
PHY635, I-Semester 2019/20, Assignment 1, solution

Instructor: Sebastian Wüster

(1) Many body wave functions: Translate the following sentences into math, i.e. write
down the described quantum many-body states. For each first assume the particles
are distinguishable, then also specify the wave function for indistinguishable Bosons or
Fermions. In each case, make a 2D contour drawing of the wave-functions. [8 points]:

(i) One is in the ground-state of the harmonic oscillator, and another has momentum
p0 > 0.

(ii) Two particles of mass M are bound to each other, with a wave-function the modulus
of which drops of as exp [−r/ξ] with separation r between them. The compound
object created has momentum p0.

(iii) Particle one is localized with Gaussian shape and width σ1 near xa. Particle two
near xb with width σ2.

(iv) The same as in (iii), for xa = xb = 0 and σ1 = σ2 = σ, but due to some interactions,
the particles avoid each other, such that the probability to find them a distance r
apart drops of as p(r) ∼ tanh(r/ξ)2, with ξ � σ1,2

Solution:

(i) The two-body wave-function of the particle when they are distinguishable is:

Ψdis(x1, x2) = ψ1(x1)ψ2(x2), (1)

where ψ1(x1) = 1√√
πσ

exp
(
− x21

2σ2

)
and ψ(x2) = exp

(−ip0x2
~

)
are the single-particle

wave-function of particle 1 at position x1 and particle 2 at position x2 respectively.
Putting the expression of ψ1(x1) and ψ2(x2) the two-body wave-function is:

Ψdis(x1, x2) =
1√√
πσ

exp

(
− x21

2σ2

)
exp

(
−ip0x2

~

)
(2)

If the two particles are indistinguishable, then the two-body wave-function is:

Ψindis(x1, x2) = [ψ1(x1)ψ2(x2)± ψ1(x2)ψ2(x1)]/
√

2 (3)

=

[
1√√
πσ

exp

(
− x21

2σ2

)
exp

(
−ip0x2

~

)
(4)

± 1√√
πσ

exp

(
x22
2σ2

)
exp

(
−ip0x1

~

)]√
2, (5)
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Fig. 1. [For part (i)] Panel (a) and (b) is the real and imaginary part of the wave-function
for the distinguishable particles.

Fig. 2. [For part (i)] Panel (a) and (b) are the real and imaginary parts of the wave-function
for Bosons. Panel (c) and (d) are the real and imaginary parts of the wave-function for
the Fermions.

where + and − is for Bosons and Fermions respectively. The respective 2D plots of
the wave-function for distinguishable and indistinguishable are shown in Fig. 1 and
Fig. 2.

(ii) Since no specific information is given about either particle, we can skip the distin-
guishable case here. The wave-function of the two-body system can be written as:

Ψdis(x1, x2) = N exp

(
− |x1 − x2|

ξ

)
exp [ip0(x1 + x2)/(2~)], (6)

where N is a normalisation factor set to one in the following. This is completely
symmetric under x1 ↔ x2. It turns out this form cannot be easily converted to be
anti-symmetric for Fermions, so we skip that case here as well. The result for Bosons
is shown in Fig. 3.

(iii) The two-body wave-function for the distinguishable particles localized with Gaussian
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Fig. 3. [For part (ii)] Panel (a) and (b) are the wave-functions for the Bosonic and
Fermionic nature of the particles in the limit ξ � |xa−xb| respectively. Panel (c) and (d)
are the wave-functions for the Bosons and Fermions in the limit ξ ≈ |xa−xb| respectively.

shape is:

Ψdis(x1, x2) =
1√√
πσ1

exp

(
−(x1 − xa)2

2σ2
2

)
1√√
πσ2

exp

(
−(x2 − xb)2

2σ2
2

)
(7)

Similarly the two-body wave-function for the indistinguishable particles is:

Ψindis(x1, x2) =

[
1√√
πσ1

exp

(
−(x1 − xa)2

2σ2
1

)
1√√
πσ2

exp

(
−(x2 − xb)2

2σ2
2

)
(8)

± 1√√
πσ1

exp

(
−(x2 − xa)2

2σ2
1

)
1√√
πσ2

exp

(
−(x1 − xb)2

2σ2
2

)]
/
√

2,

(9)

where + and − is for Bosonic and Fermionic nature of the particles respectively.
The respective 2D plots for the two cases is shown in Fig 5 and Fig 6 for different
limits of the parameters (σ1,2).

Fig. 4. [For part (iii)] Panel (a) and (b) are the wave-functions of the distinguishable
particles for σ1,2 � |xa − xb| and σ1,2 ≈ |xa − xb| respectively, where xa = 300µm and
xb = −300µm.

(iv) Again, nothing in the text singles out an individual particle, so we directly go to
indistinguishable ones, and could write

Ψ(x1, x2) = tanh

(
x1 − x2

ξ

)
1√
πσ2

exp

(
−(x1)

2

2σ2

)
exp

(
−(x2)

2

2σ2

)
, (10)
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Fig. 5. [For part (iii)] Panel (a) and (b) are the wave-functions for the Bosons and Fermions
in the limit σ1,2 � |xa− xb| respectively. Panel (c) and (d) are the wave-functions for the
Bosons and Fermions in the limit σ1,2 ≈ |xa − xb| respectively.

for Fermions and

Ψ(x1, x2) = tanh

(
|x1 − x2|

ξ

)
1√
πσ2

exp

(
−(x1)

2

2σ2

)
exp

(
−(x2)

2

2σ2

)
, (11)

for Bosons. The respective 2D plots for the two cases is shown in Fig 7 and Fig 8.

Fig. 6. [For part (iv)] Panel (a) Bosons, panel (b) Fermions.

(2) Ladder operators: Determine the following matrix elements for Bosonic opera-
tors/states in a three mode problem [6 points]

M1 = 〈 110 |â2â†2â
†
2| 101 〉, M2 = 〈 110 |â†2â

†
2â2| 101 〉,

M3 = 〈 113 |â†3| 112 〉, M4 = 〈 223 |â†2| 113 〉,

M5 = 〈 010 |â†2â3| 001 〉, M6 = 〈 302 |â2â†3| 301 〉. (12)
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Determine the following matrix elements for Fermionic operators/states in a three mode
problem [6 points]

M1 = 〈 110 |â2â†2â
†
2| 101 〉, M2 = 〈 110 |â2â†2â

†
2â2| 110 〉,

M3 = 〈 110 |â†1â1â3â
†
3| 110 〉, M4 = 〈 001 |â2â†3| 010 〉,

M5 = 〈 010 |â†2â3| 001 〉, M6 = 〈 101 |â2â†3| 001 〉. (13)

Solution: The matrix elements for the Bosonic operators/states are:

M1 = 0,M2 = 0,

M3 =
√

3,M4 = 0,

M5 = 1,M6 = 0. (14)

The matrix elements for the Fermionic operators/states are:

M1 = 0,M2 = 0,

M3 = 1,M4 = 0,

M5 = 1,M6 = 0. (15)

(3) Hamiltonian in second quantisation: Consider a multi-electron atom such as
Uranium, let us say Ne electrons. The Hamiltonian in atomic units is

Ĥ =
Ne∑
i=1

(
− 1

2
∇2

ri
− Z

ri

)
+

Ne∑
i<j=1

1

rij
, (16)

where rj is the position of electron j relative to the nucleus, rj = |rj| and rij = |ri−rj| and
Z the nuclear charge. Use the single particle basis of spin-less Hydrogenic states |ϕnlm 〉
fulfilling ĤZ |ϕnlm 〉 = En|ϕnlm 〉 with ĤZ = −1

2
∇2

r− Z
r

and associated Fermionic creation
operators ânlm, to convert that Hamiltonian into a second quantized form [10 points].

Solution: The given Hamiltonian can be written as:

Ĥ =
Ne∑
i=1

(ĤZ)i +
Ne∑

i<j=1

Ûij, (17)

where (HZ)i = 1
2
∇2

ri
− Z

ri
is the single electron Hamiltonian and Uij = 1

rij
is the interaction

between the electrons.
Using Eq 2.13 from the lecture notes, the second quantized Hamiltonian in Hydrogenic
state ( |ψnlm 〉 ) can be written as:

Ĥ =
∑

nlm,n′l′m′

Anlm,n′l′m′ â†nlmân′l′m′ +
∑

nlm,n′l′m′

∑
rst,r′s′t′

Bnlm,n′l′m′rst,r′s′t′ â
†
nlmâ

†
n′l′m′ ârstâr′s′t′ ,

(18)
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where

Anlm,n′l′m′ = 〈ψnlm |HZ |ψn′l′m′ 〉 = En〈ψnlm ||ψn′l′m′ 〉 = Enδnn′δll′δmm′ (19)

and

Bnlm,n′l′m′,rst,r′s′t′ = 〈ψnlmψn′l′m′ |Ûij|ψrstψr′s′t′ 〉

=

∫
dri

∫
drjψ

∗
nlm(ri)ψ

∗
n′l′m′(rj)U(ri, rj)ψrst(ri)ψr′s′t′(rj), (20)

which cannot easily be evaluated explicitly.
Putting the value of Anlmn′l′m′ and Bnlmn′l′m′rstr′s′t′ in second quantized Hamiltonian we
get:

Ĥ =
∑
nlm

Enâ
†
nlmânlm +

∑
nlm,n′l′m′

∑
rst,r′s′t′

Bnlm,n′l′m′,rst,r′s′t′ â
†
nlmâ

†
n′l′m′ ârstâr′s′t′ (21)

(4) Numerical Quantum Many Body Physics Consider two coupled quantum me-
chanical harmonic oscillators of mass m = 1 and frequency ω = 1, described with the first
quantized Hamiltonian

H =
1

2

(
p21 + x21

)
+

1

2

(
p22 + x22

)
+ 2κx1x2, (22)

where xi is the position of oscillator i and pi its momentum.

(4a) Write down the corresponding two-body Schrödinger equation for a wave function
Ψ(x1, x2) in the position space representation. You may treat the oscillators as distin-
guishable. [3 points]

(4b) In terms of Ψ(x1, x2), also derive expressions for the energy expectation value, and
split it into energy of oscillator 1, energy of oscillator 2 and interaction energy. [2 points]

(4c) Edit the template file Assignment1 phy635 program draft v1.xmds provided on-
line. It presently contains the Schrödinger equation and energy sampling as appropriate
when particle 1 is a free particle and particle 2 is ignored. Edit this to include your
results from (4a), (4b). [1 points]

(4d) Implement as initial condition for the wave function Ψ(x1, x2) =
1√√
πσ

exp
(
− x21

2σ2

)
x2
√
2

σ
√√

πσ
exp

(
− x22

2σ2

)
, and convince yourself that this corresponds

to oscillator 1 in the ground state and oscillator 2 in the excited state. Follow the
info-sheet Numerics assignments info.pdf to run your code until time tfin = 100
once implemented. First, check that normalization and total energy are conserved,
using Assignment1 plot checks v1.m. Then check the individual energy components
using Assignment1 plot energies v1.m. Discuss your results. Also inspect the actual
evolution of the many-body density using Assignment1 density slideshow v1.m, and
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comment on that as well. [4 points]

Solution:
(4a)

The given Hamiltonian can also be written as:

Ĥ =
2∑
i=1

(p̂2i + x̂2i )

2
+ k

2∑
i<j=1

x̂ix̂j

=
2∑
i=1

(Ĥ0)i +
2∑

i<j=1

Ûi,j, (23)

where (Ĥ0)i =
(p̂2i+x̂

2
i )

2
and Ûi,j = kx̂ix̂j is the single oscillator Hamiltonian and interaction

between the oscillators respetively.
The Schrödinger equation for Ψ(x1, x2) is given as:

i~
dΨ(x1, x2)

dt
= ĤΨ(x1, x2)

=

( 2∑
i=1

(p̂2i + x̂2i )

2
+ k

2∑
i<j=1

x̂ix̂j

)
Ψ(x1, x2). (24)

(4b) Assuming the particles are distinguishable, the two-body wave-function can be written
as:

Ψ(x1, x2) = ψ(x1)φ(x2). (25)

Now the expectation value of energy is given by:

E = 〈Ψ(x1, x2) |Ĥ|Ψ(x1, x2) 〉

=

∫
dx1

∫
dx2Ψ

∗(x1, x2)HΨ(x1, x2)

=

∫
dx1

∫
dx2Ψ

∗(x1, x2)
(p21 + x21)

2
Ψ(x1, x2) +

∫
dx1

∫
dx2Ψ

∗(x1, x2)
(p22 + x22)

2
Ψ(x1, x2)

+ 2k

∫
dx1

∫
dx2Ψ

∗(x1, x2){x1x2}Ψ(x1, x2) (26)

The first and second term is the energy of the oscillator 1 and oscillator 2 respectively
and the last term is the interaction energy.

(4d)
If particle 1 is in the ground state and particle 2 is in the first excited state of the

harmonic oscillator, then the two-body wavefunction is:

Ψ(x1, x2) =
1√√
πσ

exp

(
− x21

2σ2

)
x2
√

2

σ
√√

πσ
exp

(
− x22

2σ2

)
(27)

The individual energy components and the density of two-body system is shown in Fig 9
and Fig 10.
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Fig. 7. (left) Decomposition of total energy (black lines) of the two-body system into
energy of particle 1 (blue lines) and particle 2 (red lines). (right) Note that the interaction
energy (pink lines) given by Eq. (26) remains small, Eint ≈ 0.01, yet is responsible for the
energy exchange between the two oscillators.

Fig. 8. A few different time samples of the two-body density. Panel (a) is the intial state
of the two-body system in which particle 1 is in the ground state and particle 2 is in
the excited state of the harmonic oscillator. Panel (b) shows the equal probability of the
two-particle being in either state of the harmonic oscillator. The particles have swapped
states at t = 30, as shown in panel (c) and again come back to the original state, as shown
in panel (d). Compare with Fig. 7.
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