
PHY 305, I-Semester 2020/21, Tutorial 5 solution

Stage 1 What is the difference between an inertial and a non-inertial frame? What is a
fictitious force? Why do we need fictitious forces in non-inertial frames (answer
both: mathematically and physically)?

Solution: Newtons equation in the form F = ma, where F are all real forces
only, holds only in an inertial frame. Real forces are those with a microscopic
origin (molecular bonds, Coulomb force mediated by photons etc.). All inertial
frames are at constant relative motion with respect to one another. Fictitious
forces are those not fitting the description for real forces above: They arise only
mathematically, if you insist to do physics in a non-inertial frame. However
in your experience, they are indistinguishable from real forces. Mathematically
fictitious forces pop up, since when you write x′(t) = x(t)+v(t) for nonconstant
v(t), the time-derivatives in the acceleration ẍ′(t) will also act on v(t) and cause
extra terms. Physically they are required to translate the statement “a force free
object in the frame at rest moves in a straight line” into the accelerated frame:
There this cannot be true, hence we require additional forces acting in the non-
inertial frame to make the trajectory deviate from a straight (+constant velocity)
line in that frame.

Stage 2 Describe in your own words how the concept of “moment of inertia” and ”inertia
tensor” arises. What are good and bad choices of coordinates for the calculations
of moments of inertia?

Solution: When we fix a rotation velocity (+axis) and look at what happens to a
rigid body (with all body elements at a fixed distance from one another), we see
that after having fixed the rotation vector ω we can calculate the entire angular
momentum and the rotational kinetic energy. Since we fixed only the rotation
vector ω, we would like to express both quantities in terms of ω. The object
linking them is the inertia tensor.
A good choice for coordinate axes (and origin) are those for which the object has
some symmetries. Choosing symmetry axes will typically make some products
of inertia zero, or even all (such that the inertia tensor is directly diagonal).

Stage 3 (i) (Rotating frames I)

left: Consider the blue mass m1

which slides without friction on the
turntable shown, a distance r from
the centre of the table. The mass is
at rest in the fixed frame x, y. The
turntable rotates with angular ve-
locity ω.

Are there forces acting on the mass in the frame that rotates with the
turntable? If yes, find them all....
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Solution: Since the mass is at rest in the lab-frame, the real forces F in
Eq. (2.90) of the lecture are zero. But the fictitious forces are not, since
they are needed to make the mass move in a circle in the rotating frame,
which it logically has to move on. We can think of the lab-frame as rotating
with an angular velocity −ω with respect to the turntable frame, hence using
Eq. (3.12) the velocity of mass 1 in the turntable frame is v′ = −ω× r′ =
r×ω. The velocity is pointed in downward direction as shown in the figure.
The centrifugal force acting on the mass is F cf = −m(−ω)× (−ω×r) =
mω2r (outward), and the coriolis force is F cor = −2m(v′)×−ω = 2mω2r
(inward). Therefore, in the rotating frame there is a net force of F net =
F cor − F cf = mω2r (inward) to account for the centripetal acceleration.

left: Dynamics of the blue mass
m1 which slides without friction on
the turntable shown in frame x′y′

at a distance r from the centre of
the table. The velocity vector v is
pointed in downward direction.

(ii) (Rotating frames II) Now consider the second mass m2 instead, which is
initially bolted to the turntable so it is fixed in the frame x′, y′. While
it is bolted, what are the forces acting on the bolts? Solution: Since the
mass m2 is fixed in the rotating frame, it does not move there v′ = 0.
Hence the Coriolis force is zero. However there will be a centrifugal force
F cf = −m(−ω)× (−ω×r) = mω2r (outward) just as before, which must
be compensated by the bolts in order for the mass to remain at rest in the
rotating frame.

(iii) (Rotating frames III) If the mass is released from the bolts, it travels in a
straight line in the space fixed frame (x,y). What path does it take in the
rotating frame of the turntable (x’,y’)? Solution: See Morin Page IX-17,
Q5.

Stage 4 Moments of inertia, cross-products

(i) Find the moment of inertia tensor for the following collections of four
masses m1, m2, m3, m4, for rotations around the z − axis. Start with
making a drawing of the configuration. Relate this to your understanding
of angular momentum and rotational kinetic energy for such a rotation.

• m1 = 1 kg, r1 = [1, 0, 0]T m, m2 = 1 kg, r1 = [−1, 0, 0]T m, m3 = 5
kg, r1 = [0, 0, 0]T m, m4 = 5 kg, r1 = [0, 0,−3]T m.

• m1 = 1 kg, r1 = [2, 0, 0]T m, m2 = 1 kg, r1 = [−2, 0, 0]T m, m3 = 5
kg, r1 = [0, 0, 0]T m, m4 = 5 kg, r1 = [0, 0,−3]T m.

• m1 = 1 kg, r1 = [1, 0,−1]T m, m2 = 1 kg, r1 = [−1, 0, 1]T m, m3 = 5
kg, r1 = [0, 0, 0]T m, m4 = 5 kg, r1 = [0, 0,−3]T m.

2



• m1 = 2 kg, r1 = [1, 0,−1]T m, m2 = 2 kg, r1 = [−1, 0, 1]T m, m3 = 2
kg, r1 = [1, 0, 1]T m, m4 = 2 kg, r1 = [−1, 0,−1]T m.

Solution:

• Let us assume that the coordinate axes are placed at one of the corner
of a cube as shown in the Fig 1. If we place m3 at the origin of
the coordinate axes and other masses as indicated in the figure, the
moment of inertias can be found as listed below (we skipped writing
units. Masses are in kg and positions in m, so the moment of inertia
is in kgm2.

Figure 1: The coordinate axes are shown here for first collection of masses. Origin is
placed at one of the corner of the cube as (0, 0, 0).

I =
∑
i

mir
2
i

= 1(1)2 + 1(−1)2 + 5(0)2 + 5(0)2

= 2. (1)

• The moment of inertia assuming similar senario as for the above:

I = I =
∑
i

mir
2
i

= 1(2)2 + 1(−2)2 + 5(0)2 + 5(0)2

= 8. (2)

• Again we have similar situation as for the above:

I = 1(12 + −(1)2) + 1(12 + (−1)2) + 5(0)2 + 5(0)2

= 4. (3)

• The coordinate axes can again be taken similar as for the above cases
but this time mass m3 is shifted from corner to the given coordinate.
The moment of inertia reads as:

I = 2(12 + (−1)2) + 2(12 + (−1)2) + 2(12 + 12) + 2((−1)2 + (−1)2)

= 16. (4)
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Figure 2: The coordinate axes are shown here for last collection of masses. Origin is
placed at one of the corner of the cube as linked with z-axis.

It is to noted here that the masses are rotating about the z-axis, so other
components of inertial tensor do not contribute to it.

(ii) Using the epsilon-tensor and the rule
∑

i εijkεimn = δjmδkn − δjnδkm, show
Eq. (2.51) and Eq. (3.23) of the lecture:

a · (b× c) = b · (c× a) = c · (a× b),

a× (b× c) = b(a · c) − c(a · b). (5)

for 3-component vectors a, b, c.
Solution: Writing in component notation, we have

a · (b× c)
Eq. (2.96)

=
∑
n

an(
∑
jk

εnjkbjck

=
∑
njk

εnjkan(bjck) =
∑
njk

εjknbj(ckan) =
∑
njk

εknjck(anbj). (6)

The last two equalities are due to the possibility to cyclicly change the
indices of the epsilon tensor, and when translating them back to scalar and
vector products, these two give us what was to be shown. Similarly

a× (b× c)

∣∣∣∣
n

Eq. (2.96)
=

∑
jk

εnjkaj(b× c)

∣∣∣∣
k

=
∑
jk

εnjkaj

(∑
`m

εk`mb`cm

)
=
∑
jk`m

εnjkεk`majb`cm =
∑
j`m

∑
k

εknjεk`m︸ ︷︷ ︸
=δn`δjm−δnmδj`

ajb`cm

=
∑
j

ajbncj −
∑
jk

ajbjcn = b

∣∣∣∣
n

(a · c) − c

∣∣∣∣
n

(a · b). (7)

We used v

∣∣∣∣
n

for the component vn of vector v.
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