PHY635, I-Semester 2019/20, Assignment 1, solution

Instructor: Sebastian Wüster

(1) Many body wave functions: Translate the following sentences into math, i.e. write down the described quantum many-body states. For each first assume the particles are distinguishable, then also specify the wave function for indistinguishable Bosons or Fermions. In each case, make a 2D contour drawing of the wave-functions. [8 points]:
(i) One is in the ground-state of the harmonic oscillator, and another has momentum $p_{0}>0$.
(ii) Two particles of mass M are bound to each other, with a wave-function the modulus of which drops of as $\exp [-r / \xi]$ with separation r between them. The compound object created has momentum p_{0}.
(iii) Particle one is localized with Gaussian shape and width σ_{1} near x_{a}. Particle two near x_{b} with width σ_{2}.
(iv) The same as in (iii), for $x_{a}=x_{b}=0$ and $\sigma_{1}=\sigma_{2}=\sigma$, but due to some interactions, the particles avoid each other, such that the probability to find them a distance r apart drops of as $p(r) \sim \tanh (r / \xi)^{2}$, with $\xi \ll \sigma_{1,2}$

Solution:

(i) The two-body wave-function of the particle when they are distinguishable is:

$$
\begin{equation*}
\Psi_{d i s}\left(x_{1}, x_{2}\right)=\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right), \tag{1}
\end{equation*}
$$

where $\psi_{1}\left(x_{1}\right)=\frac{1}{\sqrt{\sqrt{\pi} \sigma}} \exp \left(-\frac{x_{1}^{2}}{2 \sigma^{2}}\right)$ and $\psi\left(x_{2}\right)=\exp \left(\frac{-i p_{0} x_{2}}{\hbar}\right)$ are the single-particle wave-function of particle 1 at position x_{1} and particle 2 at position x_{2} respectively. Putting the expression of $\psi_{1}\left(x_{1}\right)$ and $\psi_{2}\left(x_{2}\right)$ the two-body wave-function is:

$$
\begin{equation*}
\Psi_{d i s}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{\sqrt{\pi} \sigma}} \exp \left(-\frac{x_{1}^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{-i p_{0} x_{2}}{\hbar}\right) \tag{2}
\end{equation*}
$$

If the two particles are indistinguishable, then the two-body wave-function is:

$$
\begin{align*}
\Psi_{\text {indis }}\left(x_{1}, x_{2}\right) & =\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right) \pm \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right] / \sqrt{2} \tag{3}\\
& =\left[\frac{1}{\sqrt{\sqrt{\pi} \sigma}} \exp \left(-\frac{x_{1}^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{-i p_{0} x_{2}}{\hbar}\right)\right. \tag{4}\\
& \left. \pm \frac{1}{\sqrt{\sqrt{\pi} \sigma}} \exp \left(\frac{x_{2}^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{-i p_{0} x_{1}}{\hbar}\right)\right] \sqrt{2} \tag{5}
\end{align*}
$$

Fig. 1. [For part (i)] Panel (a) and (b) is the real and imaginary part of the wave-function for the distinguishable particles.

Fig. 2. [For part (i)] Panel (a) and (b) are the real and imaginary parts of the wave-function for Bosons. Panel (c) and (d) are the real and imaginary parts of the wave-function for the Fermions.
where + and - is for Bosons and Fermions respectively. The respective 2D plots of the wave-function for distinguishable and indistinguishable are shown in Fig. 1 and Fig. 2.
(ii) Since no specific information is given about either particle, we can skip the distinguishable case here. The wave-function of the two-body system can be written as:

$$
\begin{equation*}
\Psi_{d i s}\left(x_{1}, x_{2}\right)=\mathcal{N} \exp \left(-\frac{\left|x_{1}-x_{2}\right|}{\xi}\right) \exp \left[i p_{0}\left(x_{1}+x_{2}\right) /(2 \hbar)\right] \tag{6}
\end{equation*}
$$

where \mathcal{N} is a normalisation factor set to one in the following. This is completely symmetric under $x_{1} \leftrightarrow x_{2}$. It turns out this form cannot be easily converted to be anti-symmetric for Fermions, so we skip that case here as well. The result for Bosons is shown in Fig. 3.
(iii) The two-body wave-function for the distinguishable particles localized with Gaussian

Fig. 3. [For part (ii)] Panel (a) and (b) are the wave-functions for the Bosonic and Fermionic nature of the particles in the limit $\xi \ll\left|x_{a}-x_{b}\right|$ respectively. Panel (c) and (d) are the wave-functions for the Bosons and Fermions in the limit $\xi \approx\left|x_{a}-x_{b}\right|$ respectively.
shape is:

$$
\begin{equation*}
\Psi_{d i s}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{\sqrt{\pi} \sigma_{1}}} \exp \left(-\frac{\left(x_{1}-x_{a}\right)^{2}}{2 \sigma_{2}^{2}}\right) \frac{1}{\sqrt{\sqrt{\pi} \sigma_{2}}} \exp \left(-\frac{\left(x_{2}-x_{b}\right)^{2}}{2 \sigma_{2}^{2}}\right) \tag{7}
\end{equation*}
$$

Similarly the two-body wave-function for the indistinguishable particles is:

$$
\begin{align*}
\Psi_{\text {indis }}\left(x_{1}, x_{2}\right) & =\left[\frac{1}{\sqrt{\sqrt{\pi} \sigma_{1}}} \exp \left(-\frac{\left(x_{1}-x_{a}\right)^{2}}{2 \sigma_{1}^{2}}\right) \frac{1}{\sqrt{\sqrt{\pi} \sigma_{2}}} \exp \left(-\frac{\left(x_{2}-x_{b}\right)^{2}}{2 \sigma_{2}^{2}}\right)\right. \tag{8}\\
& \left. \pm \frac{1}{\sqrt{\sqrt{\pi} \sigma_{1}}} \exp \left(-\frac{\left(x_{2}-x_{2}\right)^{2}}{2 \sigma_{1}^{2}}\right) \frac{1}{\sqrt{\sqrt{\pi} \sigma_{2}}} \exp \left(-\frac{\left(x_{1}-x_{b}\right)^{2}}{2 \sigma_{2}^{2}}\right)\right] / \sqrt{2} \tag{9}
\end{align*}
$$

where + and - is for Bosonic and Fermionic nature of the particles respectively. The respective 2D plots for the two cases is shown in Fig 5 and Fig 6 for different limits of the parameters ($\sigma_{1,2}$).

Fig. 4. [For part (iii)] Panel (a) and (b) are the wave-functions of the distinguishable particles for $\sigma_{1,2} \ll\left|x_{a}-x_{b}\right|$ and $\sigma_{1,2} \approx\left|x_{a}-x_{b}\right|$ respectively, where $x_{a}=300 \mu m$ and $x_{b}=-300 \mu m$.
(iv) Again, nothing in the text singles out an individual particle, so we directly go to indistinguishable ones, and could write

$$
\begin{equation*}
\Psi\left(x_{1}, x_{2}\right)=\tanh \left(\frac{x_{1}-x_{2}}{\xi}\right) \frac{1}{\sqrt{\pi \sigma^{2}}} \exp \left(-\frac{\left(x_{1}\right)^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{\left(x_{2}\right)^{2}}{2 \sigma^{2}}\right), \tag{10}
\end{equation*}
$$

Fig. 5. [For part (iii)] Panel (a) and (b) are the wave-functions for the Bosons and Fermions in the limit $\sigma_{1,2} \ll\left|x_{a}-x_{b}\right|$ respectively. Panel (c) and (d) are the wave-functions for the Bosons and Fermions in the limit $\sigma_{1,2} \approx\left|x_{a}-x_{b}\right|$ respectively.
for Fermions and

$$
\begin{equation*}
\Psi\left(x_{1}, x_{2}\right)=\tanh \left(\frac{\left|x_{1}-x_{2}\right|}{\xi}\right) \frac{1}{\sqrt{\pi \sigma^{2}}} \exp \left(-\frac{\left(x_{1}\right)^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{\left(x_{2}\right)^{2}}{2 \sigma^{2}}\right), \tag{11}
\end{equation*}
$$

for Bosons. The respective 2D plots for the two cases is shown in Fig 7 and Fig 8.

Fig. 6. [For part (iv)] Panel (a) Bosons, panel (b) Fermions.
(2) Ladder operators: Determine the following matrix elements for Bosonic operators/states in a three mode problem [6 points]

$$
\begin{array}{lr}
\mathcal{M}_{1}=\langle 110| \hat{a}_{2} \hat{a}_{2}^{\dagger} \hat{a}_{2}^{\dagger}|101\rangle, & \mathcal{M}_{2}=\langle 110| \hat{a}_{2}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{2}|101\rangle, \\
\mathcal{M}_{3}=\langle 113| \hat{a}_{3}^{\dagger}|112\rangle, & \mathcal{M}_{4}=\langle 223| \hat{a}_{2}^{\dagger}|113\rangle, \\
\mathcal{M}_{5}=\langle 010| \hat{a}_{2}^{\dagger} \hat{a}_{3}|001\rangle, & \mathcal{M}_{6}=\langle 302| \hat{a}_{2} \hat{a}_{3}^{\dagger}|301\rangle .
\end{array}
$$

Determine the following matrix elements for Fermionic operators/states in a three mode problem [6 points]

$$
\begin{array}{lr}
\mathcal{M}_{1}=\langle 110| \hat{a}_{2} \hat{a}_{2}^{\dagger} a_{2}^{\dagger}|101\rangle, & \mathcal{M}_{2}=\langle 110| \hat{a}_{2} \hat{a}_{2}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{2}|110\rangle, \\
\mathcal{M}_{3}=\langle 110| \hat{a}_{1}^{\dagger} \hat{a}_{1} \hat{a}_{3} \hat{a}_{3}^{\dagger}|110\rangle, & \mathcal{M}_{4}=\langle 001| \hat{a}_{2} \hat{a}_{3}^{\dagger}|010\rangle, \\
\mathcal{M}_{5}=\langle 010| \hat{a}_{2}^{\dagger} \hat{a}_{3}|001\rangle, & \mathcal{M}_{6}=\langle 101| \hat{a}_{2} \hat{a}_{3}^{\dagger}|001\rangle \tag{13}
\end{array}
$$

Solution: The matrix elements for the Bosonic operators/states are:

$$
\begin{array}{r}
\mathcal{M}_{1}=0, \mathcal{M}_{2}=0 \\
\mathcal{M}_{3}=\sqrt{3}, \mathcal{M}_{4}=0 \\
\mathcal{M}_{5}=1, \mathcal{M}_{6}=0 . \tag{14}
\end{array}
$$

The matrix elements for the Fermionic operators/states are:

$$
\begin{align*}
& \mathcal{M}_{1}=0, \mathcal{M}_{2}=0 \\
& \mathcal{M}_{3}=1, \mathcal{M}_{4}=0 \\
& \mathcal{M}_{5}=1, \mathcal{M}_{6}=0 \tag{15}
\end{align*}
$$

(3) Hamiltonian in second quantisation: Consider a multi-electron atom such as Uranium, let us say N_{e} electrons. The Hamiltonian in atomic units is

$$
\begin{equation*}
\hat{H}=\sum_{i=1}^{N_{e}}\left(-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}-\frac{Z}{r_{i}}\right)+\sum_{i<j=1}^{N_{e}} \frac{1}{r_{i j}}, \tag{16}
\end{equation*}
$$

where \mathbf{r}_{j} is the position of electron j relative to the nucleus, $r_{j}=\left|\mathbf{r}_{j}\right|$ and $r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$ and Z the nuclear charge. Use the single particle basis of spin-less Hydrogenic states $\left|\varphi_{n l m}\right\rangle$ fulfilling $\hat{H}_{Z}\left|\varphi_{n l m}\right\rangle=E_{n}\left|\varphi_{n l m}\right\rangle$ with $\hat{H}_{Z}=-\frac{1}{2} \nabla_{\mathbf{r}}^{2}-\frac{Z}{r}$ and associated Fermionic creation operators $\hat{a}_{n l m}$, to convert that Hamiltonian into a second quantized form [10 points].

Solution: The given Hamiltonian can be written as:

$$
\begin{equation*}
\hat{H}=\sum_{i=1}^{N_{e}}\left(\hat{H}_{Z}\right)_{i}+\sum_{i<j=1}^{N_{e}} \hat{U}_{i j} \tag{17}
\end{equation*}
$$

where $\left(H_{Z}\right)_{i}=\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}-\frac{Z}{r_{i}}$ is the single electron Hamiltonian and $U_{i j}=\frac{1}{r_{i j}}$ is the interaction between the electrons.
Using Eq 2.13 from the lecture notes, the second quantized Hamiltonian in Hydrogenic state $\left(\left|\psi_{\text {nlm }}\right\rangle\right)$ can be written as:

$$
\begin{equation*}
\hat{H}=\sum_{n l m, n^{\prime} l^{\prime} m^{\prime}} A_{n l m, n^{\prime} l^{\prime} m^{\prime}} \hat{a}_{n l m}^{\dagger} \hat{a}_{n^{\prime} l^{\prime} m^{\prime}}+\sum_{n l m, n^{\prime} l^{\prime} m^{\prime}} \sum_{r s t, r^{\prime} s^{\prime} t^{\prime}} B_{n l m, n^{\prime} l^{\prime} m^{\prime} r s t, r^{\prime} s^{\prime} t^{\prime}} \hat{a}_{n l m}^{\dagger} \hat{a}_{n^{\prime} l^{\prime} m^{\prime}}^{\dagger} \hat{a}_{r s t} \hat{a}_{r^{\prime} s^{\prime} t^{\prime}} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n l m, n^{\prime} l^{\prime} m^{\prime}}=\left\langle\psi_{n l m}\right| H_{Z}\left|\psi_{n^{\prime} l^{\prime} m^{\prime}}\right\rangle=E_{n}\left\langle\psi_{n l m} \| \psi_{n^{\prime} l^{\prime} m^{\prime}}\right\rangle=E_{n} \delta_{n n^{\prime}} \delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
B_{n l m, n^{\prime} l^{\prime} m^{\prime}, r s t, r^{\prime} s^{\prime} t^{\prime}} & =\left\langle\psi_{n l m} \psi_{n^{\prime} l^{\prime} m^{\prime}}\right| \hat{U}_{i j}\left|\psi_{r s t} \psi_{r^{\prime} s^{\prime} t^{\prime}}\right\rangle \\
& =\int d \mathbf{r}_{i} \int d \mathbf{r}_{j} \psi_{n l m}^{*}\left(\mathbf{r}_{i}\right) \psi_{n^{\prime} l^{\prime} m^{\prime}}^{*}\left(\mathbf{r}_{j}\right) U\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right) \psi_{r s t}\left(\mathbf{r}_{i}\right) \psi_{r^{\prime} s^{\prime} t^{\prime}}\left(\mathbf{r}_{j}\right), \tag{20}
\end{align*}
$$

which cannot easily be evaluated explicitly.
Putting the value of $A_{n l m n^{\prime} l^{\prime} m^{\prime}}$ and $B_{n l m n^{\prime} l^{\prime} m^{\prime} r s t r^{\prime} s^{\prime} t^{\prime}}$ in second quantized Hamiltonian we get:

$$
\begin{equation*}
\hat{H}=\sum_{n l m} E_{n} \hat{a}_{n l m}^{\dagger} \hat{a}_{n l m}+\sum_{n l m, n^{\prime} l^{\prime} m^{\prime} r s t, r^{\prime} s^{\prime} t^{\prime}} B_{n l m, n^{\prime} l^{\prime} m^{\prime}, r s t, r^{\prime} s^{\prime} t^{\prime}} \hat{a}_{n l m}^{\dagger} \hat{a}_{n^{\prime} l^{\prime} m^{\prime}}^{\dagger} \hat{a}_{r s t} \hat{a}_{r^{\prime} s^{\prime} t^{\prime}} \tag{21}
\end{equation*}
$$

(4) Numerical Quantum Many Body Physics Consider two coupled quantum mechanical harmonic oscillators of mass $m=1$ and frequency $\omega=1$, described with the first quantized Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{1}^{2}+x_{1}^{2}\right)+\frac{1}{2}\left(p_{2}^{2}+x_{2}^{2}\right)+2 \kappa x_{1} x_{2}, \tag{22}
\end{equation*}
$$

where x_{i} is the position of oscillator i and p_{i} its momentum.
(4a) Write down the corresponding two-body Schrödinger equation for a wave function $\Psi\left(x_{1}, x_{2}\right)$ in the position space representation. You may treat the oscillators as distinguishable. [3 points]
(4b) In terms of $\Psi\left(x_{1}, x_{2}\right)$, also derive expressions for the energy expectation value, and split it into energy of oscillator 1, energy of oscillator 2 and interaction energy. [2 points]
(4c) Edit the template file Assignment1_phy635_program_draft_v1.xmds provided online. It presently contains the Schrödinger equation and energy sampling as appropriate when particle 1 is a free particle and particle 2 is ignored. Edit this to include your results from (4a), (4b). [1 points]
(4d) Implement as initial condition for the wave function $\Psi\left(x_{1}, x_{2}\right)=$ $\frac{1}{\sqrt{\sqrt{\pi} \sigma}} \exp \left(-\frac{x_{1}^{2}}{2 \sigma^{2}}\right) \frac{x_{2} \sqrt{2}}{\sigma \sqrt{\sqrt{\pi} \sigma}} \exp \left(-\frac{x_{2}^{2}}{2 \sigma^{2}}\right)$, and convince yourself that this corresponds to oscillator 1 in the ground state and oscillator 2 in the excited state. Follow the info-sheet Numerics_assignments_info.pdf to run your code until time $t_{\text {fin }}=100$ once implemented. First, check that normalization and total energy are conserved, using Assignment1_plot_checks_v1.m. Then check the individual energy components using Assignment1_plot_energies_v1.m. Discuss your results. Also inspect the actual evolution of the many-body density using Assignment1_density_slideshow_v1.m, and
comment on that as well. [4 points]

Solution:

(4a)
The given Hamiltonian can also be written as:

$$
\begin{align*}
\hat{H} & =\sum_{i=1}^{2} \frac{\left(\hat{p}_{i}^{2}+\hat{x}_{i}^{2}\right)}{2}+k \sum_{i<j=1}^{2} \hat{x}_{i} \hat{x}_{j} \\
& =\sum_{i=1}^{2}\left(\hat{H}_{0}\right)_{i}+\sum_{i<j=1}^{2} \hat{U}_{i, j}, \tag{23}
\end{align*}
$$

where $\left(\hat{H}_{0}\right)_{i}=\frac{\left(\hat{p}_{i}^{2}+\hat{x}_{i}^{2}\right)}{2}$ and $\hat{U}_{i, j}=k \hat{x}_{i} \hat{x}_{j}$ is the single oscillator Hamiltonian and interaction between the oscillators respetively.
The Schrödinger equation for $\Psi\left(x_{1}, x_{2}\right)$ is given as:

$$
\begin{align*}
i \hbar \frac{d \Psi\left(x_{1}, x_{2}\right)}{d t} & =\hat{H} \Psi\left(x_{1}, x_{2}\right) \\
& =\left(\sum_{i=1}^{2} \frac{\left(\hat{p}_{i}^{2}+\hat{x}_{i}^{2}\right)}{2}+k \sum_{i<j=1}^{2} \hat{x}_{i} \hat{x}_{j}\right) \Psi\left(x_{1}, x_{2}\right) \tag{24}
\end{align*}
$$

(4b) Assuming the particles are distinguishable, the two-body wave-function can be written as:

$$
\begin{equation*}
\Psi\left(x_{1}, x_{2}\right)=\psi\left(x_{1}\right) \phi\left(x_{2}\right) . \tag{25}
\end{equation*}
$$

Now the expectation value of energy is given by:

$$
\begin{align*}
E & =\left\langle\Psi\left(x_{1}, x_{2}\right)\right| \hat{H}\left|\Psi\left(x_{1}, x_{2}\right)\right\rangle \\
& =\int d x_{1} \int d x_{2} \Psi^{*}\left(x_{1}, x_{2}\right) H \Psi\left(x_{1}, x_{2}\right) \\
& =\int d x_{1} \int d x_{2} \Psi^{*}\left(x_{1}, x_{2}\right) \frac{\left(p_{1}^{2}+x_{1}^{2}\right)}{2} \Psi\left(x_{1}, x_{2}\right)+\int d x_{1} \int d x_{2} \Psi^{*}\left(x_{1}, x_{2}\right) \frac{\left(p_{2}^{2}+x_{2}^{2}\right)}{2} \Psi\left(x_{1}, x_{2}\right) \\
& +2 k \int d x_{1} \int d x_{2} \Psi^{*}\left(x_{1}, x_{2}\right)\left\{x_{1} x_{2}\right\} \Psi\left(x_{1}, x_{2}\right) \tag{26}
\end{align*}
$$

The first and second term is the energy of the oscillator 1 and oscillator 2 respectively and the last term is the interaction energy.
(4d)
If particle 1 is in the ground state and particle 2 is in the first excited state of the harmonic oscillator, then the two-body wavefunction is:

$$
\begin{equation*}
\Psi\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{\sqrt{\pi}} \sigma} \exp \left(-\frac{x_{1}^{2}}{2 \sigma^{2}}\right) \frac{x_{2} \sqrt{2}}{\sigma \sqrt{\sqrt{\pi} \sigma}} \exp \left(-\frac{x_{2}^{2}}{2 \sigma^{2}}\right) \tag{27}
\end{equation*}
$$

The individual energy components and the density of two-body system is shown in Fig 9 and Fig 10.

Fig. 7. (left) Decomposition of total energy (black lines) of the two-body system into energy of particle 1 (blue lines) and particle 2 (red lines). (right) Note that the interaction energy (pink lines) given by Eq. (26) remains small, $E_{\text {int }} \approx 0.01$, yet is responsible for the energy exchange between the two oscillators.

Fig. 8. A few different time samples of the two-body density. Panel (a) is the intial state of the two-body system in which particle 1 is in the ground state and particle 2 is in the excited state of the harmonic oscillator. Panel (b) shows the equal probability of the two-particle being in either state of the harmonic oscillator. The particles have swapped states at $\mathrm{t}=30$, as shown in panel (c) and again come back to the original state, as shown in panel (d). Compare with Fig. 7.

