
PHY 305, I-Semester 2020/21, Assignment 4

Instructor: Sebastian Wüster
Due-date: 03.10.2020

(1) Gravity assist: [10pts]
When sending space-probes out of the solar system (Pioneer, Voyager), humanity has
used a trick called ”gravity-assist” to help the probes reach solar escape velocity. As
sketched in the figure below, for this the space-probe does a close fly-by near a heavy
outer planet such as Saturn, changing its travelling direction while doing so.

Let the velocities in a sun fixed reference frame be v0 (probe in) v1 probe out
and Vplanet for the planet. Consider the situation where in a frame fixed on the planet the
probe comes in on a hyperbolic Kepler orbit with eccentricity ε, such that the asymptotic
trajectory far from the planet makes an angle θ with the x-axis, as shown. We denote
the velocities in this frame by w0,1.

left: (left) Space probe fly-by past
Saturn in a solar system fixed frame.
(right) The same in a planet fixed
frame. The sun is drawn for orien-
tation in the bottom right corner,
but not important in this question.

(1a) Show that θ = π − arccos (−1/ε).

Solution: From Kepler’s law for an elliptical orbit of a planet around a star is given by,

θ
φα c

a

Figure 1: Sketch

1



r =
a(1− ε2)

1 + ε cos (ϕ)
, (1)

where r is the distance of the planet from the star, ε is the eccentricity, a is the semimajor
axis of the orbit and ϕ is the angle made by the distance vector r with x axis. When
r →∞ we write,

1 + ε cos (ϕ∞) = 0, (2)

⇒ cos (ϕ∞) = −1

ε
(3)

where ϕ = ϕ∞ when r →∞. From Fig. (1) we can see that π = θ + ϕ∞. Hence we get,

θ = π − arccos (−1/ε) (4)

(1b) Using this, show that in the solar system frame v2
1 − v2

0 = 4w0V/ε > 0, where
e.g. v0 = |v0| etc. This means the space probe is accelerated by its fly-by past the planet.
Where does the required energy come from?

Solution: In the solar frame we can write,

v0 = w0 + Vplanet, (5)

v1 = w1 + Vplanet. (6)

Therefore,

|v1|2 − |v0|2 =
(
w2

1 + V2
planet − 2 w1 ·Vplanet

)
−
(
w2

0 + V2
planet − 2 w0 ·Vplanet

)
. (7)

From the energy conservation we know that,

|w0| = |w1|. (8)

Hence we get,

|v1|2 − |v0|2 = 2
(
w1 −w0

)
·Vplanet (9)

From figure we see that θ is angle between w1,Vplanet and also between −w0,Vplanet.
Hence,

w0 ·Vplanet = w0 Vplanet cos (θ), (10)

w1 ·Vplanet = −w1 Vplanet cos (θ). (11)

Hence we can rewrite Eq.(9) as,

2
(
w1 −w0

)
·Vplanet = 4 w0Vplanet cos (θ) (12)
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Since cos (θ) = cos (π − arccos (−1/ε)) = 1/(ε) we have,

|v1|2 − |v0|2 =
4 w0Vplanet

ε
> 0 (13)

(1c) What happens when the direction of planet motion is opposite to that shown in the
figure (with all other data identical)?

Solution: If the direction of planet motion is opposite it changes the sign of the scalar
products in Eq. (10) and (11). Hence,

|v1|2 − |v0|2 = −4 w0Vplanet
ε

< 0. (14)

This means the probe will be decelerated.

(2) Ropes and Pulleys: [10pts] Consider the arrangement of a single rope, threaded
through five pulleys shown below. It is rigidly attached to the ceiling but each pulley can
freely roll within the rope. Three weights are hung on the lower pulleys as indicated, with
m1 = 5m0, m2 = 3m0, m3 = 7m0, where m0 is some reference mass.

left: Sketch of rope, weight and
pulleys as described in the text

(2a) Setup the Lagrangian in the generalised coordinates given by x and y, which are the
upwards motion of weights m1 and m3 relative to their initial position.

Solution: If the left mass m1 goes up by x and the right mass m2 by y then the middle
mass m3 will go down by x+y. Therefore the Lagrangian of the system,

L =
1

2
(5m0)ẋ2 +

1

2
(3m0)(−ẋ− ẏ)2 +

1

2
(7m0)ẏ2,

−
(

5m0gx+ 3m0g(−x− y) + 7m0gy
)
, (15)

L = 4m0ẋ
2 + 3m0ẋẏ + 5m0ẏ

2 − 2m0g(x+ 2y) (16)
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(2b) Find at least one continuous symmetry of that Lagrangian and then use Noether’s
theorem to identify the associated conserved quantity.

Solution: The Lagrangian in Eq. (16) will be invariant under the transformation x →
x+ 2ε and y → y − ε. Hence if we use the Noether’s theorem with Qx = 2 and Qy = −1
the conserved momentum will be,

∂L

∂ẋ
Qx +

∂L

∂ẏ
Qy =m0(8ẋ+ 3ẏ)(2) +m0(10ẋ+ 3ẏ)(−1), (17)

⇒ 3m0(2ẋ+ ẏ) = const. (18)

(2c) Derive Lagrange equations and from those verify explicitly that the quantity is indeed
conserved.

Solution: The EL equation will be,

∂L

∂x
− d

dt

∂L

∂ẋ
= −2m0g − 8m0ẍ− 3m0ÿ = 0, (19)

∂L

∂y
− d

dt

∂L

∂ẏ
= −4m0g − 10m0ẍ− 3m0ÿ = 0 (20)

8m0ẍ+ 3m0ÿ = −2m0g, (21)

10m0ẍ+ 3m0ÿ = −4m0g (22)

Subtracting 2×(21) from (22) gives,

6m0ẍ+ 3m0ÿ = 0 ⇒ d

dt

(
6m0ẋ+ 3m0ẏ

)
= 0, (23)

⇒ 3m0(2ẋ+ ẏ) = const. (24)

(3) Swivel-chair: [10pts] Watch the following videos related to angular momentum
conservation ( video1 , video2 ) and refer to the diagram below.
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left: Sketch of professor (blue) on
swivel chair (brown), viewed from
the top. We also show the lab-frame
(blue) and co-rotating frame (red).
We assume the professor to be mass-
less but carrying heavy weights of
mass m in each hand. The distance
from hands to rotation axis is r(t).

(3a) Using angular momentum conservation (why can you use it?), find the rotation
velocity Ω(t) (green) as a function of the initial rotational velocity Ω0 = Ω(t = 0) > 0 and
the initial distance of the weights from the body r0 = r(t = 0) > 0 and the unspecified
function r(t).

Solution: Since there is no external torque acting on the system we can use angular
momentum conservation. Using the definition L = r × p, the fact that |L| = rp since r
and p are orthogonal and p = mv = mrΩ, we reach

const = L = 2mr2
0 Ω0 = 2mr(t)2 Ω(t), (25)

⇒ Ω(t) =

(
r2

0

r(t)

)2

Ω0. (26)

Thus, as the person on the chair pulls the hands with the weights in (r(t) reduces from its
initial value r0), the rotational velocity increases quadratically with r(t).

Note that pulling the hands in does not give rise to a torque N around the origin, since
N = r× F and F and r are parallel, in which case their cross product vanishes.

(3b) In our derivation of the fictitious forces in a rotating coordinate system in section
2.9.2 (Eq. 2.87), we had assumed that the rotation axis does not depend on time. Gen-
eralize the derivation for the case where dΩ/dt 6= 0. Give an equation for the additional
fictitious force that you find.

Solution: If we re-trace the derivation of 2.87 for the case dΩ/dt 6= 0 we see that (Eq. 2.85)
still holds unchanged:

(
∂Q

dt

)
S0

=

(
∂Q′′

dt

)
S′′

+ Ω(t)×Q′′. (27)

However when we apply this to the conversion of Newton’s equation, we get additional
terms, since for the second application we get time-derivatives acting on Ω(t) that we had
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previously set to zero:(
d2r

dt2

)
S0

=

(
d

dt

)
S′′

[(
dr′′

dt

)
S′′

+ Ω(t)× r′′

]
+ Ω(t)×

[(
dr′′

dt

)
S′′

+ Ω(t)× r′′

]
.

(28)

(
d2r

dt2

)
S0

= r̈′′ + 2Ω× ṙ′′ + Ω̇× r′′ + Ω× (Ω× r′′). (29)

The additional fictitious force arising from the third term on the right is known as az-
imuthal force and given by

F azimuthal = m Ω̇× r′′. (30)

(3c) Now rederive the result of (3a), using fictitious forces in the frame fixed on the person
on the chair (see figure).

Solution: The fictitious forces will be,

F = 2mΩ(t)× ṙ′′︸ ︷︷ ︸
=Fcor

+m Ω̇(t)× r′′︸ ︷︷ ︸
=F azimuthal

+mΩ(t)× (Ω(t)× r′′)︸ ︷︷ ︸
=Fcf

. (31)

The centrifugal force Fcf will be pointing radially outwards and hence has to be overcome
by the forces exerted by the arms to pull the hands/weights inwards. The Coriolis force
Fcor and azimuthal force from part (b) both point in the azimuthal direction (in the xy
plane and perpendicular to r′′. However they must both cancel, since otherwise there would
be a sideways force, which would cause sideways motion and hence rotation. However that
is a contradiction to us saying that we work in the frame rotating with the weights/hands.
If we build in that Ω is increasing (and hence Ω̇(t) parallel to Ω(t)) and the hands moving
inwards (so ṙ′′ ∼ −r), you can convince yourself with the right hand rule and a diagram,
that Fcor and F azimuthal are pointing in opposite directions. Since all vectors in the cross
products are orthogonal, we can finally write

2mΩ(t) (−ṙ′′)︸ ︷︷ ︸
=|ṙ′′|

= mΩ̇(t)r′′ (32)

After multiplying both sides by r′′ this again states that

d

dt
(mΩ(t)r′′(t)2) = 0, (33)

i.e. angular momentum is conserved, and we thus reach the same relation as in (3a).

(4) Solar system simulator: [10pts] Formulate Newton’s equations for all the major
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bodies in the solar system. The template Assignment4 program draft v1.m solves these
for the subset (sun, earth, mars) in two dimensions (x,y).

(4a) Find the initial conditions that place earth and mars on the correct orbit (see inter-
net) and verify them, using assignment4 solarsystem slideshow v1.m, for example by
checking for the correct orbital period.

Solution:
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Figure 2: Orbiting Earth and Mars around Sun.
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(4b) With the script assignment4 radialevolution draft v1.m, you can check the time
evolution of the radial distance of mars from the sun. Edit the script so that panel (b)
plots the effective radial potential Veff(r) and the energy of mars and explain the evolution
of the radial distance with it. Then make Mars’s orbit more eccentric, by reducing its
initial velocity with an arbitrary scale factor. What happens?

Solution: The effective potential for mars with mass m and sun with mass M is given by,

Veff =
L2

2mr2
− GmM

r
, (34)

where the second term in Veff is the gravitational potential and first term corresponds
to the centrifugal potential. Now with this effective potential the radial distance of mars
from the sun oscillates with time i.e the mars revolves around the sun changing it’s radial
distance periodically as it moves along the elliptical orbit. Now if we reduce the initial
velocity the frequency of oscillation increases.

(4c) [Bonus] Change the simulator to a triple-star system by changing earth and mars
masses to equal that of the sun. What happens? Can you engineer a “stable” triple-star
system?
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Figure 3: (a) Time evolution of radial distance of Mars. (b) Effective potential.
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Figure 4: (c) Time evolution of radial distance of Mars after reducing the velocity to half.
(d) Effective potential after reducing the velocity.
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Figure 5: Triple sun system.
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