
PHY 305, I-Semester 2020/21, Tutorial 3 solution

Stage 1 (Variational techniques) Discuss:

(i) What is a functional? Try to invent some new functionals with physical
meaning that were not examples in the lecture.

Solution: A functional is a map from one or many functions onto a
number. You can think of it as a “function of functions”. Some physics
problems that can be expressed as a functional are e.g. (i) the amount of
heat dissipated during motion of a rocket through the atmosphere (integral
over heating rate as a function of time, which will depend on the path
taken), (ii) the time it takes for a boat to cross a river between two
given points depending on the path taken on the river, (iii) The total
power dissipated in an electric circuit, dependent on certain externally
controllable applied voltage profiles V (t).

(ii) Explain the problem statement of finding an extremal point of a functional
using variational techniques.
Solution: When we want to find a stationary point of a functional, it
means an input function y0(x) so that for all possible small deviations
from this function, independently at all positions x, the first order change
of the value of the functional is zero.

(iii) Identify the critical tricks in practically solving the problem.
Solution: There are at least two tricks: First we have reduced the problem
of finding the stationary point of the functional to finding a minimum of a
function of a single parameter α, by expression the deviation from the real
path as y(x) = y0(x) +αη(x). Secondly, we need to use the fact that α = 0
ought to be a minimum of the functional for all possible functions η(x).
For that reason we can set the function that multiplies η(x) in the integrand
to zero at all values of x. See lecture eqns. (2.9)-(2.11) for all of this..

Stage 2 (Lagrangian mechanics) Discuss:

(i) How come we suddenly have a completely new formalism for mechanics?
Solution: The new formalism (Lagrange) is based on exactly the same
starting points as the old one, so it neither invalidates nor extends the
old one (Newton). But it uses more advanced mathematical concepts, and
thus has the advantages listed in the next point.

(ii) List the primary strengths of Lagrangian mechanics. In which cases or
why is it more powerful than Newtonian? Solution: (i) The Lagrangian
formalism is “covariant”, which means the equation of motion has exactly
the same mathematical form in all coordinate systems, which makes it
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easier to use in non-cartesian coordinates. (ii) It efficiently deals with
constraints, essentially one does not have to worry about constraint forces
at all. (iii) Lagrange allows natural predictions of conserved quantities and
analyses of their origin [week 4].

(iii) What is the procedure of solving a problem in the Lagrangian approach?
Where do you have to be careful?
Solution: (i) We first setup the Lagrangian, which is typically most
straightforward in the original (unconstrained) coordinates. We have to
be careful that the reference frame chosen is inertial, (ii) We then convert
that Lagrangian into the new generalised coordinates using the coordinate
transformation equation chosen and differential calculus. (iii) We then
derive the Lagrange equations from the Lagrangian, carefully treating all
generalised coordinates and their generalise velocities as independent when
taking partial derivatives.

Figure 1: Sketch of yoyo. A string (brown) is held with your finger and wound around
a cylinder (grey) of mass m with radius R. The yoyo can move down by unwinding the
string while rotating, and up by winding up the string through rotation.

Stage 3 (Applications) Solve whichever you want first:

(i) Figure 1 shows a sketch of a “yoyo” toy, see caption. Discuss the con-
straints, write down the Lagrangian in some suitable generalized coordi-
nate and derive the Euler Lagrange equations.
Solution: The yo-yo will have both rotational and translational kinetic mo-
tion. Hence we can write it’s kinetic energy as,

T =
1

2
mẋ2 +

1

2
Iφ̇2, (1)

where ẋ is the translational velocity v and φ̇ is the angular velocity ω.
The moment of inertia for a yoyo (taking it to be a solid disk) is given
by I = 1

2
mR2. The rope does not slip as the yo-yo falls which brings the

constraint ẋ = φ̇R. Altogether we have:

T =
1

2
mẋ2 +

1

2

(
1

2
mR2

)(
ẋ

R

)2

=
3

4
mẋ2. (2)
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The potential energy will be:

U = −mgx. (3)

Hence we can write the Lagrangian of the system to be:

L =
3

4
mẋ2 +mgx. (4)

The Euler-Lagrangian equation will be,

∂L

∂x
− d

dx

(
∂L

∂ẋ

)
= 0 (5)

⇒ mg − d

dx

(
3

2
mẋ

)
= ẍ =

2

3
g (6)

(ii) Find a function y(x) that makes the functional

S[y] =

∫ 1

0

√
1 + x+ y′(x)2dx (7)

with y(0) = 0, y(1) = 1 stationary.
Solution: We can write Euler-Lagrangian equation for the function as,

− d

dx

[
∂

∂y′

(√
1 + x+ y′(x)2

)]
= 0, (8)

⇒ ∂

∂y′

(√
1 + x+ y′(x)2

)
= const. = C. (9)

This gives,

y′ = C
(√

1 + x+ (y′)2
)
. (10)

This can be rearranged to rewrite y′ in terms of x of the form,

C1 y
′ =
√

1 + x, (11)

where C1 is a new constant after rearrangement. If we integrate wrt x we
get,

C1 y =
2

3
(1 + x)3/2 + C2. (12)

At this stage we can use the conditions y(0) = 0, y(1) = 1 to find the
constants C1 and C2.

y(0) = 0⇒ C2 = −2

3
(13)

y(1) = 1⇒ C1 =
2

3

[
(2)3/2 − 1

]
(14)

Hence we can write the final equation to be,

y =
(1 + x)3/2 − 1

23/2 − 1
(15)
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