PHY635, I-Semester 2019/20, Assignment 1

Instructor: Sebastian Wüster

Due-date: Lecture 16.8.2019

Student Name:	ID \#:
Student Name:	ID \#:
Student Name:	ID \#:
Student Name:	ID \#:

(1) Many body wave functions: Translate the following sentences into math, i.e. write down the described quantum many-body states. For each first assume the particles are distinguishable, then also specify the wave function for indistinguishable Bosons or Fermions. In each case, make a 2D contour drawing of the wave-functions. [8 points]:
(i) One is in the ground-state of the harmonic oscillator, and another has momentum $p_{0}>0$.
(ii) Two particles of mass M are bound to each other, with a wave-function the modulus of which drops of as $\exp [-r / \xi]$ with separation r between them. The compound object created has momentum p_{0}.
(iii) Particle one is localized with Gaussian shape and width σ_{1} near x_{a}. Particle two near x_{b} with width σ_{2}.
(iv) The same as in (iii), for $x_{a}=x_{b}=0$ and $\sigma_{1}=\sigma_{2}=\sigma$, but due to some interactions, the particles avoid each other, such that the probability to find them a distance r apart drops of as $p(r) \sim \tanh (r / \xi)^{2}$, with $\xi \ll \sigma_{1,2}$
(2) Ladder operators: Determine the following matrix elements for Bosonic operators/states in a three mode problem [6 points]

$$
\begin{array}{lr}
\mathcal{M}_{1}=\langle 110| \hat{a}_{2} \hat{a}_{2}^{\dagger} \hat{a}_{2}^{\dagger}|101\rangle, & \mathcal{M}_{2}=\langle 110| \hat{a}_{2}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{2}|101\rangle, \\
\mathcal{M}_{3}=\langle 113| \hat{a}_{3}^{\dagger}|112\rangle, & \mathcal{M}_{4}=\langle 223| \hat{a}_{2}^{\dagger}|113\rangle, \\
\mathcal{M}_{5}=\langle 010| \hat{a}_{2}^{\dagger} \hat{a}_{3}|001\rangle, & \mathcal{M}_{6}=\langle 302| \hat{a}_{2} \hat{a}_{3}^{\dagger}|301\rangle . \tag{1}
\end{array}
$$

Determine the following matrix elements for Fermionic operators/states in a three mode problem [6 points]

$$
\begin{array}{lr}
\mathcal{M}_{1}=\langle 110| \hat{a}_{2} \hat{a}_{2}^{\dagger} a_{2}^{\dagger}|101\rangle, & \mathcal{M}_{2}=\langle 110| \hat{a}_{2} \hat{a}_{2}^{\dagger} a_{2}^{\dagger} \hat{a}_{2}|110\rangle, \\
\mathcal{M}_{3}=\langle 110| \hat{a}_{1}^{\dagger} \hat{a}_{1} \hat{a}_{3} \hat{a}_{3}^{\dagger}|110\rangle, & \mathcal{M}_{4}=\langle 001| \hat{a}_{2}^{\dagger}|010\rangle, \\
\mathcal{M}_{5}=\langle 010| \hat{a}_{2}^{\dagger} \hat{a}_{3}|001\rangle, & \mathcal{M}_{6}=\langle 101| \hat{a}_{2} \hat{a}_{3}^{\dagger}|001\rangle . \tag{2}
\end{array}
$$

(3) Hamiltonian in second quantisation: Consider a multi-electron atom such as Uranium, let us say N_{e} electrons. The Hamiltonian in atomic units is

$$
\begin{equation*}
\hat{H}=\sum_{i=1}^{N_{e}}\left(-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}-\frac{Z}{r_{i}}\right)+\sum_{i<j=1}^{N} \frac{1}{r_{i j}} \tag{3}
\end{equation*}
$$

where \mathbf{r}_{j} is the position of electron j relative to the nucleus, $r_{j}=\left|\mathbf{r}_{j}\right|$ and $r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$ and Z the nuclear charge. Use the single particle basis of spin-less Hydrogenic states $\left|\varphi_{n l m}\right\rangle$ fulfilling $\hat{H}_{Z}\left|\varphi_{n l m}\right\rangle=E_{n}\left|\varphi_{n l m}\right\rangle$ with $\hat{H}_{Z}=-\frac{1}{2} \nabla_{\mathbf{r}}^{2}-\frac{Z}{r}$ and associated Fermionic creation operators $\hat{a}_{n l m}$, to convert that Hamiltonian into a second quantized form [10 points].
(4) Numerical Quantum Many Body Physics Consider two coupled quantum mechanical harmonic oscillators of mass $m=1$ and frequency $\omega=1$, described with the first quantized Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{1}^{2}+x_{1}^{2}\right)+\frac{1}{2}\left(p_{2}^{2}+x_{2}^{2}\right)+2 \kappa x_{1} x_{2} \tag{4}
\end{equation*}
$$

where x_{i} is the position of oscillator i and p_{i} its momentum.
(4a) Write down the corresponding two-body Schrödinger equation for a wave function $\Psi\left(x_{1}, x_{2}\right)$ in the position space representation. You may treat the oscillators as distinguishable. [3 points]
(4b) In terms of $\Psi\left(x_{1}, x_{2}\right)$, also derive expressions for the energy expectation value, and split it into energy of oscillator 1, energy of oscillator 2 and interaction energy. [2 points]
(4c) Edit the template file Assignment1_phy635_program_draft_v1.xmds provided online. It presently contains the Schrödinger equation and energy sampling as appropriate when particle 1 is a free particle and particle 2 is ignored. Edit this to include your results from (4a), (4b). [1 points]
(4d) Implement as initial condition for the wave function $\Psi\left(x_{1}, x_{2}\right)=$ $\frac{1}{\sqrt{\sqrt{\pi} \sigma}} \exp \left(-\frac{x_{1}^{2}}{2 \sigma^{2}}\right) \frac{x_{2} \sqrt{2}}{\sigma \sqrt{\sqrt{\pi} \sigma}} \exp \left(-\frac{x_{2}^{2}}{2 \sigma^{2}}\right)$, and convince yourself that this corresponds to oscillator 1 in the ground state and oscillator 2 in the excited state. Follow the info-sheet Numerics_assignments_info.pdf to run your code until time $t_{\text {fin }}=100$ once implemented. First, check that normalisation and total energy are conserved, using Assignment1_plot_checks_v1.m. Then check the individual energy components using Assignment1_plot_energies_v1.m. Discuss your results. Also inspect the actual evolution of the many-body density using Assignment1_density_slideshow_v1.m, and comment on that as well. [4 points]

