PHY635, I-Semester 2019/20, Assignment 2

Instructor: Sebastian Wüster

Due-date: TA-Class, 30.8.2019

Student Name:	ID \#:
Student Name:	ID \#:
Student Name:	ID \#:
Student Name:	ID \#:

(1) Ideal Bose gas, density fluctuations: [In this question, supply the details for the (newly updated) example in section 2.3.1]. Consider N Bosonic atoms in a 1D harmonic trap. To measure local density, we count atoms in a small region of size L, which corresponds to the operator

$$
\begin{equation*}
\hat{n}_{\mathrm{loc}}\left(x_{0}\right)=\int_{x_{0}}^{x_{0}+L} d x \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x), \tag{1}
\end{equation*}
$$

and then use $\hat{\rho}=n_{\text {loc }}\left(x_{0}\right) / L$ to get a density.
Let us define the local number uncertainty

$$
\begin{equation*}
\Delta n_{\mathrm{loc}}\left(x_{0}\right)^{2}=\left\langle\hat{n}_{\text {loc }}\left(x_{0}\right)^{2}\right\rangle-\left\langle\hat{n}_{\text {loc }}\left(x_{0}\right)\right\rangle^{2} . \tag{2}
\end{equation*}
$$

You should have seen similar expressions for e.g. position uncertainty ΔX in basic QM . We also define

$$
\begin{equation*}
p_{\mathrm{loc}}=\int_{x_{0}}^{x_{0}+L} d x\left|\varphi_{0}(x)\right|^{2}, \tag{3}
\end{equation*}
$$

which is the local probability to find an atom near x_{0} in state 0 .
(i) Assume the many-body quantum state is $\psi=|N, 0,0,0 \cdots\rangle$, i.e. all N atoms are in the ground state. Show that the mean local number in that state is $\left\langle\hat{n}_{\text {loc }}\left(x_{0}\right)\right\rangle=$ $N p_{\text {loc }}$.
(ii) Then show that the local number uncertainty in (2) is $N\left(p_{\text {loc }}-p_{\text {loc }}^{2}\right)$.
(iii) Redo the two steps above for the state $\psi=[|N-k, 0,0,0 \cdots\rangle+$ $|N+k, 0,0,0 \cdots\rangle] / \sqrt{2}$.
(iv) Think about the result for part (ii) using just statistical arguments, not quantum mechanics.

(2) Coherent states and Wigner functions:

(i) Show the Campbell-Baker-Hausdorff formula: Let us asume two operators \hat{A} and \hat{B} that may not commute $[\hat{A}, \hat{B}] \neq 0$. However assume we know that they both commute with their commutator, which means you can use $[\hat{A},[\hat{A}, \hat{B}]]=0$ and $[\hat{B},[\hat{A}, \hat{B}]]=0)$. One example is when the commutator itself is just a number, e.g. $[\hat{A}, \hat{B}] \in \mathbb{C}$.

Show that then:

$$
\begin{equation*}
e^{\hat{A}} e^{\hat{B}}=e^{\hat{A}+\hat{B}+\frac{1}{2}[\hat{A}, \hat{B}]} . \tag{4}
\end{equation*}
$$

(ii) Using this, show that the characteristic function (see lecture notes Eq. 2.45) of a coherent state $(\hat{\rho}=|\beta\rangle\langle\beta|)$ is

$$
\begin{equation*}
\chi_{W}\left(\lambda, \lambda^{*}\right)=e^{-\frac{|\lambda|^{2}}{2}+\lambda \beta^{*}-\lambda^{*} \beta} . \tag{5}
\end{equation*}
$$

(iii) Then perform the Fourier transform of this, to show that the Wigner function $W\left(\alpha, \alpha^{*}\right)$ is a Gaussian, centered on the complex number β :

$$
\begin{equation*}
W\left(\alpha, \alpha^{*}\right)=2 \exp \left[-2|\lambda-\beta|^{2}\right] . \tag{6}
\end{equation*}
$$

Hint: To realize that you have to do a Fourier Transform, you may have to split β and λ into real and imaginary parts. Feel free to use Mathematica for any assignment question. If you do, include a printout of the .nb file in your solution
(3) Numerical evaluation of Wigner function: [4 points]
(i) Let us present the Fock space for a single mode for a restricted maximum number of particles $N_{\max }$ through a vector in $\mathbb{R}^{N_{\max }+1}$. This means for $N_{\max }=2$, $|0\rangle \rightarrow[1,0,0]^{T},|1\rangle \rightarrow[0,1,0]^{T},|2\rangle \rightarrow[0,0,1]^{T}$. Using this, write down a matrix representation for the creation and destruction operators.
(ii) Using the same, write down the matrix representation for the density matrix in a Fock state $|n\rangle$ or a coherent state $|\alpha\rangle$.
(iii) Combine these two results, to adjust the template matlab script Assignment2_wignerfct_v1.m, such that it can plot the Wigner function of an arbitrary state. Use it first to confirm your result of (2) for a coherent state. Then plot a Fock state. Then plot some other interesting states of your choice.

