PHYS 635, MBQM

Fall 2019, mid-term

1. Bose-Einstein condensates: Consider N Bosonic atoms of mass m in a 3D isotropic harmonic $\operatorname{trap} V(\mathbf{x})=\frac{1}{2} m \omega^{2} \mathbf{x}^{2}$ that undergo Bose-Einstein condensation.
(a) (2 points) What is the first quantized many body wavefunction at $T=0$ if we neglect interactions? How do we write this as a Fock state? [max 2 lines]
(b) (4 points) Now use a field-operator $\hat{\Psi}(\mathbf{x})$ to describe these atoms, take into account contact interactions as discussed in the lecture [no need to justify them] and derive an equation of motion for $\hat{\Psi}(\mathbf{x})$.
(c) (2 points) Now assume the field-operator acquires a non-vanishing expectation value upon condensation, such that $\langle\hat{\Psi}\rangle \approx \phi_{0}$, and find an equation from which you can obtain $\phi_{0}(\mathbf{x}, t)$ if you know its initial state $\phi_{0}(\mathbf{x}, 0)$. You may approximate $\left\langle\hat{\Psi}^{\dagger} \hat{\Psi} \hat{\Psi}\right\rangle \approx \phi_{0}^{*} \phi_{0} \phi_{0}$.
(d) (2 points) Discuss all the physical requirements for validity of the equation based on the derivation above. List at least two. [max 6 lines]

Solution:

(a) $\psi(\mathbf{x})=\prod_{k} \varphi_{0}\left(x_{k}\right)$. Fock state $|N, 0,0,0,0,0\rangle$.
(b) see solution of assignment 3 .
(c) see solution of assignment 3 .
(d) (i) For the use of the contact interactions we needed a dilute gas, relative to the range of interactions $\bar{d} \gg R$. We also need low temperature for the s-wave approximation.
(ii) We need condensation or coherence, in order to make the replacement $\langle\hat{\Psi}\rangle \approx \phi_{0}$, thus very low T.
2. Second quantised Hamiltonian: Consider a 1D Bose gas in a one dimensional optical lattice with a potential $V(x)=V_{0} \cos (2 \pi x / \lambda)^{2}$. The single particle Hamiltonian (for $\hbar=m=$ $1)$ is:

$$
\begin{equation*}
\hat{H}_{0}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+V(x) . \tag{1}
\end{equation*}
$$

Assume any two atoms k, l interact with contact interactions $U\left(x_{k}-k_{l}\right)=U_{0} \delta\left(x_{k}-x_{l}\right)$.
(a) (2 points) From the information above assemble an explicit first-quantized many-body Hamiltonian \hat{H} for N atoms.
(b) (2 points) Identify the location of all local minima of the optical lattice potential, number these with a site-index m, with minima location x_{m}. For sufficiently strong potential (large V_{0}), we can assume atoms are always trapped in harmonic oscillator ground-states localized at each minimum, with wave-function $\varphi_{m}(x)=\exp \left[-\left(x-x_{m}\right)^{2} / 2 / \sigma^{2}\right] /\left(\pi \sigma^{2}\right)^{1 / 4}$. This wave function is called (approximate) Wannier state. Make a sketch of $V(x)$ and two adjacent $\varphi_{m}(x)$, for this assume $\sigma \approx \lambda / 2$, so that adjacent Wannier functions overlapp a bit in the tails, but not much.
(c) (8 points) For each Wannier state $\varphi_{m}(x)$, we define an associated pair of creation and destruction operators $\hat{a}_{m}^{\dagger}, \hat{a}_{m}$. Assuming the Wannier states are the only required single particle states, convert the first-quantized Hamiltonian from (a) into second quantized form with explicit steps. Show

$$
\begin{equation*}
\hat{H}=\sum_{m}\left\{\bar{E} \hat{a}_{m}^{\dagger} \hat{a}_{m}+\bar{J}\left[\hat{a}_{m+1}^{\dagger} \hat{a}_{m}+\hat{a}_{m-1}^{\dagger} \hat{a}_{m}\right]+\bar{U} \hat{n}_{m}\left(\hat{n}_{m}-1\right)\right\} \tag{2}
\end{equation*}
$$

with $\hat{n}_{m}=\hat{a}_{m}^{\dagger} \hat{a}_{m}$, by using the simplifications:
(i) $\int d x \varphi_{n}^{*}(x) \hat{H}_{0} \varphi_{n}(x)=\hbar \omega / 2$, where ω matches the trap frequency of a second order taylor expansion of $V(x)$ around x_{n}.
(ii) $\int d x \varphi_{n}^{*}(x) \hat{H}_{0} \varphi_{n \pm k}(x) \neq 0$, if $k=1$ but vanishes for $k>1$.
(iii) $\int d x \varphi_{n}^{*}(x) \varphi_{m}^{*}(x) \varphi_{k}(x) \varphi_{l}(x) \neq 0$, only if $k=l=m=n$.

Determine the integrals that define $\bar{E}, \bar{J}, \bar{U}$, without trying to evaluate them.
(d) (4 points) [max 6 lines] Discuss the physical meaning of each term in the Hamiltonian above.

Figure 1: Sketch for (2b).

Solution:

(a) The many body Hamiltonian reads $\hat{H}=\sum_{k}^{N}\left[-\frac{1}{2} \frac{\partial^{2}}{\partial x_{k}^{2}}+V\left(x_{k}\right)+\frac{1}{2} \sum_{l} U_{0} \delta\left(\left|x_{k}-x_{l}\right|\right)\right]$.
(b) Minima of $\cos ^{2}$ are at $x_{m}=\lambda / 2(\pm m+1 / 2) m \in \mathbb{I}$. See sketch Fig. 1. Adjacent Wannier fct in green and brown, overlapp in yellow.
(c) From lecture (2.21) $\hat{H}=\sum_{n m} A_{n m} \hat{a}_{n}^{\dagger} \hat{a}_{m}+\sum_{n m ; k l} B_{n m, k l} \hat{a}_{n}^{\dagger} \hat{a}_{m}^{\dagger} \hat{a}_{k} \hat{a}_{l}$, with $A_{n m}=\left\langle\varphi_{n}\right| \hat{A}\left|\varphi_{m}\right\rangle$ and $B_{n m, k l}=\left\langle\varphi_{n} \varphi_{m}\right| \hat{B}\left|\varphi_{k} \varphi_{l}\right\rangle$. Since we said Wannier states more than two sites away do not overlapp, $A_{n m}=2$ for $|n-m| \gtrsim 2$, leaving the three terms with $\bar{E}=\int d x \varphi_{0}^{*}(x)\left[-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \varphi_{0}(x)$ and $\bar{J}=\int d x \varphi_{0}^{*}(x)\left[-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \varphi_{1}(x)$ in the single body sector. [optional statement: For tightly trapped atoms you can approximate the cosine by a parabola whereever $\varphi_{0}(x)$ is significant, thus $\bar{E} \approx \hbar \omega / 2$, where ω can be found from a Taylor expansion of the cosine.]
$B_{n m, k l}=\int d x d y \varphi_{n}^{*}(x) \varphi_{m}^{*}(y)\left[U_{0} / 2\right] \delta(x-y) \varphi_{k}(x) \varphi_{l}(y)=U_{0} / 2 \int d x \varphi_{n}^{*}(x) \varphi_{m}^{*}(x) \varphi_{k}(x) \varphi_{l}(x) \stackrel{h i n t(i i i)}{=}$ $\delta_{n m} \delta_{m k} \delta_{k l} U_{0} / 2 \int d x\left|\varphi_{n}(x)\right|^{4}$. Thus $\bar{U}=U_{0} / 2 \int d x \varphi_{0}^{*}(x) \varphi_{0}^{*}(x) \varphi_{0}(x) \varphi_{0}(x)$.
(d) Term $\sim \bar{E}$ is single particle ground state energy on site m (oscillator ground state energy). Term $\sim \bar{J}$ describes quantum tunneling of an atom from one site to the next. Term $\sim \bar{U}$ describes collisional interactions when more than one atom share the same site.
3. Ideal Bose gas, density fluctuations: Consider N Bosonic atoms in a 1D harmonic trap. To measure local density, we count atoms in a small region of size L, which corresponds to the operator

$$
\begin{equation*}
\hat{n}_{\mathrm{loc}}\left(x_{0}\right)=\int_{x_{0}}^{x_{0}+L} d x \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x) \tag{3}
\end{equation*}
$$

and then use $\hat{\rho}=n_{\text {loc }}\left(x_{0}\right) / L$ to get a density.
Let us define the local number uncertainty

$$
\begin{equation*}
\Delta n_{\mathrm{loc}}\left(x_{0}\right)^{2}=\left\langle\hat{n}_{\mathrm{loc}}\left(x_{0}\right)^{2}\right\rangle-\left\langle\hat{n}_{\mathrm{loc}}\left(x_{0}\right)\right\rangle^{2} . \tag{4}
\end{equation*}
$$

We also define

$$
\begin{equation*}
p_{\mathrm{loc}}=\int_{x_{0}}^{x_{0}+L} d x\left|\varphi_{0}(x)\right|^{2}, \tag{5}
\end{equation*}
$$

which is the local probability to find an individual atom near x_{0} in state 0 .
(a) (5 points) Assume the many-body quantum state is $\psi=|N, 0,0,0 \cdots\rangle$, i.e. all N atoms are in the ground state. Show that the mean local number in that state is $\left\langle\hat{n}_{\text {loc }}\left(x_{0}\right)\right\rangle=$ $N p_{\text {loc }}$.
(b) (5 points) Then show that the local number uncertainty in Eq. 4 is $N\left(p_{\text {loc }}-p_{\text {loc }}^{2}\right)$.

Solution:

(a) see solution of assignment 2 .
(b) see solution of assignment 2 .
4. Quantum fields: Consider a Bose gas of atoms with spin $s=1$. The field operator is $\hat{\Psi}_{k}(\mathbf{x})$, where k indicates the Spin of the atom $k=m_{s}$ with $k \in\{-1,0,1\}$. Then the Hamiltonian is:

$$
\begin{align*}
\hat{H}=\int d^{3} \mathbf{x}\{ & \sum_{k} \hat{\Psi}_{k}^{\dagger}(\mathbf{x})\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{k}(\mathbf{x})\right) \hat{\Psi}_{k}(\mathbf{x})+\sum_{k k^{\prime}} \frac{c_{0}}{2} \hat{\Psi}_{k}^{\dagger}(\mathbf{x}) \hat{\Psi}_{k^{\prime}}^{\dagger}(\mathbf{x}) \hat{\Psi}_{k^{\prime}}(\mathbf{x}) \hat{\Psi}_{k}(\mathbf{x}) \\
& \left.+\sum_{k k^{\prime} \ell \ell^{\prime}} \frac{c_{2}}{2} \hat{\Psi}_{k}^{\dagger}(\mathbf{x}) \hat{\Psi}_{k^{\prime}}^{\dagger}(\mathbf{x}) \mathbf{F}_{k \ell} \cdot \mathbf{F}_{k^{\prime} \ell^{\prime}} \hat{\Psi}_{\ell^{\prime}}(\mathbf{x}) \hat{\Psi}_{\ell}(\mathbf{x}),\right\} \tag{6}
\end{align*}
$$

where \mathbf{F} is a vector of spin matrices $\left(\mathbf{F}=\left[F_{x}, F_{y}, F_{z}\right]^{T}\right.$, where each F_{k} is a 3×3 matrix). The fields obey the commutation relation $\left[\hat{\Psi}_{k}(\mathbf{x}), \hat{\Psi}_{k^{\prime}}^{\dagger}\left(\mathbf{x}^{\prime}\right)\right]=\delta_{k k^{\prime}} \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$, where $\delta_{k k^{\prime}}$ is the Kronecker delta.
(a) (4 points) Discuss the physical meaning of each term in the Hamiltonian (also discuss the difference between items within the sum). [max 6 lines].
(b) (6 points) Derive the Heisenberg equations for $\hat{\Psi}_{k}(\mathbf{x})$.

Solution:

(a) The first two are kinetic energy and some external potential, where the external potential may depend on the spin. The second are interactions between an atom of spin k with atoms in all other spin-states k^{\prime}. The last terms include spin-changing interactions.
(b)

$$
\begin{align*}
i \hbar \frac{\partial}{\partial t} \hat{\Psi}_{k}(\mathbf{x}) & =\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{k}(\mathbf{x})\right) \hat{\Psi}_{k}(\mathbf{x})+c_{0} \sum_{k^{\prime}} \hat{\Psi}_{k^{\prime}}^{\dagger}(\mathbf{x}) \hat{\Psi}_{k^{\prime}}(\mathbf{x}) \hat{\Psi}_{k}(\mathbf{x}) \\
& +c_{2} \sum_{k^{\prime} l l^{\prime}} \hat{\Psi}_{k^{\prime}}^{\dagger}(\mathbf{x}) \mathbf{F}_{k \ell} \mathbf{F}_{k^{\prime} \ell^{\prime}} \hat{\Psi}_{\ell^{\prime}}(\mathbf{x}) \hat{\Psi}_{\ell}(\mathbf{x}) \tag{7}
\end{align*}
$$

5. (7 points) Second quantisation I Consider a non-linear oscillator with an external driving $E(t)$, the Hamiltonian of which is given by

$$
\begin{equation*}
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)+\frac{\chi}{2} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}+E(t)\left(\hat{a}^{\dagger}+\hat{a}\right) \tag{8}
\end{equation*}
$$

Within the restricted Fock space $|0\rangle \cdots|5\rangle$, write the Hamiltonian in matrix form.
Solution: $\left[\begin{array}{cccccc|}\hbar \omega \frac{1}{2} & E(t) & 0 & 0 & 0 & 0 \\ E(t) & \hbar \omega \frac{3}{2} & \sqrt{2} E(t) & 0 & 0 & 0 \\ 0 & \sqrt{2} E(t) & \hbar \omega \frac{5}{2}+\chi & \sqrt{3} E(t) & 0 & 0 \\ 0 & 0 & \sqrt{3} E(t) & \hbar \omega \frac{7}{2}+3 \chi & 2 E(t) & 0 \\ 0 & 0 & 0 & 2 E(t) & \hbar \omega \frac{9}{2}+6 \chi & \sqrt{5} E(t) \\ 0 & 0 & 0 & 0 & \sqrt{5} E(t) & \hbar \omega \frac{11}{2}+10 \chi\end{array}\right]$
6. (7 points) Coherent states Show that the action of the destruction operator on a coherent state is $\hat{b}|\alpha\rangle=\alpha|\alpha\rangle$.

Solution:

(a) see lecture notes page 29 .

