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Student Name: ID #:

Student Name: ID #:
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(1) Gross-Pitaevskii equation
Consider N Bosonic atoms of mass m in a 3D isotropic harmonic trap V (x) = 1

2
mω2x2

that undergo Bose-Einstein condensation.

(i) Discuss in your own words why we can use an approximate delta-function contact
interaction to deal with scattering of the ultra-cold, condensed atoms, and why that
is useful. [4 points]

(ii) Now use a field-operator Ψ̂(x) to describe these atoms, take into account contact
interactions as discussed in the lecture and derive an equation of motion for the field
operator Ψ̂(x). [4 points]

(iii) Now assume the field-operator acquires a non-vanishing expectation value upon
condensation, such that 〈Ψ̂〉 ≈ φ0, and find an equation from which you can ob-
tain φ0(x, t) if you know its initial state φ0(x, 0). You may approximate 〈Ψ̂†Ψ̂Ψ̂〉 ≈
φ∗0φ0φ0. [3 points]

(iv) Can you also reach a simple equation such as the above without the factorization
assumption 〈Ψ̂†Ψ̂Ψ̂〉 ≈ φ∗0φ0φ0? If you try to avoid that assumptions, how could you
try to proceed to find equation(s) anyway? [4 points]

(2) Bose-Einstein condensation in varying dimensions Reconsider the derivation
of Bose-Einstein condensation in section 3.2. of the lecture notes. Instead of the special
example of a 3D isotropic trap, assume a generic scenario where you assume a density of
states g(E) = cαE

α−1.

(i) Derive the critical temperature in terms of this density of states [5 points]. Hint:
In the lecture we are at some point summing over all states. Note the expression
only depends on the energy of these states. Assume a dense continuum of states
and convert that sum into an integration, using g(E). Google “density of states” if
needed.

(ii) What is the density of states in a 1D harmonic oscillator potential? [5 points]

(iii) Based on your results of (i) and (ii), contemplate Bose-Einstein condensation in a
strictly 1D harmonic oscillator potential? [5 points]
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Solution:

(i) This was supposed to encourage you to think and read more about this aspect, so
there is no solution. Please see Pethik and Smith and upcoming update of lecture
notes.

(ii) The second quantized Hamiltonian for BEC is:

Ĥ =

∫
dx

[
Ψ̂(x)H0Ψ̂

†(x) +
U0

2
Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

]
,

The equation of motion for any operator is the Heisenberg equation. Now the Hei-
senberg equation for the field operator is given as:

i~
∂

∂t
Ψ̂(x, t) = [Ψ̂(x, t), Ĥ]

=

∫
dx′
[
Ψ̂(x, t), Ψ̂(x′, t)H0Ψ̂

†(x′, t)

]
+

∫
dx′
[
Ψ̂(x, t),

U0

2
Ψ̂†(x′, t)Ψ̂†(x′, t)Ψ̂(x′, t)Ψ̂(x′, t)

]
=

∫
dx′Ψ̂(x′, t)H0

[
Ψ̂(x, t), Ψ̂†(x′, t)

]
+
U0

2

∫
dx′Ψ̂†(x′, t)

[
Ψ̂(x, t), Ψ̂†(x′, t)

]
Ψ̂(x′, t)Ψ̂(x′, t)

+
U0

2

∫
dx′
[
Ψ̂(x, t), Ψ̂†(x′, t)

]
Ψ̂†(x′, t)Ψ̂(x′, t)Ψ̂(x′, t)

=

∫
dx′Ψ̂(x′, t)H0δ(x− x′) +

U0

2

∫
dx′Ψ̂†(x′, t)δ(x− x′)Ψ̂(x′, t)Ψ̂(x′, t)

+
U0

2

∫
dx′δ(x− x′)Ψ̂†(x′, t)Ψ̂(x′, t)Ψ̂(x′, t)

i~
∂

∂t
Ψ̂(x, t) = H0Ψ̂(x, t) + U0Ψ̂

†(x, t)Ψ̂(x, t)Ψ̂(x, t) (1)

(iii) Taking the expectation value of Eq. (1) over the unknown many-body state gives

i~
∂

∂t
〈Ψ̂(x, t)〉 = H0〈Ψ̂(x, t)〉+ U0〈Ψ̂†(x, t)Ψ̂(x, t)Ψ̂(x, t)〉.

You were given the hint to use 〈Ψ〉 = φ0 and 〈Ψ̂†(x, t)Ψ̂(x, t)Ψ̂(x, t)〉 ≈ φ∗0φ0φ0.
Note that to use this, you don’t necessarily need to know the state. In this case we
don’t. The statement will be true for some states, false for others, but at least a good
approximation for some of the latter. Using it we find

i~
∂

∂t
φ0(x, t) = H0φ0(x, t) + U0|φ0(x, t)|2φ0(x, t).
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(iv) Without the approximation we don’t reach a simple form. We could continue by
finding an equation of motion for the product operator Ψ̂†(x, t)Ψ̂(x, t)Ψ̂(x, t). This
could proceed in the same way as before, using the Heisenberg equation. The result
will require equations for even more complicated operators. Nonetheless this approach
(roughly) will be covered later in week 8 of the lecture.

(2) Bose-Einstein condensation in varying dimensions Reconsider the derivation
of Bose-Einstein condensation in section 3.2. of the lecture notes. Instead of the special
example of a 3D isotropic trap, assume a generic scenario where you assume a density of
states g(E) = cαE

α−1.

(i) Derive the critical temperature in terms of this density of states [5 points]. Hint:
In the lecture we are at some point summing over all states. Note the expression
only depends on the energy of these states. Assume a dense continuum of states
and convert that sum into an integration, using g(E). Google “density of states” if
needed.

(ii) What is the density of states in a 1D harmonic oscillator potential? [5 points]

(iii) Based on your results of (i) and (ii), contemplate Bose-Einstein condensation in a
strictly 1D harmonic oscillator potential? [5 points]

Solution:

(i) The transition temperature Tc is defined as the highest temperature at which the
macroscopic occupation of the lowest-energy state appears. The number of particles
in excited states is given as:

Nexc =

∫ ∞
0

dEg(E)m(E), (2)

where m(E) = 1
e(E−µ)/kT−1 is the mean occupation number of the single-particle state.

This achieves its greatest value for µ = 0 and the transition temperature is determi-
ned by the condition that the total number of particles can be accommodated in the
excited states, that is

N = Nexc(Tc, µ = 0) =

∫ ∞
0

dEg(E)
1

eE/kTc − 1

=

∫ ∞
0

dEcαE
α−1 1

eE/kTc − 1
(3)

The above equation can be written in the terms of a new dimensionless variable
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x = E/kTc as:

N = cα(kTc)
α

∫ ∞
0

dx
xα−1

ex − 1

= cα(kTc)
α

∫ ∞
0

dx
e−xxα−1

1− e−x

= cα(kTc)
α

∫ ∞
0

dxe−xxα−1{1 + e−x + e−2x + · · · }

= cα(kTc)
αΓ(α)ζ(α), (4)

where Γ(α) =
∫∞
0
dxxα−1e−x is Gamma function and ζ(α) =

∑∞
n=1 n

−α is Riemann
zeta function. Now from Eq. (4) the transition temperature can be written as:

kTc =
N1/α

[cαΓ(α)ζ(α)]1/α
(5)

(ii) The energy of 1D harmonic oscillator is given as:

E = ~ω(n+
1

2
). (6)

For energies large compared with ~ω, we may treat the n as a continuous variables
and neglect zero point energy. The number of states Σ(E) with energy less than a
given energy E is given as:

Σ(E) =
1

~ω

∫ E

0

dE

=
E

~ω
(7)

Now the density of states is given as:

g(E) =
dΣ(E)

dE

=
1

~ω
= const. (8)

(iii) To phrase (8) in terms of part (i), we have α = 1 and cα = 1
~ω . Thus using

Eq. (5) we find Tc = 0 (e.g. using the Limit function in mathematica). Thus there
is no condensation in a 1D system.

(3) Numerical Solution of Gross-Pitaevskii equation
The attached template file Assignment3 phy635 program draft v1.xmds is set up to
first find a ground-state of the Schrödinger equation with a method called “imaginary time
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evolution”(see towards end of week 6), and then evolve that state in time. The ground-
state finding uses a harmonic trap with frequency ωini the time evolution uses ωfin.

(4a) First test with density slideshow v1.m that for ωini = ωfin the “imaginary time
evolution” converges to the ground-state despite the silly initial state and the state found
later does not change in real time [2 points]. Hint: note the first 101 time-samples are
from the imaginary time evolution, the last 100 from the real time, the script knows this.

(4b) Now slightly change ωfin such that ωfin 6= ωini. What happens? Use plot widths v1.m

to plot the time evolution of the position uncertainty ∆x̂. Quantify what you see and
compare with the final harmonic trap frequency. [2 points]

(4c) Change everything in the script that needs changing in order to tackle the Gross-
Pitaevskii equation with the same traps, but 1000 atoms instead of one. Instead of U0

from equation (4.8) we shall use an effective 1D interaction strength U1d that is already
defined in the code. [2 points]

(4d) Redo the same as steps (a) and (b) for the Bose-Einstein condensate and discuss
your findings. Use a couple of different ωfin and try to deduce a law for what you see. [4
points]

Solution:

(a) The imaginary time evolution of the initial state for a particle in a harmonic trap
is shown in Fig. 1. The final state at t = 0.038 will remain same in the real time
evolution under the condition νini = νfin.
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Fig. 1. The imaginary time evolution of density for νini = νfin = 5.00.

(b) For the case νini 6= νfin, the density starts oscillating in the real time evolution
(Fig. 2). This is called ”breathing mode”. The frequency of the oscillation can be
calculated by counting the number of cycle in the position uncertainity, see Fig. 3. We
can estimate from the figure that two breathing periods take about 0.1 s, so breathing
happens at twice the trap frequency.
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Fig. 2. Real time evolution of the density under the condition νini(= 5) 6= νfin(= 10)
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Fig. 3. Evolution of expectation value for νini(= 5) 6= νfin(= 10).

(d) Fig. 4 shows the density profile under the imaginary time evolution of the BEC for
1000 particles in a trap. The final state is achieved at t = 0.038 starting with a
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completely different initial state what we had for one particle in the trap.
The real time evolution of the density profile is shown in Fig. 5 under the condition
νini 6= νfin.
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Fig. 4. The imaginary time evolution of density for BEC under the condition νini =
νfin = 5.00.
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Fig. 5. The real time evolution of density for BEC cloud under the condition νini(= 5) 6=
νfin(= 10).
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Fig. 6. Evolution of expectation value for BEC cloud under the condition νini(= 5) 6=
νfin(= 10).
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