
PHY 305, I-Semester 2020/21, Assignment 5

Instructor: Sebastian Wüster
Due-date: 24.10.2020

(1) Weighted dice: [10pts] Consider a game dice made with the intention of cheating,
such that it is heavier on the bottom. We place the origin O = (0, 0, 0) on one corner of
the cube, such that the cube extends from 0 < x < a, 0 < y < a and 0 < z < a. The
density shall be ρ(r) = ρ0

(
1− z

2a

)
, reflecting that the dice is not regular.

(1a) Find all components of the inertia tensor with respect to above coordinates and
origin.

solution: The cube in the given problem is inhomogeneously distributed with a density
ρ(r) = ρ0

(
1− z

2a

)
, therefor we first calculate the total mass of the cube to express the

inertial tensor in a more practical way. The total mass of the cube can be calculated as:

M =

∫
dm,

=

∫
ρ(~r)dxdydz,

=

∫ a

0

dx

∫ a

0

dy

∫ a

0

ρ0(1− z

2a
)dz,

=
3

4
a3ρ0, (1)

where dm = ρdV is the mass of a small element of the cube. Since we place the origin of
coordinate axis at one of corner of the cube, the integration limit runs from 0 to a.

The different components of inertia tensor are:

Ixx =

∫
dm(y2 + z2),

=

∫
ρ(r)dxdydz(y2 + z2),

=

∫
ρ0(1− z

2a
)(y2 + z2)dxdydz,

=
11

18
Ma2. (2)

Ixy = −
∫
dmxy,

= −
∫
ρ(~r)xydxdydz,

= −1

4
Ma2. (3)
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Ixz = −
∫
dmxz,

= −
∫
ρ(~r)xzdxdydz,

= −2

9
Ma2. (4)

Iyy =

∫
dm(x2 + z2),

=

∫
ρ(r)dxdydz(x2 + z2),

=
11

18
Ma2. (5)

Iyx = −
∫
dmyx,

= −
∫
ρ(~r)yxdxdydz,

= −1

4
Ma2. (6)

Iyz = −
∫
dmyz,

= −
∫
ρ(~r)yzdxdydz,

= −2

9
Ma2. (7)

Izz =

∫
dm(x2 + y2),

=

∫
ρ(r)dxdydz(x2 + y2),

=
2

3
Ma2. (8)

Izx = −
∫
dmzx,

= −
∫
ρ(~r)zxdxdydz,

= −2

9
Ma2. (9)

2



Izy = −
∫
dmzy,

= −
∫
ρ(~r)zydxdydz,

= −2

9
Ma2. (10)

The inertia tensor matrix can now be written as:

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



I =

 11
18
Ma2 −1

4
Ma2 −2

9
Ma2

−1
4
Ma2 11

18
Ma2 −2

9
Ma2

−2
9
Ma2 −2

9
Ma2 2

3
Ma2


(1b) Diagonalize the inertia tensor and find the moments of inertia about the principal
axes and the principal axes (You may use e.g. Mathematica)

solution: The diagonalization of the inertia matrix can be done following the usual matrix
method in linear algebra, or one can use mathematica. Using mathematica, the moment
of inertia along the principal axes and principal axes are:

I1 =
37−

√
633

72
Ma2

I2 =
31

36
Ma2

I3 =
37 +

√
633

72
Ma2

and

ê1 = [−−227− 9
√

633

8(25 +
√

633)
,−−227− 9

√
633

8(25 +
√

633)
, 1]T

ê2 = [−1, 1, 0]T

ê3 = [− 227− 9
√

633

8(−25 +
√

633)
,− 227− 9

√
633

8(−25 +
√

633)
, 1]T , (11)

where [., ., .]T stands for a 3D vector in position space.
(1c) Explicitly (numerically) evaluate the principal axes as unit vectors and compare
with those of the the regular cube given in the lecture. Discuss (guess) similarities and
differences of the rotation behavior of the regular and cheating dice.
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Solution: Evaluating the fractions above and normalizing them to one gives

ê1 = [0.599, 0.599, 0.530]T

ê2 = [−0.707, 0.707, 0]T

ê3 = [−0.375,−0.375, 0.847]T , (12)

These are actually not very different from those of Eq. (3.30) of the lecture, which are

ê′1 = [0.577, 0.577, 0.577]T

ê′2 = [0.707,−0.707, 0]T

ê′3 = [0.333, 0.333,−0.666]T , (13)

Note, that global signs of vectors do not matter for eigenvectors, so you can multiply entire
vectors with −1 while comparing, but not separate components. If we also evaluate the
fractions above and compare the principal moment of inertia with lecture notes, it reads
as,

I1 = 0.164452Ma2

I2 = 0.863326Ma2,

I3 = 0.861111Ma2,

I ′1 = 0.166Ma2,

I ′2 = 0.9166Ma2,

I ′3 = 0.9166Ma2, (14)

where I ′1, I
′
2 and I ′3 are the principal moment of inertia for homogeneous cube for the same

mass M . One can see from the comparison that principal axes and moments of inertia
are not strongly changed. Since those govern the rotational motion of the dice (week8), it
could not be so easy to tell the cheating dice apart from the real one via its behavior.

(2) Stability of rotation: [5pts] Assume you have a rigid body with λ3 > λ2 > λ1.
Show that rotation around the body axes e1 and e3 will be stable, but around e2 not.
Hint: Stability implies that a small perturbation away from that axis will remain small,
instability that it will grow (typically exponentially).

Solution: As given in the hint, stability of a rotation implies that a small perturbation
away from the axis of rotation will remain small. It can be understood from the Euler’s
equation in lecture notes (Eq. 3.36):

ω̇1 =
λ2 − λ3

λ1

ω2ω3,

ω̇2 =
λ3 − λ1

λ2

ω3ω1,

ω̇3 =
λ1 − λ2

λ3

ω1ω2, (15)
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where ω1, ω2, and ω3 are the rotation frequencies along principal axes e1, e2, and e3 respec-
tively. Let us start with a simplest case by setting a rigid body to rotate about one of its
principle axis, say e3. In this case, the frequencies ω1 and ω2 are zero, which implies that
the rigid body rotate with a constant frequency along the principal axis e3 in the absence
of an external torque. This is true for the rotation of a rigid body along any principal axes
irrespective of principal moments balance, but we focus on the rotation about the principal
axis, e3 in this discussion.

If we now introduce a small perturbation at t = 0 on the rigid body rotating along
principal axis e3 with frequency ω3, the frequencies ω1 and ω2 picks a nonzero values that
are, at least initially, small. It can be seen from third equation of ?? that ω̇3 remains very
small as ω1 and ω2 are small. In this case, the first two equation of ?? can be written as;

ω̈1 ≈
[
λ2 − λ3

λ1

ω3

]
ω̇2

≈ −
[

(λ3 − λ2)(λ3 − λ1)

λ1λ2

ω3

]
ω1

ω̈1 ≈ −Ω2ω1

and

ω̈2 ≈
[
λ3 − λ1

λ2

ω3

]
ω̇1

≈ −
[

(λ3 − λ1)(λ3 − λ2)

λ1λ2

ω3

]
ω2

ω̈2 ≈ −Ω2ω2, (16)

where Ω = (λ3 − λ1)(λ3 − λ2)ω3/λ1λ2 is a constant for a constant ω3 (ω̇3 is very small).
Let us now impose three condition on the value of principal moment λ3 to check the sta-
bility of the motion, which can be later generalized for other two principal moments, λ1

and λ2:
λ3 > λ2, λ1: The coefficient Ω2 is positive nonzero number for this value of λ3. The solu-
tions of Eq. (??) are,

ω1 = A cos(Ωt) +B sin(Ωt),

ω1 = C cos(Ωt) +D sin(Ωt), (17)

where A,B,C, and D are the costants. It is clear from Eq. (??) that ω1 and ω2 perform
a small oscillation around ω1 = ω2 = 0. Therefore, if a rigid body is rotating around the
principal axis with largest principal moment, the motion is stable against small perturba-
tions.
λ1 < λ3 < λ2 or λ2 < λ3 < λ1: In this case, the coefficient Ω2 is negative nonzero number,
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and the solution of Eq. (??) is a real exponential as,

ω1 = AeΩt +Be−Ωt,

ω1 = CeΩt +De−Ωt,

(18)

where A,B,C, and D are the costants. It can be seen from Fig. ?? that a small disturbance
under this condition can move rapidly away from ω1 = ω2 = 0. The rigid body rotating
without any external torque, the rotation about the principal axis with the intermediate
principal moment is an unstable motion.
λ3 < λ2, λ1: Again the coefficient Ω2 is a positive nonzero number, and ω1, ω2 will perform
a small oscillation similar to Eq. (??). Therefore, if a rigid body is rotating around the
principal axis with smallest principal moment, the motion is stable against small pertur-
bations.

It can be seen from the above explanation that the stability conditions are true for the
rotation of a rigid about any principal axes.

(3) Sceptre on the ground: [15pts] Consider a monarch’s golden sceptre as shown in
figure ??, which has fallen on the ground and is now circling around the contact point of
the handle and the ground with angular velocity Ω as shown.

Figure 1: We model the golden sceptre as a hollow sphere of mass m and radius r. The
length of the handle (ignore its width) is such that the contact point of the sphere with the
ground is a distance R from the contact point of the handle with the ground, as shown.

Solution: To understand the dynamics of the problem, let us start from the scratch. If we
look at the symmetry of the golden sceptre, it is not very difficult to notice that one of the
principal axis passes along the handle of the sceptre. The principal axis is indicated by x̂3

in Fig. ??. Again from the symmetry of the problem, the other two axes will be in a plane
intersecting with the principal axis x̂3, and perpendicular to it. The axes are labeled as x̂2

and x̂1, where x̂1 is into the page and not shown in the Fig. ??.

(3a) If the sceptre circles without slipping, find the angular velocity vector that describes
its rigid body motion.

Solution: The reason why it is slightly tricky to set up the overall angular velocity, is
that there are two different rotations at play here. On the one hand side there must be
a component of rotation around the x-axis, since the only fixed point is where the handle
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Figure 2: The figure shows a body frame defined by unit vectors x̂, ŷ, ẑ, and the principal
axes frame defined by unit vectors x̂1, x̂2, x̂3. The unit vector ê1 is into the page and not
shown here.

touches the ground and the sceptre circles around that. Since it is rolling without slipping,
its main body must simultaneously rotate round the figure symmetry axis as well.

To sort out the combination of these two, we now fix a body frame on golden sceptre
whose unit vectors are x̂, ŷ, and ẑ. The two angular velocities discussed above add up, as
we had seen in Eq. (2.85) and also used for eq. 3.41 of the lecture notes.

ω = ωzẑ + ω′x̂3, (19)

where ω′ is the angular velocity of golden sceptre about the main principal axes and ωz

the angular velocity of the principal axes about the space fixed frame (z-axis). From the
drawing we can read of that the rotational velocity about the z-axis points downwards (the
rotation of the golden sceptre is in the clockwise direction), so we have

ω = −Ωẑ + ω′x̂3, (20)

The contact points of the sphere of the sceptre form a circle of radius R (see diagram)
on the ground. But they also form a circle of radius r cosα on the sphere, where α is the
angle between the handle and the ground as indicated in Fig. ??. Since the golden sceptre
is circling without slipping, ΩR = ω′(r cosα), and thus

ω = −Ωẑ +
ΩR

r cosα
x̂3

= −Ωẑ +
ΩR

r cosα
(cosαx̂ + sinαẑ)

= −Ωẑ + (
ΩR

r
x̂ + Ωẑ),

ω =
ΩR

r
x̂, (21)

where tanα = r/R is used in the calculation. Note that the form above is just at a snapshot
in time where the sceptre axis is within the xz plane. (but we can always just adjust our
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xyz coordinate system such that this is the case.
(3b) Find the normal force between the ground and the sceptre.

Solution: We shall now find the time evolution of the angular momentum of the sceptre.
That turns out not to be constant, hence the ground must be exerting a force on the sceptre,
which leads to a torque.

The components of the angular velocity along the two principal axis x̂2 and x̂3 are

ω2 = −R
r

Ω sinα,

ω3 =
R

r
Ω cosα.

(22)

The principal moments are

I3 =
2

3
mr2,

I2 =
2

3
mr2 +m(r2 +R2). (23)

where I3 is calculated by using the parallel axis theorem. The angular momentum vector
of the golden sceptre is L = I2ω2x̂2 + I3ω3x̂3, so its horizontal component has magnitude
of Lh = I3ω3 cosα− I2ω2 sinα. Therefore, the magnitude of dL/dt is∣∣∣∣dLdt

∣∣∣∣ = LhΩ = (I3ω3 cosα− I2ω2 sinα)Ω

=

[(
2

3
mr2

)(
R

r
Ω cosα

)
cosα

−
(

2

3
mr2 +m(r2 +R2)

)(
− R

r
Ω sinα

)
sinα

]
Ω

=

[
(
2

3
mr2

){
R

r
Ω

}
+m(r2 +R2)

(
R

r
Ω sin2 α

)]
Ω

=
mΩ2R

r

[
2

3
r2 + r2

]
=

5

3
mΩ2rR, (24)

where we have used sinα = r/
√
r2 +R2 in third last line of Eq. (??). The direction of

dL/dt is out of the page. The torque (relative to the pivot) is due to the gravitational force
acting at the CM, along with the normal force N acting at the contact point. Therefore,
τ points out of the page with magnitude |τ | = (N − mg)R. Equating |τ | with dL/dt in
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Eq. (??) gives,

(N −mg)R =
5

3
mΩ2rR,

N = mg +
5

3
mΩ2r. (25)

This has the interesting property of being independent of R, and hence also α.

(4) Inertia tensor: [10pts] You can see from many examples in books that finding
moments of inertia analytically for complicated objects can be challenging. One way that
always works, is numerical integration. A very simple method for numerical integration,
is simply approximating the integral by a bunch of rectangles and writing

∫ b

a
f(x)dx ≈∑

k f(xk)∆x, where xk are a set of equally spaced points between a and b with spacing
∆x.

The template Assignment5 program draft v1.m allows you to generate quite com-
plicated rigid bodies assembled out of spheres, cuboids or cylinders, but starts with a
predefined “snow-figure”. It should then numerically find the moment of inertia tensor
(matrix) and diagonalize that matrix (again numerically) to show you the principal axes.
The script is long due to lots of visualisations. You may ignore most of it unless interested.

(4a) The first element of the moment of inertia tensor Ixx is already implemented. Imple-
ment the other ones and run the script (you can search for POSITION 3 in the script to
find the place).

(4b) If you change the number of elements in the rigid body from 5 to 3 (POSITION 1),
it will skip arms and nose. How does this affect the principal axes? Why?

Solution: The rigid body with its principal axes for element 5 and element 3 is shown
in Fig. ?? and Fig. ?? respectively. To understand the affect on the principal axes from
element 5 to 3, let us first start from the rigid body for element 3.

It can be seen from Fig. ?? that the rigid body is perfectly symmetric about an axis
passing through it along the z-direction. Therefore, this axis is one of the principal axis
for the rigid body as shown in Fig. ??. Other two axes should be in a perpendicular plane
intersecting this axis, which happened to be in X − Y plane at z = 0 for this case. The
principal axes reads as,

ê1 = [0.8470,−0.5316, 0]T ,

ê2 = [0.5316, 0.8470, 0]T ,

ê3 = [0, 0, 1]T . (26)

The rigid body in Fig. ?? gets arms and nose, which shift the symmetry of the rigid
compared to Fig. ??. It can be seen from the Fig. ?? that due to arms and nose, the rigid
body is almost perfectly symmetric along axes passing through it along z and x-directions.
Therefore, these axes are the principal axes as shown in the Fig. ??. Now the third
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principal axis is trivially along the Y direction. It can also be seen from the calculation:

ê′1 = [−1, 0, 0.0078]T ,

ê′2 = [0, 1, 0]T ,

ê′3 = [−0.0078, 0,−1]T . (27)

So a change in the symmetry of a rigid body will result in shift of principal axes.

Figure 3: The figure shows a rigid body for element 5 in the matlab script. The principal
axes are indicated by red, black, and blue arrows.

(4c) Now play a bit with the rigid body/figure, by roughly understanding how it is defined
(POSITION 2) and moving objects a bit by changing their centre (keep all coordinates
within −1 · · · 1). If you reduce the symmetry of the figure, what happens to the principal
axes? How does the magnitude of the moments of inertia reflect the shape of the object?

Solution: The rigid body in Fig. ?? is drastically disturbed from the symmetry present
in Fig. ?? and Fig. ??. As we discussed in 4 (b), the principal axes of a rigid body are the
virtue of its geometrical distribution. Therefore, the frame associated with the principal
axes (ê1, ê2 and ê3) is tilted by an angle with respect to body fixed frame (x̂, ŷ and ẑ)
compared to Fig. ?? and Fig. ?? because its geometrical distribution is not symmetric
along the axes of body frame. The principal axes for this case reads as,

ê′1 = [−1, 0.0022, 0.0066]T ,

ê′2 = [−0.0003, 0.9343,−0.3565]T ,

ê′3 = [−0.0070, 0.3565, 0.9343]T . (28)

Since moments of inertia also depend on the distribution of mass around the axis
of rotation, the change in the symmetry of a rigid body will alter its magnitude. The
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Figure 4: The figure shows a rigid body for element 3 in the matlab script. The principal
axes are indicated by red, black, and blue arrows.

magnitude of principal moments for three cases can be written as:

I?? =

0.2709 0 0
0 0.2115 0
0 0 0.1175

 ,

I?? =

0.1792 0 0
0 0.1680 0
0 0 0.0508

 ,
I?? =

0.1637 0 0
0 0.1637 0
0 0 0.0372

 ,
where I??, I??, and I?? are the principal moments for Fig. ??, Fig. ??, and Fig. ?? re-
spectively.
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Figure 5: The figure shows a rigid body for element 5 in the matlab script. The symmetry
of the rigid body has been disturbed by shifting the center and changing the length of
the shape in different elements. The principal axes are indicated by red, black, and blue
arrows.
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