider two incoming scattering partners in | ↑↓ 〉 with energy E & 0 (ultra-cold regime)

• Calculate 2nd order perturbation theory (in κ(r), spin-flip Hamiltonian) energy correction to
scattering state

E(2)
n =

∑
k 6=n

∣∣〈k(0)|V̂ |n(0)〉
∣∣2

E
(0)
n − E(0)

k

(5.4)

(see QM lecture).

• Schematically here

|n(0) 〉 ∼ | ↑↓ 〉 ⊗ |E ≈ 0, scattering state 〉, E(0)
n ≈ 0

| k(0) 〉 ∼ | ↑↑ 〉 ⊗ | bound state 〉, E
(0)
k ≈ ∆E∣∣〈 k(0) |V̂ |n(0) 〉

∣∣2 ∼ |κ|2, 1

E
(0)
n − E(0)

k

∼ − 1

∆E

Three cases: If
∆E → 0 (Resonance), E

(2)
n →∞

∆E < 0, E
(2)
n > 0⇒ (more) repulsive interactions

∆E > 0, E
(2)
n < 0⇒ (more) attractive interaction

• Since ∆E depends on magnetic field B, it is now plausible that:
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Scattering length near Feshbach resonance

as(B) = abg

(
1− ∆B

B −B0

)
(5.5)

abg = background scattering length,
B0 = position of resonance,
∆B = width of resonance.

Example: Scattering length with 2 Feshbach resonances
[

6Li: B
(1)
0 = 543 G, B

(2)
0 = 834

G
]

• Feshbach resonances effectively make the interaction strength an experimentally controllable
parameter.

• We can reach as = 0, as > 0, as < 0 and (almost) as =∞.

5.2 BEC-BCS Crossover

• Using Feshbach resonances, we can now realize DFG with interactions ranging from repulsive
to attractive (see week 10 vs week 11).

• Let us reconsider the repulsive as > 0 side: Do we get a Fermi-liquid as ground state as in
section 4.9.1?

• Answer: when considering the scenario with a Feshbach resonance, that would be only a
meta-stable (excited) state/phase, since the scattering state with E ≈ 0 for which we found
as > 0 in section 5.1 has higher energy than a bound state in the closed channel.
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• Bound-states and Cooper pairs are related (the latter are a type of weak bound state). It
turns out, with rigorous renormalization we can actually apply BCS theory all the way from
U0 = −∞ to U0 =∞.

5.2.1 From Cooper-pairs to Molecules

Let us again look at the pair creation operator

Ĉ† =
∑
k

ϕkâ
†
k↑â
†
(−k)↓ (5.6)

Commutator:[
Ĉ, Ĉ†

]
=
∑
k,k′

ϕ∗kϕk′
[
â(−k)↓âk↑, â

†
k′↑â

†
(−k′)↓

] (yellow box below)
=

∑
k

∣∣ϕk

∣∣2(1− n̂k↑ − n̂k↓) (5.7)

We can show (see steps on page 95) that
∑

k |ϕk|2 = 1 due to normalization of our starting pair
state ϕ0(x− y).

Thus when acting on states with few fermions “per momentum mode”, we have
[
Ĉ, Ĉ†

]
= 1,

and our pair behaves like a boson. (You can show
[
Ĉ, Ĉ

]
=
[
Ĉ†, Ĉ†

]
= 0 also).

For this we require a broad Fourier transform ϕ̃0(k)→ tightly bound pairs in position space. This
corresponds to molecules with spacing d� orbital radius r,

In other limit, where r � d, we will have high occupations of all momentum modes (n̂ ∼ 1), and
we talk of Cooper-pairs (that are not quite bosons, but have some “bosonic-character”).
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Through this change of the interpretation/details of the many-body paired state, we are able
to smoothly interpolate between a BEC of bosonic molecules (made of two fermionic atoms)
at as > 0 and a BCS-superfluid due to Cooper-pairing at as < 0.

More on composite-Bosons: [Disclaimer: The following is mainly custom improvised
for this course, and BONUS material. Please alert me to mistakes, or to any reference
where this is discussed satisfactorily]. It is a central theme in this course, that atoms can be
Bosons or Fermions, depending on the number of fundamental Fermions (electrons, protons,
neutrons) that they are made of. One way to see that this makes sense is through the
rules for angular momentum addition (QM or AMol lecture), which tell you that adding an
even number of half-integer spins (Fermions) gives integer spins (Bosons), but odd numbers
remain half-integer (Fermions).
Here we explore how to see this in an alternative way, using commutation relations. Consider
the expression (5.6) for the creation operator of a bound-state (see proof/sketch after (4.73)).

We assume {â†ks, â
†
k′s′} = δss′δkk′ , so the constituents of the bound-state are Fermions.

Now let’s find the commutator
[
Ĉ, Ĉ†

]
(see above for first step). Then[

â(−k)↓âk↑, â
†
k′↑â

†
(−k′)↓

]
= â(−k)↓âk↑â

†
k′↑â

†
(−k′)↓ − â

†
k′↑â

†
(−k′)↓â(−k)↓âk↑

= â(−k)↓â
†
(−k′)↓âk↑â

†
k′↑ − â

†
(−k′)↓â(−k)↓â

†
k′↑âk↑

= â(−k)↓â
†
(−k′)↓âk↑â

†
k′↑+â

†
(−k′)↓â(−k)↓âk↑â

†
k′↑−â

†
(−k′)↓â(−k)↓âk↑â

†
k′↑ − â

†
(−k′)↓â(−k)↓â

†
k′↑âk↑

=
{
â(−k)↓, â

†
(−k′)↓

}
âk↑â

†
k′↑ − â

†
(−k′)↓â(−k)↓

{
â†k′↑, âk↑

}
= −δkk′

(
â†k′↑âk↑ + â†(−k′)↓â(−k)↓

)
(5.8)

In the second equality we have anti-commuted one operator past the other spin species, and
im the third equality inserted zero in form of the red terms. The purpose was to reach
the anti-commutators in the last line. Inserting Eq. (5.8) into (5.7), assuming ϕk = ϕ−k,∑

k |ϕk|2 = 1 and one more anti-commutation give the result in the main text.
Clearly whenever we can neglect the n̂k terms, the commutator behaves as for Bosons. When
is this justified? For this lets look at the expectation value of the commutator in the state
ĉ†| 0 〉, i.e. one that contains precisely one of the bound-states in question. We can show
(exercise)

〈
[
Ĉ, Ĉ†

]
〉 = 1− 2

∑
k

|ϕk|4. (5.9)

An expression such as P =
∑

k |ϕk|4 for
∑

k |ϕk|2 = 1 is called participation ratio, it
measures “how many of the total number of available states are involved”. If only one,
e.g. ϕk = δk,k0 , then P = 1. If many, you shall find P → 0.
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Composite Bosons continued: Now let us quantify the statement, that we observe our
composite Boson on large scales, where internal details don’t matter. Assuming everything is
in a cubic box of side-length L, we then say our bound-state wavefunction is a delta-function
in real space. That means it becomes constant in momentum space, with all ϕk equal and
non-zero. Thus P = 0 and the composite behaves like a Boson. In contrast, an example in
which our relative wavefunction fills a significant fraction of our box, is if it was made of a
superposition of just a few box-eigenstates. In that cases only a few ϕk are non-zero, and
there is no well defined bosonic character.

5.2.2 Crossover phase diagram

Altogether we have the following phase diagram:

• CORRECTION: The magnetic field increases to the left, please flip axis.

• Very close to resonance, interactions are very large, such that rrange � k−1
F � as. This is

called unitary case (for non-obvious reasons), here the only scale is kF (physics universal).
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on the left: BCS on the right: BEC

µ = EF > 0 µ = −1
2

(
~2

mas︸︷︷︸
εb

)
+ Umρm < 0

∆ ≈ EF e
− π

2kF |as| Um = π~2as
mat
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5.3 Quantum-simulation aspects of BEC-BCS crossover

High TC superconductivity
While not being directly related, these share several features with the crossover region:

• Pair size ∼ average distance (see p. 89)

• Normal state (above TC) not ordinary Fermi-liquid

Neutron stars/ Quark matter
Particularly in the unitary limit, there is only one scale in the interacting fermion problem (details
don’t matter). It should thus also apply to other DFG systems than ultra-cold gases, such as
neutron stars (see section 4.4.2). This is particularly useful, since calculations in this strongly
interacting regime are very challenging.
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Week 13
PHY 635 Many-body Quantum Mechanics of Degenerate Gases
Instructor: Sebastian Wüster, IISER Bhopal, 2019

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

5.4 Lattice Models

We have mentioned few times, the similarities between an electron gas in a crystal lattice and a
cold atomic gas in an optical lattice. Now few more details on the latter:

5.4.1 Optical lattices

Consider a coherent laser beam which is back-reflected on itself to form a standing wave in

Optical lattice:

• We obtain an intensity pattern for the light that can be written as,

I(x) = I0 cos2(kLx) (5.10)

where d = λL
2 is the distance between adjacent sites, λL is laser wavelength and kL = 2π

λL
.

We can calculate the energy shift of an atom due to exposure to the rapidly varying E-field of the
laser (AC Stark shift). This shifts turns I(x) into a spatial potential

V (x) = −1

2
α(ω) 〈ε(t)2〉t︸ ︷︷ ︸

time avg of
light intensity

(5.11)

where α is the atomic polarizability and ω is the laser frequency.
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We find α(ω) < 0, just above an atomic resonance (blue detuned) =⇒ V > 0.

· · · · · · α(ω) > 0, just below · · · · · · · · · · · · · · · (red detuned) =⇒ V < 0.

(See PHY 402, Assignment 4, also c.f. section 5.1 and Mid-sem exam). We thus have an

Optical lattice potential
V (x) = V0 cos2(kLx), (5.12)

where V0 can be positive or negative dependent on light detuning.

5.4.2 Bose-Hubbard Model

You had shown in the mid-term exam how starting from Eq. (3.37) [Ĥ for Bose gas in form with
Ψ̂], we can derive

Bose-Hubbard Hamiltonian

K̂ = Ĥ − µN̂ =
∑
m

[
J(â†m+1âm + â†m−1âm) +

U

2
n̂m(n̂m − 1)− µ̃n̂m

]
(5.13)

• â†m creates an atom “on site m”.

• J allows tunneling/hopping from site to site.

• U are repulsive on-site interactions n̂m = â†mâm

• µ̃ = µ− E (E → on site energy) is the chemical potential.

Let us try to find ground-states of K̂ in two simple cases

[A] J = 0, no tunelling:

No tunneling, [K̂, n̂m] = 0 =⇒ We can write eigenstates as Fock-states |N 〉. Since all sites are
equivalent, we pick |N0 〉 = |M,M, · · · ,M 〉, i.e. a state with exactly M bosons per site. Its energy
is

〈N0 |K|N0 〉 = Nsites[
U

2
M(M − 1)− µ̃M ]. (5.14)

This is minimized by M = µ̃
U + 1

2 . Since M has to be an integer, for parameters µ̃, U in the range

M − 1 < µ̃
U < M we have exactly M bosons per site. This is called the
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Mott-insulating state

|ψMott 〉 =
∑
m

(â†m)M√
M !
| 0 〉, (5.15)

• The sum here runs over the lattice sites.

• Mott-insulator in condensed matter: A material that should conduct from band-theory
(i.e. based on single particle physics), but does not due to e− − e− interactions (i.e. due
to many-body physics).

[B] U = 0 no interactions, let J < 0: This becomes a single particle problem

Find eigen-states of the single-particle Hamiltonian, it turns out the lowest state is

|ϕ0 〉 =
1√

Nstates

∑
m

â†m| 0 〉 (5.16)

(particle fully de-localized on lattice)

• We know at T = 0 we will have a BEC condensed in |ϕ0 〉 and can use mean-field theory.

Super-fluid state

|ψBEC 〉 = N

(∑
m

â†m

)M
| 0 〉 N is a Normalization factor, (5.17)

[C] For both, non-vanishing interactions and hopping, U 6= 0, J = 0, we require a more
complicated analysis. The result of that would be:

Phase-diagram for superfluid/Mott-insulator Quantum phase transition:

left:

• Mott insulating phase is shown
in green.

• Transitions between green and
white are called quantum phase
transition, because they can
happen due to change of pa-
rameters in the Hamiltonian,
but at zero temperature T = 0.
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From Eq. (5.15) and Eq. (5.17) we can calculate the inter-site coherence

gm,m+1 = 〈â†mâm+1〉 (5.18)

We find g = 0 for the Mott insulator (5.15) and g 6= 0 for the superfluid (5.17) (Exercise).

This means atoms from different sites interfere in a superfluid state after time-of-flight expansion,
but not in the Mott-insulator =⇒ clear experimental signature, see Greiner et. al, Nature 415 39
(2002).

T˙ End
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