
PHY635, I-Semester 2019/20, Assignment 6 solution

Instructor: Sebastian Wüster
Due-date: TA-Class, 15.11.2019

(1) Degenerate Fermi gases
(a) Following the procedure of the lecture, calculate the energy of hole or particle exci-
tations in a Fermi liquid (homogeneous system as in lecture) to first order perturbation
theory in the interaction between different spin Fermion. Then take their energy relative
to the unperturbed Fermi sea. Make a graph of particle/hole energy as a function of k
and discuss your results. [5 points]
Solution: The Hamiltonian in momentum space is (see Eq. (4.30) lecture),

Ĥ =
∑
k,s

~2k2

2m
â†k,sâk,s +

U0

V
∑

k1,k2,k3,k4

â†k3,↑â
†
k4,↓âk2,↓âk1,↑δk1+k2,k3+k4 (1)

where s ∈ {↑, ↓}. We do perturbation theory in the interaction term, let’s call it V̂ .

For a particle or hole excitation the unperturbed energy is E
(0)
k = ~2(k2 − k2f )/2/m

(see below Eq. 4.29). The first order energy correction is

∆E(1) = 〈 (kp ↑) |V̂ | (kp ↑) 〉, (2)

where we used the notation (4.39) and concentrate on a particle state with spin-up only,
for now.

Thus

∆E(1) =
U0

V
〈 (kp ↑) |

∑
k1,k2,k3,k4

â†k3,↑â
†
k4,↓âk2,↓âk1,↑δk1+k2,k3+k4 | (kp ↑) 〉

=
U0

V
〈 (kp ↑) |

∑
|k1|<kf ,{|k2|<kf or k2=kp},k3=k1,k4=k2

â†k3,↑â
†
k4,↓âk2,↓âk1,↑| (kp ↑) 〉, (3)

The constraints on the sum has come about as follows: The destruction operators âk2,↓âk1,↑
have to act on a filled state, thus within the Fermi sea, or onto the particle excitation.
Then the creation operators have to act on exactly the same single body state, for the
result (rhs. ket after acting with all operators onto it) to be non-orthogonal to the bra.
The quantum state is a product of Fock states for spin-up and for spin-down, which allows
us to write (with using k3 = k1, k4 = k2):

∆E(1) =
U0

V
∑
|k1|<kf

∑
{|k2|<kf or k2=kp}

〈 (kp ↑) |â†k1,↑â
†
k2,↓âk2,↓âk1,↑| (kp ↑) 〉,

=
U0

V
∑
|k1|<kf

∑
{|k2|<kf or k2=kp}

〈 (kp ↑) |â†k2,↓âk2,↓| (kp ↑) 〉〈 (kp ↑) |â
†
k1,↑âk1,↑| (kp ↑) 〉,

(4)

In the second line we have used that operators for opposite spin states anti-commute
and the state is a simple tensor product | (kp ↑) 〉 = |N↑ 〉 ⊗ |N↓ 〉. Here N↑ is a vector
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of occupation numbers for all spin up particles (which includes the excitation) and N↓
one for the spin down particles (with no excitation, only filled Fermi sea). This tensor
product structure allows us to factor the average into one pertaining to spin-up and one
to spin-down.

We can write the last line simply as ∆E(1) = U0N↑N↓/V , exactly as for the energy
shift of the Fermi sea itself (see Eq. (4.35)).

If we always compare particles and holes with a Fermi sea of equal particle numbers,
we thus get the same dispersion relation as without interactions: Ek = ~2(k2− k2f )/2/m.

(b) Consider a homogeneous attractively interacting balanced spin mixture of Fermions
as in chapter 4.10. Assuming the many-body quantum state is given by a thermal density
matrix at temperature T for quasi-particles (represented by the operators in (4.62),
(4.64)), show that the (constant) Fock field vanishes, F = U0〈Ψ̂†↑(x)Ψ̂↓(x)〉 = 0. We had
used this in the actual derivation of the quasi-particles, so you have now shown that
also this was self-consistent. [Hint: Start as we did when deriving the gap-equation. Also
re-read section 3.4.4. for some similar manipulations, there for Bosons and trap-states
instead of momentum states]. [5 points]

Solution: First we realize that in a homogeneous system F is independent of po-
sition. We can thus look at the spatially averaged value, which will simplify things:
F =

∫
d3xF (x) /V.

We then write field operators in F in momentum space and obtain

F =

∫
d3x

U0

V
〈Ψ̂†↑(x)Ψ̂↓(x)〉 (4.32)=

U0√
2π

3V2

∑
k,k′

[∫
d3x exp [i(k′ − k)x]

]
︸ ︷︷ ︸

=(2π)3δ(3)(k′−k)

〈â†k,↑âk′,↓〉

=

√
2π

3
U0

V
∑
k

Tr[ ρ̂ â†k,↑âk,↓]

=

√
2π

3
U0

V
∑
k

Tr[ ρ̂ (u∗kα̂
†
↑,k − v

∗
kα̂↓,−k)(ukα̂↓,k − vkα̂

†
↑,−k)]

=

√
2π

3
U0

V
∑
k

×Tr[ ρ̂ (u∗kukα̂
†
↑,kα̂↓,k − u

∗
kvkα̂

†
↑,kα̂

†
↑,−k − v

∗
kukα̂↓,−kα̂↓,k + v∗kvkα̂↓,−kα̂

†
↑,−k)].

(5)

In the third line we used the inverse Bogoliubov transform Eq. (4.49).
Since ρ̂ is given as mixture of Fock states for quasi particle occupation numbers, all

off-diagonal terms vanish, which means non-vanishing terms need the same spin-index,
one α and one α† with same momentum index.

This disqualifies all terms so we proof the result F = 0. [Disclaimer: The derivation
above has issued with factors of

√
2π,V due to the joint use of integrals and sums over

continuous modes. These will be fixed in a future release, but cannot affect the present
result.
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(2) BCS State and Cooper pairs. Explore the relation ship between the BCS many-
body state and cooper pairs. [Some of the answers to the following questions can be found
in the lecture notes. This question is supposed to encourage you to go through that I detail.
I suggest you do it from scratch without looking at the notes, and only use them if you get
stuck or to confirm your results. For you hand-in, it is then of course even more important
that you write a lot of text to show that you understood everything. Copying the lecture
notes will not be sufficient]

(a) In the lecture we defined the Cooper pair creation operator:

ĉ† =

∫
d3x

∫
d3yψ0(x,y)Ψ̂†↑(x)Ψ̂†↓(y), (6)

Write explicitly the state ĉ†| 0 〉, where | 0 〉 is the vaccuum state, in first quantized
representation. Use that the spatial wave-function is symmetric ψ0(x,y) = ψ0(y,x).
[3 points]

(b) Express ĉ† in terms of momentum creation operators, instead of position space field
operators. [3 points]

(c) Show that the coherent state of Cooper pairs | γ 〉 = N exp [γĉ†]| 0 〉 is the same as
|ψBCS 〉 =

∏
k

(
uk + vkâ

†
↑kâ
†
↓k
)
| 0 〉. [4 points]

Solution:

(a) The state ĉ†| 0 〉 in the position space representation can be given as:

〈x′y′ |ĉ†| 0 〉 = 〈xy |
∫
d3x

∫
d3yψ0(x,y)Ψ̂†↑(x)Ψ̂†↓(y)| 0 〉

=

∫
d3x

∫
d3yψ0(x,y)〈x′y′ |y ↓; x ↑ 〉, (7)

where we have invented a position space ket according to Ψ̂†↑(x)Ψ̂†↓(y)| 0 〉 = |y ↓; x ↑ 〉,
which means “a particle at y with spin down and another one at x with spin up”, see
discussion after Eq. (2.27). We can split the state into single-particles states, taking in-
to account that Fermionic many-body states are always implied to be anti-symmetric!

〈x′y′ |ĉ†| 0 〉 =

∫
d3x

∫
d3yψ0(x,y)〈x′y′ | 1√

2
(|y ↓ 〉 ⊗ |x ↑ 〉 − |x ↑ 〉 ⊗ |y ↓ 〉). (8)

Now the pieces before and after the ⊗ symbol denote particle 1, particle 2. Now we
consider the first term only, and in that rename integration variables x↔ y. Thanks
to the symmetry of ψ0, we then reach

=

∫
d3x

∫
d3yψ0(x,y)〈x′y′ | 1√

2
(|x ↓ 〉 ⊗ |y ↑ 〉 − |x ↑ 〉 ⊗ |y ↓ 〉)

=

∫
d3x

∫
d3yψ0(x,y) 〈x′y′ |xy 〉︸ ︷︷ ︸

δ(x−x′)δ(y−y′)

⊗ 1√
2

(| ↓↑ 〉 − | ↑↓ 〉). (9)

3



= ψ0(x
′,y′)

1√
2

(| ↑↓ 〉 − | ↓↑ 〉). (10)

(b) See discussion in lecture notes after Eq. (4.73).

(c) See discussion in lecture notes after Eq. (4.73).

(3) Superconductivity and Superfluidity Write a short (about one page) essay about
superconductivity and Fermion superfluidity based on what you learnt in this lecture
and/or read elsewhere. Use google also. Focus on the essentials only. Make sure to touch
the points below. [10 points][Make sure this is your own text. Plagiarism will strictly not
be tolerated]

Solution: see lecture notes

(4) Bosonic versus Fermionic 2D Scattering
The template file Assignment6 phy635 program draft v2.xmds is set up to solve the
Schrödinger equation for the relative coordinate r = [rx, ry] for a pair of distinguishable
particles of mass m undergoing a scattering process in 2D, interacting with a Gaussian
potential U(r) = A exp (−r2/2/σ2

int). We use dimensionless units where ~ = 1. The partic-
les are initialised in a wavepacket ψ(r) = N exp(−(r − r0)

2/(2σ2)) exp [ikinir], such that
they collide (reach r = 0) at half the simulation time. [Note: σ 6= σint].

(4a) The range of the interaction potential set up in the code initially is σint = 0.002. Cal-
culate the impact parameter dl=1 for which the particles, considered classically, would have
angular momentum corresponding to the quantum mechanical l = 1 (|L| = ~

√
l(l + 1))

and compare with σint = 0.002. For this you need kini = 100 from the code. [2 points].
Solution:The impact parameter d and angular momentum are classically linked by
L = r × p = dp = d~k. Thus we solve ~

√
l(l + 1) = d~kini for d at l = 1 and get

d =
√

2/100 ≈ 0.015. This is significantly more than the range of interactions σint = 0.002,
thus according to the cartoon in the lecture, we should be in the s-wave scattering regime.

(4b) Run the code and analyse the resultant scattered wave with the attached script
slideshow ultracold scattering v2.m. This is set up to amplify small intensity fea-
tures in the matter wave, since scattering is kept weak (small A), so that perturbation
theory remains valid. Discuss your findings, relate them to the result of (4a). [4 points]
Solution:See figures below discussion is in the captions

(4c) Now modify the code such that it considers the scattering of (i) indistinguishable
Bosons, (ii) indistinguishable Fermions. Re-run the scattering of (b) and discuss and in-
terpret your results. [4 points]
Solution:For this we just have to change the initial state into a (anti-) symmetrised wa-
vefunction. See figures below discussion is in the captions

(4d, bonus) Explore what happens when you now significantly extend the range of the
potential σint.

Figures:

4a see above
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4b Fig. 1, Fig. 2, and Fig. 3 are real and imaginary parts of the wave-function for distin-
guishable particles with small amplitude of the potential, A = 200.
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Fig. 1. The real and imaginary parts of the wave-function for the distinguishable particles
at t = 0.0
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Fig. 2. The real and imaginary parts of the wave-function for the distinguishable particles
at the time of interaction.
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Fig. 3. The real and imaginary parts of the wave-function for the distinguishable par-
ticles after the interaction. We can see the isotropic radially outgoing wave from s-wave
scattering.

4c Fig. 4, Fig. 5, and Fig. 6 are real and imaginary parts of the wave-function for Bosons
with small amplitude of the scattering potential, A = 200. Similarily Fig. 7, Fig. 8,
and Fig. 9 are real and imaginary parts of the wave-function for Fermions.
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Fig. 4. The real and imaginary parts of the wave-function for the Bosons after at t = 0.0.
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Fig. 5. The real and imaginary parts of the wave-function for the Bosons at the time of
interaction.
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Fig. 6. The real and imaginary parts of the wave-function for the Bosons after the
interaction. Also for Bosons we see a radially outgoing wave from s-wave scattering.

4d When increasing the range of the potential, we leave the regime with only s-wave scat-
tering (see 4a). Thus we recover a scattered wave also for Fermions.
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Fig. 7. The real and imaginary parts of the wave-function for the Fermions after at
t = 0.0.
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Fig. 8. The real and imaginary parts of the wave-function for the Fermions at the time
of interaction.
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Fig. 9. The real and imaginary parts of the wave-function for the Fermions after the
interaction. Here we see no radially outgoing wave. This is because there is no s-wave
scattering for Fermions, and p-wave scattering is suppressed. Another way to think of
this, is that two radially outgoing scattered waves such as in Fig. 3 from the two “piecesöf
the many-body wave function destructively interfere due to the (-1) sign difference between
them.
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