
PHY 305, I-Semester 2020/21, Assignment 3 solution

(1) Constrained system: [10pts]
left: A ball of mass m1 can move without
friction on a surface (grey) which forms the
xy plane. It is connected through a rope
which is threaded through a hole in the sur-
face with a mass m2 hanging below the sur-
face. The latter is confined in a plexiglass
tube, so that it can only move along the z
direction. Consider only cases without slack
in the rope and it being straight on the table,
as in the figure

(1a) Explicitly write the constraint equations for this problem, then discuss how
many degrees of freedom the problem has and which generalised coordinates you would
propose.

Solution: Without constraints 2 balls in 3 dimension would be 6 degrees of freedom. Lets
call these x1, y1, z1 for mass 1 and x1, y2, z3 for mass 2. The first constraint is that
mass m1 must move on the surface, hence z1 = 0 (we place z = 0 on the surface). The
second constraint is that mass m2 must move in the tube, hence x2 = 0 and y2 = 0 (we
place the origin of the xy plane at the tube. All these constraint equations already take
the form (2.21) of the lecture). The final constraint is that the length ` of the string is
constant. Thus we can write a final constraint equation in the remaining coordinates
as
√
x21 + y21 + |z2| = `. We started with 6 DGF and then found 4 constraint equations

which leaves us with two degrees of freedom.
We now switching to polar coordinates for the motion of mass 1 and hence have co-

ordinates r, ϕ (see section 1.4.6). See drawing below but swap θ ↔ ϕ in the drawing.

We can rewrite the last constraint equation as z = −(`− r) and thus express it in terms
of r. So r, ϕ are a useful set of generalized coordinates. From z = −(` − r) we can also
directly deduce ż = ṙ.
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(1b) Write the Lagrangian for this problem.

Solution: Using x = r cosϕ, y = r sinϕ, the kinetic energy of mass m1 is

T1 =
1

2
m1(ẋ

2 + ẏ2) =
1

2
m1(ṙ

2 + r2ϕ̇2)

and that of mass m2 is

T2 =
1

2
m2ż

2 =
1

2
m2ṙ

2

.
Thus, the total kinetic energy of the system is

T = T1 + T2

⇒ T =
1

2
m1(ṙ

2 + r2ϕ̇2) +
1

2
m2 ṙ

2 (1)

Taking the table as the reference, the Potential energy of mass m1 is

V1 = 0

and that of mass m2 is
V2 = m2 g z

⇒ V2 = −m2 g (l − r)
We arrive at a total potential energy of the system

V = V1 + V2

⇒ V = −m2 g (l − r) (2)

Finally, the Lagrangian L is given by

L = T − V

Using (2) and (3) ,

⇒ L =
1

2
m1(ṙ

2 + r2ϕ̇2) +
1

2
m2 ṙ

2 +m2 g (l − r). (3)

(1c) Find the Lagrange equations, identify conditions where mass m2 can be at rest, and
find the frequency of small oscillations around these conditions.
Solution: Writing down the Lagrange equation for r gives

(m1 +m2)r̈ = m1 r ϕ̇
2 −m2 g. (4)

This equation says that the acceleration of the two masses along the direction of the string
is determined by a balance of the gravitational force acting on mass 2 and the centrifugal
force of m1. The Lagrange equation for ϕ is

d

dt
(m1 r

2 ϕ̇) = 0.
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This equation says that the angular momentum Lz = m1r
2ϕ̇ is conserved. We can use

this knowledge to eliminate ϕ̇ from Eq. 4 to reach

(m1 +m2)r̈ =
L2
z

m1r
−m2g. (5)

Conditions where m2 remains at rest must mean that ż = 0 and also z̈ = 0. Due to the
constraint z = −(` − r) this implies that also ṙ = 0 and also r̈ = 0, hence from Eq. 5

the sought conditions are r = L2
z

m1m2g
≡ r0. To find the frequency of small oscillations, we

Taylor expand the rhs. of (4) near r0 to find

(m1 +m2)r̈ = −
(
g2m1m

2
2

L2
z

)
(r − r0). (6)

By comparison with the differential equation for the simple harmonic oscillator ẍ = −ω2x,
we infer for the (angular) frequency for oscillations around the equilibrium positions:

ω =

√
g2m1m2

2

L2
z(m1 +m2)

. (7)

(2) Alien fun: [10pts] Europa is a moon of Jupiter with a surface made of ice. An
asteroid impact has made a perfectly shaped impact crater as shown in the figure below.
An alien life form living on Europa wants to entertain itself by using the crater as a slide,
frictionlessly sliding as shown in the figure such that it remains a constant height h over
the bottom of the crater, despite Europa’s gravity with surface acceleration gE acting on
the alien.

left: Sketch of impact crater (blue).
It has a radius R0 at the top and
a total depth of d, in between the
radius shrinks linearly. The alien is
violet, sliding in a direction ini

(2a) Setup the Lagrangian in useful generalised coordinates, and find the Lagrange equa-
tions.

Solution: Let r and θ be the generalised coordinates, where r be the distance from the axis
and ϕ be the angle around the cone.
So, if α is the semi-vertical angle of the cone then,

tanα = R0/d (8)

where R0 is the radius of the cone at the top and d is the depth of the cone.
If r0 is the radius of the cone corresponding to height h, then we have

tanα = r0/h (9)
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So, from (5) and (6);
R0/d = r0/h

⇒ r0 = R0h/d (10)

Now, if r is the distance of the particle from the axis, then the distance of the particle up
along the cone is r/ sinα and hence the component of the velocity up along the cone is
ṙ/sinα and the component of the velocity around the cone is r ϕ̇.
So, the square of the speed is

v2 = ṙ2/ sin2 α + r2ϕ̇2

. The kinetic energy is therefore

T =
1

2
mv2 =

1

2
m

(
ṙ2

sin2 α
+ r2ϕ̇2

)
(11)

Since r and ϕ are the generalised coordinates, we have to express our Lagrangian in terms
of r and ϕ.
So the height from the bottom = r/ tanα corresponding to distance r from the axis of the
cone and hence Potential energy is

V = mgh =
mgr

tanα
(12)

From equation (8) and (9), the Lagrangian L is given by

L = T − V ⇒ L =
1

2
m

(
ṙ2

sin2 α
+ r2ϕ̇2

)
+

mgr

tanα
(13)

Now, using Lagrange equation; the equation of motion are as follows:
For r:

r̈ = r ϕ̇2 sin2 α− g cosα sinα (14)

For ϕ:
d

dt
(mr2ϕ̇) = 0

⇒ mr2ϕ̇ = L (constant) (15)

L stands for angular momentum.

(2b) What is the frequency ω with which the Alien will complete its circles?

Solution: We need to find the frequency ω with which the Alien complete its circle of
radius r0 at height h from the bottom of the cone.
Since the radius of the circle = r0 is fixed, therefore

ṙ = r̈ = 0

Hence, equation (11) yields

r ϕ̇2 sin2 α− g cosα sinα = 0
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⇒ r ϕ̇2 sin2 α = g cosα sinα⇒ ω = ϕ̇ =

√
g

r0 tanα

Using equation (7),

ω = ϕ̇ =

√
g d

R0h tanα
(16)

Hence, the frequency with which the Alien moves in its circle is given by equation(13).

(2c) If it slightly misses the height h, what will be the frequency of oscillations around
that height h?

Solution: We need to find the frequency of oscillations around height h. This is also the
frequency around radius r0.Let Ω be this frequency.

Using the value of L from equation (12) into equation (11), we can get;

r̈ =
L2 sin2 α

m2 r3
− g sinα cosα (17)

Let us write the about expression in terms of height h′ where h′ is the height from the
bottom of the cone corresponding to the radius r0.
So, using equation (5), we have ;

r

h′
= tanα =

R0

d

r =
R0h

′

d
(18)

Using equation (15), equation (14) becomes:

R0 ḧ′

d
=
L2 d3 sin2 α

m2R3
0h
′3 − g sinα cosα (19)

When h′ = h = constant⇒ ḧ′ = 0 above equation becomes;

L2 d3 sin2 α

m2R3
0h

3
− g sinα cosα (20)

Now, let h′(t) = h+ δ(t) where δ(t) is a small deviation from height h.
After expanding upto first order, we have;

1

h′3
=

1

(h+ δ)3
=

1

h3 + 3h2 δ
=

1

h3
(
1 + 3 δ

h

) =
1

h3

(
1− 3δ

h

)
and also,

r̈ =
R0 ḧ′

d
[ from (15) ]

where
ḧ′ = δ̈
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Using above equations, in equation (16)

R0 δ̈

d
=
L2 d3 sin2 α

m2R3
0h

3

(
1− 3δ

h

)
− g sinα cosα (21)

Now, using equation (17), above equation becomes;

R0 δ̈

d
= −

(
3L2 d3 sin2 α

m2R3
0h

4

)
δ

⇒ δ̈ = −
(

3L2 d4 sin2 α

m2R4
0h

4

)
δ (22)

So, from the above equation, the frequency of oscillation around the height h is given by,

Ω =
3L2 d4 sin2 α

m2R4
0h

4

(3) Double pendulum: [10pts] Find the Lagrangian for the double pendulum shown
in the lecture notes, and from that the Lagrange equations.

Solution: In cartesian coordinates, the coordinates of mass m1 are given by;

x1 = l1 sin θ1 ⇒ ẋ1 = l1 cos θ1 θ̇1

y1 = −l1 cos θ1 ⇒ ẏ1 = l1 sin θ1 θ̇1

and that of mass m2 are given by;

x2 = l1 sin θ1 + l2 sin θ2 ⇒ ẋ2 = l1 cos θ1 θ̇1 + l2 cos θ2 θ̇2

y2 = −(l1 cos θ1 + l2 cos θ2)⇒ ẋ2 = l1 sin θ1 θ̇1 + l2 sin θ2 θ̇2
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The kinetic energy of mass m1 is

T1 =
1

2
m1(ẋ1

2 + ẏ1
2)

⇒ T1 =
1

2
m1 l

2
1 θ̇1

2

and the kinetic energy of mass m2 is

T2 =
1

2
m2(ẋ2

2 + ẏ2
2)

⇒ T2 =
1

2
m2(l

2
1 θ̇1

2
+ l22 θ̇2

2
+ 2 l1 l2 θ̇1 θ̇2(cos θ1 cos θ2 + sin θ1 sin θ2))

⇒ T2 =
1

2
m2(l

2
1 θ̇1

2
+ l22 θ̇2

2
+ 2 l1 l2 θ̇1 θ̇2 cos (θ1 − θ2))

So, the total kinetic energy T is given by;

T = T1 + T2

T =
1

2
m1 l

2
1 θ̇1

2
+

1

2
m2(l

2
1 θ̇1

2
+ l22 θ̇2

2
+ 2 l1 l2 θ̇1 θ̇2 cos (θ1 − θ2)) (23)

Now, the potential energy of mass m1 is given by;

V1 = −m1g l1 cos θ1

and of mass m2 is
V2 = −m2g (l1 cos θ1 + l2 cos θ2)

The total potential energy is
V = V1 + V2

⇒ V = −m1g l1 cos θ1 −m2g (l1 cos θ1 + l2 cos θ2)

⇒ V = −(m1 +m2)g l1 cos θ1 −m2g l2 cos θ2 (24)

Hence, using (20) and (21),the Lagrangian L = T − V is given by

L =
1

2
m1 l

2
1 θ̇1

2
+

1

2
m2(l

2
1 θ̇1

2
+l22 θ̇2

2
+2 l1 l2 θ̇1 θ̇2 cos (θ1 − θ2))+(m1+m2)g l1 cos θ1+m2g l2 cos θ2

(25)
The Lagrange equation is given by;
For θ1;

(m1 +m2) l
2
1 θ̈1 +m2l1l2θ̈2 cos (θ1 − θ2) +m2l1l2θ̇2

2
sin (θ1 − θ2) + (m1 +m2)g l1 sin θ1 = 0

For θ2;

m2l
2
2θ̈2 +m2l1l2θ̈1 cos (θ1 − θ2)−m2l1l2θ̇1

2
sin (θ1 − θ2) +m2gl2 sin θ2 = 0

(4) Bead on a spinning hoop: [10pts] Read again example 13 of the lecture notes.
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(4a) Then implement the equation of motion using the same techniques as for assignment
1 Q4, into the same template code.

(4b) Plot the dynamics for some different initial angles θ(t = 0), for ω > ωc, or ω < ωc,
include positions very close to the equilibrium angles θ0 in your initial choices. Discuss
your results.
Solution:When we are below the critical frequency ω < ωc, the bead likes to sit at the
bottom of the ring and when started elsewhere oscillates over the bottom, Fig. 1. For
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t

-0.5

0

0.5

1
angle

Figure 1: Below the critical frequency, the bead likes to be at the bottom.

ω > ωc, the bottom becomes an unstable fixed point (see e.g. book by Taylor), and even
if we start very close to it, with θ(t = 0) = 0.00001, the bead moves far away from this
point, being driven to the other fixed point at θ0 = cos−1 ( g

ω2R
), which happens to be stable,

see Fig. 2 (left). Starting near that stable fixed point, the bead performs small harmonic
oscillations around θ0 (right).
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Figure 2: Starting the bead near an unstable (left) or stable (right) fixed point gives quite
different motion.

(4c) A realistic bead would experience sliding friction on the hoop. Assume this is man-
ifest in the equation of motion by an additional damping term θ̈(t) = −γθ(t), and rerun
simulations from some arbitrary initial conditions. What do you find?
Solution:In the presence of friction oscillations are damped, as expected (Fig. 3, left).
This time if we start near the unstable fixed point, the bead will actually move to the stable
fixed point and settle there (Fig. 3, right).
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Figure 3: Bead dynamics in the presence of friction.

9


