PHY 305, I-Semester 2020/21, Tutorial 2 Solution

Work in the same teams as for assignments. Do "Stages" in the order below. Discuss via online (video or audio) conference on a subchannel for your group.

Stage 1 (math review) Review from old course notes, books or the internet your knowledge about (ordinary, linear) differential equations. Make sure you are comfortable with the answer to all these questions:
(i) What does an equation like $\dot{f}(t)=\frac{d}{d t} f(t)=g(t)$ tell me? What mathematical object is the solution of such an equation? What mathematical operation is in general required to solve such an equation and why?
Solution: The equation states that at every time t (if t is time, it does not have to be), the slope of the function $f(t)$ will be $g(t)$. The solution of such an equation is a function $f(t)$. Since integration is the inverse operation to differentiation, we typically need an integration to solve such a differential equation.
(ii) For a differential equation $\frac{d^{n}}{d t^{n}} f(t)=g(t)$, how many unspecified constants does the solution contain and why? Which additional information can help to constrain those constants?
Solution: The equation is of n 'th order in time and thus will contain n unspecified constants. The reason is, that for every integration $\int h(t) d t$ we get $\int h(t) d t=H(t)+C$, where C can be any constant.

Stage 2 (physics review) Review from old course notes, books or the internet your knowledge about fundamental laws of physics. Make sure you are comfortable with the answer to all these questions:
(i) A cycle is moving on a street with constant velocity such that its position in a street fixed reference frame is $x(t)=x_{0}+v_{0} t$. You are observing it from a train going parallel with velocity $v_{1} \gg v_{0}$. What is the position in that cycle in your reference frame, which we assume is fixed on your seat in the train?
Solution: The positions is $x^{\prime}(t)=x_{0}^{\prime}+\left(v_{0}-v_{1}\right) t$, where we don't know x_{0}^{\prime} because I did not tell you where the seat is.
(ii) Why can the zero of energy be chosen arbitrarily?

Solution: Because energy contains the potential energy which enters the physics only via forces, which in turn are defined via a derivative. Any constant offset drops out in that derivative.
(iii) Convert the following 2D cartesian coordinates into polar ones: $(x, y)=$ $(0,2),(2,0),(1,1),(-3,-3),(-2,0),(0,0)$.
Solution: $(r, \varphi)=(2, \pi / 2),(2,0), \quad(\sqrt{2}, \pi / 4),(3 \sqrt{2},-3 \pi / 4),(2, \pi)$, (0,undefined) .
(iv) Convert the following 2D polar coordinates into cartesian ones: $(r, \varphi)=$ $(4, \pi / 4),(2, \pi),(3,0),(3,8 \pi),(2,3 \pi / 2),(0, \pi / 8)$.
Solution: $(x, y)=(2 \sqrt{2}, 2 \sqrt{2}),(-2,0),(3,0),(3,0),(0,-2),(0,0)$

Stage 3 (i) Think like a computer: How would you go about solving the differential equation $\dot{f}(t)=\frac{d}{d t} f(t)=g(t)$ by dividing time into small chunks of size Δt, thus allowing only discrete times $t_{0}, t_{1}=t_{0}+\Delta t, t_{2}=t_{0}+2 \Delta t$ etc...? Make a sketch of this computational solution versus the real solution. Solution: We can go back to the definition of a derivative which can be e.g. $\dot{f}(t)=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}$. Now, since the computer cannot do $\lim _{\Delta t \rightarrow 0}$ we just take that definition at some small but finite Δt, called the "step size". Inserting into the ODE gives

$$
\begin{align*}
\dot{f}(t) & =\frac{d}{d t} f(t)=g(t) \\
\frac{f(t+\Delta t)-f(t)}{\Delta t} & =g(t) \\
f(t+\Delta t) & =f(t)+\Delta t g(t) \tag{1}
\end{align*}
$$

The last line tells the computer how to find $f(t+\Delta t)$ if it knows $f(t)$. Since that equation is linear in t, the real function will be approximated by lots of short straight line segments as shown in the sketch. Sketch see Fig. 1.

Figure 1: Approximation of ODE solution through lots of short straight line segments.
(ii) You are throwing a stone very far, subject to gravity and friction (but not wind). How many dimensions does the relevant phase space have? Make a sketch of the stone's trajectory in the $(x, z),\left(x, p_{x}\right)$ and $\left(z, p_{z}\right)$ phase space planes (gravity along z).
Solution: Since we can neglect sideways motion and chose our x-axis in the direction the stone was thrown, 4 dimensions are enough $\left(x, z, p_{z}, p_{z}\right)$. For sketches see Fig. 2 .
(iii) Show that for a conservative potential, such that $\mathbf{F}=-\boldsymbol{\nabla} V(\mathbf{r})$ we have $W_{12}=V\left(\mathbf{r}_{1}\right)-V\left(\mathbf{r}_{2}\right)$.
Solution: Inserting the definition of the line-integral for the expression of

Figure 2: Stone trajectories on cuts through 4D phase space.
work we have

$$
\begin{align*}
W_{12} & =\int_{1}^{2}[-\nabla V(\mathbf{s}(t))] \cdot \frac{\partial}{\partial t} \mathbf{s}(t) d t \\
& =-\int_{1}^{2} \frac{d}{d t} V(\mathbf{s}(t)) d t=-[V(\mathbf{s}(2))-V(\mathbf{s}(1))]=V\left(\mathbf{r}_{1}\right)-V\left(\mathbf{r}_{2}\right) \tag{2}
\end{align*}
$$

The trick was in the second step, which we write again backwards in full detail expanding in vector components:

$$
\begin{align*}
\frac{d}{d t} V(\mathbf{s}(t))= & \frac{d}{d t} V\left(s_{x}(t), s_{t}(t), s_{z}(t)\right) \\
= & \frac{\partial}{\partial x} V\left(s_{x}(t), s_{t}(t), s_{z}(t)\right) \frac{\partial}{\partial t} s_{x}(t)+\frac{\partial}{\partial y} V\left(s_{x}(t), s_{t}(t), s_{z}(t)\right) \frac{\partial}{\partial t} s_{y}(t) \\
& +\frac{\partial}{\partial z} V\left(s_{x}(t), s_{t}(t), s_{z}(t)\right) \frac{\partial}{\partial t} s_{z}(t) \\
= & \nabla V(\mathbf{s}(t)) \cdot \frac{\partial}{\partial t} \mathbf{s}(t) \tag{3}
\end{align*}
$$

