
PHYS 635, MBQM

Fall 2019, mid-term

1. Bose-Einstein condensates: Consider N Bosonic atoms of mass m in a 3D isotropic
harmonic trap V (x) = 1

2mω
2x2 that undergo Bose-Einstein condensation.

(a) (2 points) What is the first quantized many body wavefunction at T = 0 if we neglect
interactions? How do we write this as a Fock state? [max 2 lines]

(b) (4 points) Now use a field-operator Ψ̂(x) to describe these atoms, take into account contact
interactions as discussed in the lecture [no need to justify them] and derive an equation of
motion for Ψ̂(x).

(c) (2 points) Now assume the field-operator acquires a non-vanishing expectation value upon
condensation, such that 〈Ψ̂〉 ≈ φ0, and find an equation from which you can obtain φ0(x, t)
if you know its initial state φ0(x, 0). You may approximate 〈Ψ̂†Ψ̂Ψ̂〉 ≈ φ∗0φ0φ0.

(d) (2 points) Discuss all the physical requirements for validity of the equation based on the
derivation above. List at least two. [max 6 lines]

Solution:

(a) ψ(x) =
∏

k ϕ0(xk). Fock state |N, 0, 0, 0, 0, 0 〉.

(b) see solution of assignment 3.

(c) see solution of assignment 3.

(d) (i) For the use of the contact interactions we needed a dilute gas, relative to the
range of interactions d̄ � R. We also need low temperature for the s-wave ap-
proximation.

(ii) We need condensation or coherence, in order to make the replacement 〈Ψ̂〉 ≈ φ0,
thus very low T .

2. Second quantised Hamiltonian: Consider a 1D Bose gas in a one dimensional optical
lattice with a potential V (x) = V0 cos(2πx/λ)2. The single particle Hamiltonian (for ~ = m =
1) is:

Ĥ0 = −1

2

∂2

∂x2
+ V (x). (1)

Assume any two atoms k, l interact with contact interactions U(xk − kl) = U0δ(xk − xl).
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(a) (2 points) From the information above assemble an explicit first-quantized many-body
Hamiltonian Ĥ for N atoms.

(b) (2 points) Identify the location of all local minima of the optical lattice potential, number
these with a site-index m, with minima location xm. For sufficiently strong potential
(large V0), we can assume atoms are always trapped in harmonic oscillator ground-states
localized at each minimum, with wave-function ϕm(x) = exp [−(x− xm)2/2/σ2]/(πσ2)1/4.
This wave function is called (approximate) Wannier state. Make a sketch of V (x) and two
adjacent ϕm(x), for this assume σ ≈ λ/2, so that adjacent Wannier functions overlapp a
bit in the tails, but not much.

(c) (8 points) For each Wannier state ϕm(x), we define an associated pair of creation and

destruction operators â†m, âm. Assuming the Wannier states are the only required single
particle states, convert the first-quantized Hamiltonian from (a) into second quantized
form with explicit steps. Show

Ĥ =
∑
m

{
Ēâ†mâm + J̄ [â†m+1âm + â†m−1âm] + Ū n̂m(n̂m − 1)

}
, (2)

with n̂m = â†mâm, by using the simplifications:

(i)
∫
dx ϕ∗n(x)Ĥ0ϕn(x) = ~ω/2, where ω matches the trap frequency of a second order

taylor expansion of V (x) around xn.

(ii)
∫
dx ϕ∗n(x)Ĥ0ϕn±k(x) 6= 0, if k = 1 but vanishes for k > 1.

(iii)
∫
dx ϕ∗n(x)ϕ∗m(x)ϕk(x)ϕl(x) 6= 0, only if k = l = m = n.

Determine the integrals that define Ē, J̄ , Ū , without trying to evaluate them.

(d) (4 points) [max 6 lines] Discuss the physical meaning of each term in the Hamiltonian
above.

Figure 1: Sketch for (2b).

Solution:

(a) The many body Hamiltonian reads Ĥ =
∑N

k

[
− 1

2
∂2

∂x2
k

+ V (xk) + 1
2

∑
l U0δ(|xk − xl|)

]
.

(b) Minima of cos2 are at xm = λ/2(±m+1/2) m ∈ I. See sketch Fig. 1. Adjacent Wannier
fct in green and brown, overlapp in yellow.
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(c) From lecture (2.21) Ĥ =
∑

nmAnmâ
†
nâm+

∑
nm;klBnm,klâ

†
nâ
†
mâkâl, withAnm = 〈ϕn |Â|ϕm 〉

and Bnm,kl = 〈ϕnϕm |B̂|ϕkϕl 〉. Since we said Wannier states more than two sites
away do not overlapp, Anm = 2 for |n − m| & 2, leaving the three terms with

Ē =
∫
dxϕ∗0(x)[−1

2
∂2

∂x2 + V (x)]ϕ0(x) and J̄ =
∫
dxϕ∗0(x)[−1

2
∂2

∂x2 + V (x)]ϕ1(x) in the
single body sector. [optional statement: For tightly trapped atoms you can approxi-
mate the cosine by a parabola whereever ϕ0(x) is significant, thus Ē ≈ ~ω/2, where ω
can be found from a Taylor expansion of the cosine. ]

Bnm,kl =
∫
dxdyϕ∗n(x)ϕ∗m(y)[U0/2]δ(x−y)ϕk(x)ϕl(y) = U0/2

∫
dxϕ∗n(x)ϕ∗m(x)ϕk(x)ϕl(x)

hint(iii)
=

δnmδmkδklU0/2
∫
dx|ϕn(x)|4. Thus Ū = U0/2

∫
dx ϕ∗0(x)ϕ∗0(x)ϕ0(x)ϕ0(x).

(d) Term ∼ Ē is single particle ground state energy on site m (oscillator ground state
energy). Term ∼ J̄ describes quantum tunneling of an atom from one site to the next.
Term ∼ Ū describes collisional interactions when more than one atom share the same
site.

3. Ideal Bose gas, density fluctuations: Consider N Bosonic atoms in a 1D harmonic trap.
To measure local density, we count atoms in a small region of size L, which corresponds to the
operator

n̂loc(x0) =

∫ x0+L

x0

dx Ψ̂†(x)Ψ̂(x), (3)

and then use ρ̂ = nloc(x0)/L to get a density.

Let us define the local number uncertainty

∆nloc(x0)
2 = 〈n̂loc(x0)2〉 − 〈n̂loc(x0)〉2. (4)

We also define

ploc =

∫ x0+L

x0

dx|ϕ0(x)|2, (5)

which is the local probability to find an individual atom near x0 in state 0.

(a) (5 points) Assume the many-body quantum state is ψ = |N, 0, 0, 0 · · · 〉, i.e. all N atoms
are in the ground state. Show that the mean local number in that state is 〈n̂loc(x0)〉 =
Nploc.

(b) (5 points) Then show that the local number uncertainty in Eq. 4 is N(ploc − p2loc).

Solution:
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(a) see solution of assignment 2.

(b) see solution of assignment 2.

4. Quantum fields: Consider a Bose gas of atoms with spin s = 1. The field operator is Ψ̂k(x),
where k indicates the Spin of the atom k = ms with k ∈ {−1, 0, 1}. Then the Hamiltonian is:

Ĥ =

∫
d3x

{∑
k

Ψ̂†k(x)

(
− ~2

2m
∇2 + Vk(x)

)
Ψ̂k(x) +

∑
kk′

c0
2

Ψ̂†k(x)Ψ̂†k′(x)Ψ̂k′(x)Ψ̂k(x)

+
∑
kk′``′

c2
2

Ψ̂†k(x)Ψ̂†k′(x)Fk` · Fk′`′Ψ̂`′(x)Ψ̂`(x),

}
(6)

where F is a vector of spin matrices (F = [Fx, Fy, Fz]
T , where each Fk is a 3 × 3 matrix).

The fields obey the commutation relation
[
Ψ̂k(x), Ψ̂†k′(x

′)
]

= δkk′δ(x − x′), where δkk′ is the
Kronecker delta.

(a) (4 points) Discuss the physical meaning of each term in the Hamiltonian (also discuss the
difference between items within the sum). [max 6 lines].

(b) (6 points) Derive the Heisenberg equations for Ψ̂k(x).

Solution:

(a) The first two are kinetic energy and some external potential, where the external poten-
tial may depend on the spin. The second are interactions between an atom of spin k
with atoms in all other spin-states k′. The last terms include spin-changing interactions.

(b)

i~
∂

∂t
Ψ̂k(x) =

(
− ~2

2m
∇2 + Vk(x)

)
Ψ̂k(x) + c0

∑
k′

Ψ̂†k′(x)Ψ̂k′(x)Ψ̂k(x)

+ c2
∑
k′ll′

Ψ̂†k′(x)Fk`Fk′`′Ψ̂`′(x)Ψ̂`(x) (7)

5. (7 points) Second quantisation I Consider a non-linear oscillator with an external driving
E(t), the Hamiltonian of which is given by
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Ĥ = ~ω(â†â+
1

2
) +

χ

2
â†â†ââ+ E(t)(â† + â). (8)

Within the restricted Fock space | 0 〉 · · · | 5 〉, write the Hamiltonian in matrix form.

Solution:



~ω 1
2 E(t) 0 0 0 0

E(t) ~ω 3
2

√
2E(t) 0 0 0

0
√

2E(t) ~ω 5
2 + χ

√
3E(t) 0 0

0 0
√

3E(t) ~ω 7
2 + 3χ 2E(t) 0

0 0 0 2E(t) ~ω 9
2 + 6χ

√
5E(t)

0 0 0 0
√

5E(t) ~ω 11
2 + 10χ

.

6. (7 points) Coherent states Show that the action of the destruction operator on a coherent
state is b̂|α 〉 = α|α 〉.

Solution:

(a) see lecture notes page 29.


