
PHY635, I-Semester 2019/20, Assignment 5, solution

Instructor: Sebastian Wüster

(1) Condensate depletion Consider a homogenous 3D BEC, i.e. |φ0(x)|2 = ρ0 =
const 6= 0 and V (x) = 0 .

(i) Calculate the relative density of non-condensed atoms versus condensed ones at zero
temperature T = 0 but non-zero interactions. These uncondensed atoms are called
depletion. [Hint: Convert discrete sums that occur into integrations.][5 points].

(ii) Interpret the result in terms of physics. [3 points]

(iii) How can you use it to assess the validity of Bogoliubov theory? [2 points]

Solution:

(i) The density of non-condensate atoms at T = 0 is given by the third term of Eq 3.38
of the lecture notes as,

nex =
1

V

∑
p(p6=0)

v2p.

=

∫
dp

(2π~)3
v2p. (1)

Using the expression of v2p from Eq 3.71 of the lecture notes, the integration in the
spherical polar cordinate is given as:

nex =

∫ ∞
0

4πp2dp

(2π~)3
1

2

(
ξp
εp
− 1

)
, (2)

where ξp = εp0 + n0U0 and εp =
√

(εp0)
2 + 2n0U0ε

p
0, see lecture notes.

Using Mathematica the value of the integration is given as:

nex =
1

3π2

(
mc

~

)3

, (3)

where c =
√
n0U0/m is the speed of sound.

The relative density of the uncondensed atoms is thus:

nex

n0

=
8

3
√
π

(n0a
3
s)

1/2, (4)

where as is the scattering length.
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(ii) Physically this result may be understood by noting that v2p is order of unity for mo-
menta p ≈ ~/ξ, and falls off rapidly at larger momenta. The number density of
particles in the excited states is thus of order the number of states per unit volume
with wave number less than 1/ξ, that is, 1/ξ3 in three dimensions.

(iii) If d is the particle spacing in the condensate, then the Eq. (4) can also be expressed
as:

nex

n0

∼ 8

3
√
π

(
as
d

)3/2

. (5)

For Bogoliubov theory to be valid, we require that nex � n0, i.e. the uncondensed
density is much less than the condensed one. This is in fact the same statement as
having a dilute condensate d� a.

(2) Bogoliubov excitations in a harmonic trap Consider a BEC in the Thomas-
Fermi approximation in a quasi-1D harmonic trap, with trapping frequency ωx and in-
teraction strength U1d. Solve the BdG equations (3.61), for very energetic modes. Take
“very energetic” to imply a mode energy En � µ and En � U1d|φ0(0)|2. [Hint: You may
use known solutions of the TISE for the harmonic oscillator. ] [10 points] Note: Skip
En � ~ωx from the question sheet, this might have been confusing.

Solution

(i) The Bogoliubov-de-Gennes (BdG) equations in 1D:[
− ~2

2m

∂2

∂x2
+

1

2
mωxx

2 + 2U1D|φ0(x)|2 − µ− En

]
un(x) = U1Dφ0(x)2vn(x)[

− ~2

2m

∂2

∂x2
+

1

2
mωxx

2 + 2U1D|φ0(x)|2 − µ+ En

]
vn(x) = U1D(φ0(x)∗)2un(x) (6)

Applying the condition given in the question for very energetic modes i.e. En � µ
and En � U1D|φ0(x)|2, the above equations can be expressed as:

− ~2

2m

∂2un(x)

∂x2
+

1

2
mωxx

2un(x) = Enun(x)

− ~2

2m

∂2vn(x)

∂x2
+

1

2
mωxx

2vn(x) = −Envn(x) (7)

We see that these mostly have a similar structure as the SE for the harmonic oscil-
lator, so let’s make the Ansatz un(x) = ūϕn(x), vn(x) = v̄ϕn(x), where ϕn(x) is the
n’th harmonic oscillator solution.1 Using the properties of SHO solutions, we then
have

(~ωn − En)ū = 0

(~ωn + En)v̄ = 0. (8)

1Note that while the equations for u and v have decoupled, we still have to consider the solutions
jointly due to the ū2 − v̄2 = 1 normalisation condition.
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We have to solve this together with the normalisation condition |ū|2 − |v̄|2 = 1. The
only solution for both is ū = 1, v̄ = 0, En = ~ωn.

(3) White dwarfs Show that the radius of a white dwarf is given by Eq. (4.12). [10
points]

Solution In a stable star, the differential change of energy dE, for a change of radius dR
should be zero. This is expressed in Eq. (4.11) of the notes.

0 = dE =
∂

∂R

(
−3

5

M2

R
G︸ ︷︷ ︸

Egrav

)
dR− PF (R)(4πR2dR) (9)

The first part uses the total gravitational energy of a uniform sphere with mass M as
Egrav = −3

5
M2

R
G and the last part uses the thermodynamic relation dE = −PdV . Of

course approximating the star as having uniform density is only an approximation.
The Fermi pressure can be given by the Eq 4.10 of the lecture notes:

PF (R) =
2

5

(
N

V

)
EF

=
2

5

(
N

V

)
(3π2)2/3

~2

2me

(
N

V

)2/3

=
2

5
(3π2)2/3

~2

2m
ρ5/3e , ρe = (N/V ) (10)

Here ρe is the number density of electrons. To get this we first calculate the mass density
in the star ρ = M/(4

3
πR3), get the number density of atoms as ρ/mHe, where mHe is the

mass of a Helium atom, and then multiply by two for the two electrons inside. Hence:

ρe =
M

4
3
πR3

2

mHe

. (11)

Inserting ρe into (10) and solving the equation for R, we obtain result (4.12) of the lecture.
(4) Bosonic versus Fermionic ground-states

The template file Assignment5 phy635 program draft v1.xmds finds the ground-state
of the Schrödinger equation for two Bosonic 7Li atoms in a one-dimensional harmonic
trap using imaginary time evolution. Lithium also has a long-lived Fermionic isotope 6Li.

(4a) From the many-body wavefunction, derive an expression for the total density of atoms
at position x. Implement the sampling of that in the last output block of the script provided.
Note that the block is set up to integrate whatever is inserted over the coordinate x2. [2
points].

(4b) Show analytically that the imaginary time (and real time) Schrödinger equation for
two identical particles preserves Bosonic and Fermionic symmetries of the wave-function.
[3 points]
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(4c) Using (4b), modify the code such that it can find the corresponding ground-state for
two Fermionic atoms. Compare total densities for the Fermionic and Bosonic cases with
the scripts provided. How is the Fermionic density pattern called? [5 points]

Solution

(4a) If ψ(x1, x2) is the manybody wavefunction of the 2 Li atoms, then total density of
the atoms at some point x1 is given as:

ρ(x) = 2

∫
dx2|ψ(x, x2)|2 (12)

In general we would have that the total density is ρ(x) =
∑

n ρ(xn), where ρ(xn)
is the density for atom number n. We get the density for a single atom, by in-
tegrating over all other coordinates in the many-body wave function: ρ(xk) =∫
dx1dx2 . . . skip dxk . . . dxN |ψ(x1, x2, . . . , xk, . . . , xN)|2. Since the many-body wave

function fulfills Bose symmetry all N pieces in ρ(x) =
∑

n ρ(xn) will be identi-
cal. Hence we can just consider the density for atom one only and have ρ(x) =∫
dx2 . . . dxN |ψ(x, x2, . . . , xk, . . . , xN)|2.

(4b) We do this for two particles only (more follows similarly): Let us assume our wave-
function fulfills ψ(x1, x2) = ±ψ(x2, x1). Identical particles must feel the same poten-
tial V (x) and have the same mass m, hence the SE is

i~
∂

∂t
ψ(x1, x2) =

[
− ~2

2m

(
∂2

∂x21
+

∂2

∂x22

)
+ V (x1) + V (x2)

]
ψ(x1, x2). (13)

We can directly see by inspection of the right-hand side that i~ ∂
∂t
ψ(x1, x2) =

±i~ ∂
∂t
ψ(x2, x1). Hence if the wave-function fulfills Bose or Fermi symmetry initi-

ally, it will do so at all later times as well.

(4c) Fig. 1 is the ground state of the two-body wavefunction for the Fermions and Bo-
sons in the harmonic trap. It is clear from the figure that time imaginary evolution
preserve the Bosonic and Fermionic symmetry of the manybody wavefunction.
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Fig. 1. Panel (a) and panel (b) are the real parts of the wavefunction for Two Bosons and
Fermions in the harmonic trap.
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Fig. 2. Comparision of the total density for two Bosons and Fermions in the harmonic
trap.
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