PHY635, I-Semester 2019/20, Assignment 1, solution

Instructor: Sebastian Wiister

(1) Many body wave functions: Translate the following sentences into math, i.e. write
down the described quantum many-body states. For each first assume the particles
are distinguishable, then also specify the wave function for indistinguishable Bosons or
Fermions. In each case, make a 2D contour drawing of the wave-functions. [8 points]:

(i)

(i)

One is in the ground-state of the harmonic oscillator, and another has momentum
po > 0.

Two particles of mass M are bound to each other, with a wave-function the modulus
of which drops of as exp[—r/{] with separation r between them. The compound
object created has momentum py.

Particle one is localized with Gaussian shape and width o; near z,. Particle two
near x, with width os.

The same as in (iii), for z, = 2, = 0 and 0y = 03 = o, but due to some interactions,
the particles avoid each other, such that the probability to find them a distance r
apart drops of as p(r) ~ tanh(r/£)?, with £ < 0y

Solution:

(i) The two-body wave-function of the particle when they are distinguishable is:

Wais (21, 22) = 1 (21)a(22), (1)
where 1 (xq) = \/ﬁ exp (—%) and ¥(z) = exp (Z222) are the single-particle

wave-function of particle 1 at position x1 and particle 2 at position xo respectively.
Putting the expression of V(1) and e(xs) the two-body wave-function is:

1 3 —1ipPox
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Vixex

If the two particles are indistinguishable, then the two-body wave-function is:

\Ijindis(x17$2) = [@/11(331)1/12(332) + %01(%2)@@2(551)]/\/5 (3)
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Fig. 1. [For part (i)] Panel (a) and (b) is the real and imaginary part of the wave-function
for the distinguishable particles.

1000
1.5
500 1~ 0.5 -
— 3 — <)
€ o £ @
3 0 05 2 3 0o 2
— T %
X 0 Lg‘:) X IS
-500 -0.5
0.5
1000
-1000 0 1000
0.5 05
5 — @
w E L
o 2 = o Z
© — b
c = E
-0.5 -0.5

1000 0 1000 1000 0 1000
X, [pm] X,[pm]

Fig. 2. [For part (i)] Panel (a) and (b) are the real and imaginary parts of the wave-function
for Bosons. Panel (¢) and (d) are the real and imaginary parts of the wave-function for
the Fermions.

(i)

(iii)

where + and — is for Bosons and Fermions respectively. The respective 2D plots of

the wave-function for distinguishable and indistinguishable are shown in Fig. 1 and
Fig. 2.

Since no specific information is given about either particle, we can skip the distin-
guishable case here. The wave-function of the two-body system can be written as:

]
§

where N is a normalisation factor set to one in the following. This is completely
symmetric under x, <> xo. It turns out this form cannot be easily converted to be

anti-symmetric for Fermions, so we skip that case here as well. The result for Bosons
1s shown in Fig. 3.

U yis(x1, 22) = N exp ( ) exp [ipo(x1 + z2)/(2h)], (6)

The two-body wave-function for the distinguishable particles localized with Gaussian
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Fig. 3. [For part (ii)] Panel (a) and (b) are the wave-functions for the Bosonic and
Fermionic nature of the particles in the limit £ < |z, — 23| respectively. Panel (¢) and (d)
are the wave-functions for the Bosons and Fermions in the limit £ ~ |z, — x| respectively.

shape 1s:

U ia(1, 72) = ﬁ exp (— (x12_0_§“)2> \;%2 exp (—M) (1)

205

Similarly the two-body wave-function for the indistinguishable particles is

2072

(9)
where + and — 1is for Bosonic and Fermionic nature of the particles respectively

The respective 2D plots for the two cases is shown in Fig 5 and Fig 6 for different
limits of the parameters (o1 2).
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Fig. 4. [For part (iii)] Panel (a) and (b) are the wave-functions of the distinguishable
particles for 015 < |z, — x| and 015 = |z, — 2| respectively, where z, = 300um and
xp = —300pum.

(iv) Again, nothing in the text singles out an individual particle, so we directly go to
indistinguishable ones, and could write

U(zy,7s) = tanh (xl g xz) ;02 exp <—%) exp (—%) . (10)
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Fig. 5. [For part (iii)] Panel (a) and (b) are the wave-functions for the Bosons and Fermions

in the limit 01 » < |2, — 2| respectively. Panel (c) and (d) are the wave-functions for the
Bosons and Fermions in the limit oy o & |2, — 23| respectively.

for Fermions and

U(z1, 25) = tanh (|«T1 g@') \/% exp (— (;E;);) exp (-%?;) , (1Y

for Bosons. The respective 2D plots for the two cases is shown in Fig 7 and Fig 8.
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Fig. 6. [For part (iv)] Panel (a) Bosons, panel (b) Fermions.

(2) Ladder operators: Determine the following matrix elements for Bosonic opera-
tors/states in a three mode problem [6 points]

My = (110]azadal| 101), My = (110abala,| 101),
M; = (113]a|112), My = (223]a}| 113),
Ms = (010 |adas| 001), Mg = (302 |agal] 301). (12)



Determine the following matrix elements for Fermionic operators/states in a three mode
problem [6 points]

My = (110 |agadal] 101), My = (110 |agalalas| 110),
M = (110 |alayasal] 110), My = (001 |agal| 010),
M; = (010 |alas| 001), Mg = (101 |apal| 001). (13)

Solution: The matrix elements for the Bosonic operators/states are:

M;=0,My =0,
Mz =V3.M, =0,
Ms =1Mz=0. (14)

The matrixz elements for the Fermionic operators/states are:

Ml - O,MQ == 0,
Mz =1,M,=0,
Ms =1,Mq = 0. (15)

(3) Hamiltonian in second quantisation: Consider a multi-electron atom such as
Uranium, let us say N, electrons. The Hamiltonian in atomic units is

ﬁ:§§<__v2__>+z— (16)

i<j=1 ”

where r; is the position of electron j relative to the nucleus, r; = |r;| and r;; = |r;—r;| and
Z the nuclear charge. Use the single particle basis of spin-less Hydrogenic states | ¢©nm )
fulfilling H 2| ©nim ) = En| @nim ) with Hy = —%Vf — % and associated Fermionic creation
operators G,;,, to convert that Hamiltonian into a second quantized form [10 points].

Solution: The given Hamiltonian can be written as:

Ne Ne
H=Y (Hp)i+ Y Uy (17)
i=1 i<j=1

where (Hz); = 1V —r% is the single electron Hamiltonian and U;; = % is the interaction
between the electrons.

Using Eq 2.13 from the lecture notes, the second quantized Hamiltonian in Hydrogenic
state (| ¥nm ) ) can be written as:

= 3 NI S
H = Anlm,n’l’m’anlman’l’m’ + Bnlm,n’l’m’rst,r’s’t’anlman/l/m/arstaT’s’t’7

nlm,n/l'm’ nlm,n/l'm’ rst,r's't’

(18)



where

Anlm,n’l’m’ - <¢nlm |HZ| wn’l’m’ > - En<¢nlm || 1/)n’l’m’ > - En(snn’(sll’émm’ (19)

and
Bnlm,n’l’m’,rst,r’s’t’ - <¢nlmwn’l’m’ |Uz]| 77Z)Tstwr’s’t’ >
= [ [y 00 () U i, (), (20

which cannot easily be evaluated explicitly.
Putting the value of A,punirme and Bpmniirmirstr sy in second quantized Hamiltonian we
get:

1= Bl N
H = Enanlmanlm + Bnlm,n’l’m’,rst,r’s/t/anlman/l/m/arstar’s’t’ (21)

nlm nlm,n/l'm/’ rst,r's't'

(4) Numerical Quantum Many Body Physics Consider two coupled quantum me-
chanical harmonic oscillators of mass m = 1 and frequency w = 1, described with the first
quantized Hamiltonian

1 1
1= (i +a3) + 5 (5 +23) + 26mn, (22)

where x; is the position of oscillator ¢ and p; its momentum.

(4a) Write down the corresponding two-body Schrodinger equation for a wave function
U(z1,x9) in the position space representation. You may treat the oscillators as distin-
guishable. [3 points]

(4b) In terms of W(xq,z5), also derive expressions for the energy expectation value, and
split it into energy of oscillator 1, energy of oscillator 2 and interaction energy. [2 points]

(4c) Edit the template file Assignmentl phy635 program draft v1.xmds provided on-
line. It presently contains the Schrodinger equation and energy sampling as appropriate
when particle 1 is a free particle and particle 2 is ignored. Edit this to include your
results from (4a), (4b). [1 points]

(4d) Implement as initial condition for the wave function V(xy,ze) =

L_ exp (—ﬁ) z2/2 exp (—ﬁ) and convince yourself that this corresponds
o 207 ) o/ \Jmo 202 |

to oscillator 1 in the ground state and oscillator 2 in the excited state. Follow the
info-sheet Numerics_assignments_info.pdf to run your code until time ¢, = 100
once implemented. First, check that normalization and total energy are conserved,
using Assignmentl plot_checks vl.m. Then check the individual energy components
using Assignmentl plot_energies_vl.m. Discuss your results. Also inspect the actual
evolution of the many-body density using Assignmentl density_slideshow v1.m, and
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comment on that as well. [4 points]

Solution:

(4a)

The given Hamiltonian can also be written as:

=> (Ho)i+ Y Uiy (23)

where (ﬁo)i = @ and ﬁw = kZ;%; 1s the single oscillator Hamiltonian and interaction
between the oscillators respetively.
The Schridinger equation for V(xy,xs) is given as:

LdV(zy, o -
zﬁ(d—;Q) = HU(x1,125)
2 2
(p? + 27) . >
= -+ k ;1 |VU(xq, x0). 24
(27 PE S 4

(4b) Assuming the particles are distinguishable, the two-body wave-function can be written
as:

U(zy,29) = (1) P(72). (25)
Now the expectation value of energy is given by:

E = (U(xy,20) |H| U (21, 32))

:/dml/de\I/*(wl,xg)H\IJ(xl,xg)

2 2 2 .2
:/d:cl/dxgqf*(xl,xg)w\ﬂ(xl,@)+/da:l/dxz\lf*(xl,xz)w\ll(xl,xg)

+2k/dx1/dz:Q\If*(xl,xQ){:clxg}\I/(xl,:UQ) (26)

The first and second term is the energy of the oscillator 1 and oscillator 2 respectively
and the last term is the interaction energy.

(4d)
If particle 1 is in the ground state and particle 2 is in the first excited state of the
harmonic oscillator, then the two-body wavefunction is:

1 2 2 2
U(ry,29) = ———=cexp | — ad 722 exp 5 (27)
Vo 202 ) o\/\/7o 202

The individual energy components and the density of two-body system is shown in Fig 9
and Fig 10.
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Fig. 7. (left) Decomposition of total energy (black lines) of the two-body system into
energy of particle 1 (blue lines) and particle 2 (red lines). (right) Note that the interaction
energy (pink lines) given by Eq. (26) remains small, Fi,; ~ 0.01, yet is responsible for the
energy exchange between the two oscillators.
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Fig. 8. A few different time samples of the two-body density. Panel (a) is the intial state
of the two-body system in which particle 1 is in the ground state and particle 2 is in
the excited state of the harmonic oscillator. Panel (b) shows the equal probability of the
two-particle being in either state of the harmonic oscillator. The particles have swapped
states at t = 30, as shown in panel (c) and again come back to the original state, as shown
in panel (d). Compare with Fig. 7.



