
PHY 305, I-Semester 2020/21, Assignment 2, solution

(1) Lagrange equations: [10pts] A spherical pendulum is shown in Fig. 1 and
described in the caption.

(1a) Considering the action of gravity on the pendulum mass, write down the Lagrangian
and from that the Lagrange equation using generalized coordinates θ and ϕ.

(1b) Interpret the equation for ϕ in terms of a physical conservation law. Give the
conserved quantity a name (symbol).

(1c) Try to reach an equation of the form θ̈ = − ∂
∂θ
Veff(θ), where Veff(θ) is called the

“effective potential” for θ. For this you can use the conserved quantity from (1b) to
eliminate the ϕ dependence in the θ equation. Make a plot or drawing of Veff(θ), and
based on your results from (1b) and (1c) discuss which dynamics you expect for the
pendulum without actually solving the differential equations.

Figure 1: Sketch of spherical pendulum. A
ball of mass m (violet) is attached on a rigid
massless stick of length l that can somehow
freely rotate in all directions. The position
of the ball is thus best described in terms of
spherical polar angles θ and ϕ. We ignore the
support beam (brown) and assume all angles
are possible.

Solution
1(a) Lets assume the zero of potential energy is defined at the suspension point of the
massless stick, the potential energy of the pendulum is V = −mglcos(θ). The kinetic
energy of the pendulum with rigid stick of the length l can be written as:

K.E. =
1

2
m[l2θ̇2 + l2sin2(θ)φ̇2], (1)

where θ and φ are the generalized coordinates of the pendulum. To find this you start with

K.E. =
1

2
m[ẋ2 + ẏ2 + ż2], (2)
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and then insert the constraint equations

x(t) = l sin(ϕ) sin(θ),

y(t) = l cos(ϕ) sin(θ),

z(t) = l cos(θ). (3)

and then use the product rule a few times and sin2 + cos2 = 1 a few times.
The Lagrangian of the pendulum can now be written as:

L = K.E.− V

=
1

2
m[l2θ̇2 + l2 sin2(θ)φ̇2] +mgl cos(θ). (4)

The Lagrange equation for the generalized coordinates θ and φ are found from:

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0

∂L

∂φ
− d

dt

∂L

∂φ̇
= 0 (5)

and turn out as:

ml2θ̈ −ml2 sin (θ) cos (θ)φ̇2 +mgl sin (θ) = 0, (6)

d

dt
(ml2 sin2(θ)φ̇) = 0. (7)

1(b) Using (7), the quantity Lz = ml2 sin2(θ)φ̇ is constant in time. It turns out this is
the angular momentum along the z-direction, hence the name.
1(c) Using the information of φ̇ from section 1(b), equation of motion for generalized
coordinate (6) can be written as:

ml2θ̈ = −
(
−ml2sin(θ)cos(θ)

(
Lz

ml2sin2(θ)2

)2

+mgl sin(θ)

)
,

θ̈ = −
(
− L2

zcos(θ)

m2l4 sin3(θ)
+
g

l
sin(θ)

)
,

θ̈ = − ∂

∂θ

(
1

2

L2
z

m2l4 sin2(θ)
− g

l
cos(θ)

)
,

θ̈ = − ∂

∂θ
(Veff (θ)), (8)

where Veff (θ) = 1
2

L2
z

m2l4 sin2(θ)
− g

l
cos(θ) is the effective potential experienced by pendulum.

An important point here: we must substitute for Lz into the equations of motion (6).
If you substitute Lz for φ̇ directly into the Lagrangian (4), you will derive an equation that
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looks like the one above, but you will get a minus sign wrong! This is because Lagrange’s
equations are derived under the assumption that θ and φ are independent coordinates.

We plot the effective potential in Fig. 2. As the Lagrangian (4) does not explicitely depend
on the time coordinate (t), the total energy of the pendulum is a conserved quantity. For
a given value of energy (E = −0.5), particle motion is restricted to the region Veff ≤ E.
So from the Fig. 2 we see that the motion is pinned between two points θ1(≈ 0.09) and
θ2(≈ 1.04), where θ1 and θ2 are the angles at which the total energy curve (red line)
crosses effective potential curve (blue line). If we draw the motion of the pendulum in
real space, it must therefore look something like Fig. 3, in which the bob oscillates between
the two extremes: θ1 ≤ θ ≤ θ2.

There is a stable orbit which lies between the two extremal points at θ = θ0, corre-
sponding to the minimum of Veff (at θ ≈ 0.3 in Fig. 2). This occurs if we balance the
angular momentum Lz and the energy E just right. We can look at small oscillations
around θ0 by expanding θ = θ0 + δθ. Substituting into the equation of motion for
generalized coordniate θ (8) and ignoring higher order terms, we have

δθ̈ ≈ −
(
∂2Veff
∂θ2

|θ=θ0
)
δθ

δθ̈ ≈ −Ω2δθ

=⇒ δθ ≈ cos(Ωt)δθ, (9)

where Ω2 =
∂2Veff
∂θ2
|θ=θ0 is the frequency of the oscillation. It can be seen from Eq. (9) that

a small oscillation around the stable orbit behaves like a simple harmonic motion.
(2) Variational TISE: [5pts] Consider a quantum particle in 1D of mass m and with
potential energy V (x). The quantum mechanical expectation value of energy, or “energy
functional” is

H =

∫ ∞
−∞

dx Ψ∗(x)

[
− ~2

2m

∂2

∂x2
+ V (x)

]
Ψ(x). (10)

Show that the time-independent Schrödinger equation follows as Euler-Lagrange equation
from finding a stationary solution of the functional H̃ = H − E

∫∞
−∞ dx|Ψ(x)|2, where E

initially is only a Lagrange multiplier1.
Hints: (i) For the calculation, treat Ψ(x) and Ψ∗(x) as independent functions and form
the EL-eqns wrt. Ψ∗(x).

Solution: We can write the complete functional as

H̃ =

∫ ∞
−∞

dx

[
Ψ∗(x)

[
− ~2

2m

∂2

∂x2

]
Ψ(x) + Ψ∗(x)V (x)Ψ(x)− E Ψ∗(x)Ψ(x)

]

≡
∫ ∞
−∞

dx f [Ψ∗(x),Ψ∗(x)′,Ψ(x),Ψ(x)′] (11)

1We will explain this concept in the TA class, you don’t need to know what it means for the solution.
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Figure 2: Effective potential (Veff ) vs θ is shown here with blue line for Lz = 0.1,m =
1, l = 1, and g = 1. Total energy of the pendulum is shown for E = −0.5 with red line.

To find the stationary solution for the functional we use the Euler Lagrange equation
which reads here

∂f

∂Ψ∗(x)
− d

dx

∂f

∂Ψ∗(x)′
= 0 (12)

+V (x)Ψ(x)− EΨ(x)− ~2

2m

d2Ψ(x)

dx2
= 0 (13)

⇒ − ~2

2m

d2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x). (14)

which is the TISE we were supposed to find. [Note: if you wanted the functional to be
more symmetric in Ψ versus Ψ∗ you could have first moved a spatial derivative onto Ψ∗

using integration by parts and would have found the same answer]

(3) Fastest Slide: You are constructing a water-park, and want to design a slide as
shown in such that your customers reach from the top to the end of the slide in the
shortest time. Assuming any effect of the water is negligible, excepting making sure there
is no friction, so that people slide under gravity only, use the calculus of variations to find
the shape of the slide.

(3a) [4pts] First show the Beltrami identity: If a functional to be minimized does not
depend explicitly on x, i.e.

S =

∫ x2

x1

dxf [y(x), y′(x)] (15)
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Figure 3: Motion of pendulum is shown between θ1 ≤ θ ≤ θ2.

Figure 4: Waterslide, of starting height 0 =
y(0) and length xf . The slide profile is given
by the function y(x).

instead of lecture Eq. (2.6), we can use an alternative form of the Euler-Lagrange
Eq. (2.12) to find the solution, namely:

f − y′ ∂
∂y′

f = const. (16)

(3b) [3pts] Show that the total time taken (and hence the functional to be minimized), is

T =
1√
2g

∫ xf

x=0

√
y′(x) + 1

y(x)
dx, (17)

where g is the acceleration due to gravity at earth’s surface.

(3c) [5pts] Using Eq. (16), write down the differential equation for the slide-profile y(x)
that minimizes (17).
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(3d) [3pts] Solve that equation to show that we can parametrically write the slide profile
as

x =
2s− sin (2s)

1− cos (2sf )
, (18)

y =
1− cos (2s)

1− cos (2sf )
, (19)

for 0 ≤ s ≤ sf , where sf is a solution of xf =
2sf−sin (2sf )

1−cos (2sf )
. Depending on your method of

solution you might end up with a slightly different parametrisation, you can check if it
gives the same curve, by plotting it together with (19) e.g. using the script in Q4. We
also shall use that script to analyze your answer.

Solution:
3(a) If we write the EL equation for the functional,

∂f

dy
− d

dx

∂f

dy′
= 0. (20)

If we multiply the equation with y′ we can write,

y′
∂f

dy
= y′

d

dx

∂f

dy′
(21)

Using chain rule we get,

df

dx
=
∂f

∂y
y′ +

∂f

∂y′
y′′ +

∂f

∂x
, (22)

⇒ ∂f

∂y
y′ =

df

dx
− ∂f

∂y′
y′′ − ∂f

∂x
. (23)

Putting (23) in (21),

df

dx
− ∂f

∂y′
y′′ − ∂f

∂x
− y′ d

dx

∂f

dy′
= 0. (24)

By product rule the last term in (24) can be written as,

y′
d

dx

∂f

dy′
=

d

dx

(
∂f

∂y′
y′

)
− ∂f

∂y′
y′′. (25)

Rearranging the equation will give,

d

dx

(
f − y′ ∂f

∂y′

)
=
∂f

∂x
(26)
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Now since the functional does not explicitly depend on x we can say,

d

dx

(
f − y′ ∂f

∂y′

)
= 0, (27)

⇒ f − y′ ∂f
∂y′

= const. (28)

3(b) We see in Fig.(4) a small change in distance s from the origin is given by

δf 2 = δx2 + δy2. Hence,(
ds

dt

)2

=

(
dx

dt

)2

+

(
dy

dt

)2

, (29)

=

(
dx

dt

)2 [
1 +

(
dy

dt

)2/(
dx

dt

)2]
, (30)

=

(
dx

dt

)2 (
1 + (y′)2

)
(31)

Now energy is given by,

E =
1

2
mv2 −mgy (32)

Since initial height and velocity is 0 initial energy E = 0. Hence we can write,

1

2
m

(
ds

dt

)2

−mgy = 0, (33)

⇒ 1

2
m

(
dx

dt

)2 (
1 + (y′)2

)
−mgy = 0 (34)

Rearrangement will give, (
dx

dt

)2

=
2gy

1 + (y′)2
. (35)

Now time of passage from x=0 t0 x = xf is given by,

T =

∫ T

0

dt =

∫ xf

0

1

dx/dt
dx =

∫ xf

0

√
1 + (y′)2

2gy
dx. (36)

Hence the total time taken by the slide is given by,

T =
1√
2g

∫ xf

x=0

√
y′(x)2 + 1

y(x)
dx (37)
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3(c) The integrand we need to minimize in (37) is,

F (y, y′) =
1√
2g

√
y′(x)2 + 1

y(x)
. (38)

We use Eq. (16) to obtain,

1√
2g

(y′)2√
y(1 + (y′)2)

− 1√
2g

√
(y′)2 + 1

y
= const. (39)

Simplyfying this gives,

1√
y(1 + (y′)2)

=
1

c
, (40)

where
√

2g is absorbed into the constant c. Hence we will get,

y′(x) = ±

√
c2 − y
y

. (41)

3(d) Eq. (41) can be written as,∫
dx =

∫ √
y

c2 − y
dy. (42)

To solve this integral we can substitute y = c2 sin2 (s). Hence,∫ √
y

c2 − y
dy = 2c2

∫
sin (s) cos (s)

√
c2 sin2 (s)

c2 − c2 sin2 (s)
, (43)

⇒
∫ √

y

c2 − y
dy =

1

2
c2(2s− sin (2s)) + d, (44)

where d is a constant. Hence we have,

x =
1

2
c2(2s− sin (2s)) + d and y = c2 sin2 (s) =

1

2
c2
(
1− cos (2s)

)
. (45)

When s=0, the equations give x=d and y=0. But since at y(0)=0 we can write d=0. Now
when s = sf ⇒ x = xf , then

xf =
1

2
c2
(
2sf − sin (2sf )

)
=

2sf − sin (2sf )

1− cos (2sf )
, (46)

⇒ c2 =
2

1− cos (2sf )
. (47)
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Therefore parametric equations will be,

x =
2s− sin (2s)

1− cos (2sf )
, (48)

y =
1− cos (2s)

1− cos (2sf )
, (49)

(4) Computational question: Fastest Slide again: [10pts] We now try to get
the results from Q3 with the computer instead. For nicer plots, we slightly change
coordinates, using ỹ(x) = h − y(x), where y(x) is the y-coordinate from Q3. From the
computational point of view, the variational problem falls into the class of “optimisation
problems”. You have a function f(p1, p2, p3, · · · ) that depends on a large number of
parameters pk and want to optimise it. In our case, f = T from Eq. (17) and the input
parameters are the function values yk = y(xk) at a set of discretely sampled position
points xk reaching from 0 to xf .

(4a) The code Assignment2 program draft v4.m is set up to perform this optimi-
sation on one such discretely sampled function. You need to only insert items at the
points XXX. Any numerical optimisation requires an initial “guess” y(x)guess. Implement
that in the first XXX. The other ones need to be filled such that the functional correctly
evaluates (17). Test your implementation by running the code, loading the output and
using Assignment2 plot slide v2.m to compare the output with the solution from (19).
Discuss what you see.
Solution:We see in Fig. 5, that after a relatively large number of iterations (here
options.MaxIterations=20000 and options.MaxFunctionEvaluations= 1000000,
the numerical solution almost approaches the analytical one. There is a residual discrep-
ancy and this problem is surprisingly challenging for the computer.
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Figure 5: Comparison of analytical solution, numerical solution and initial guess.

(4b) What the optimizer practically does is somewhat akin to the figure above Eq. (2.8)
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in the lecture: It takes your y(x)guess and then varies the path in the vicinity by a small
offset η(x). If the offset reduces T , it keeps the change and tries again. In order to
visualize this, produce a set of plots for quite small parameter options.MaxIterations=
5,10,20,50,100 etc. This aborts the optmisation after relatively few attempts even if the
result is not yet good. See how it progressively becomes better for more iterations.
Solution:We see in Fig. 6 how the optimizer slowly approaches something resembling
the real solution, but for these low numbers of iterations, we are still far away from the
true solution.

Figure 6: A comparison of Nit = 20, 40, 60, 80, 100 with the analytical calculation is shown
in this figure, where Nit is the number of iterations.

(4c) Now vary the parameter xf to look at a 2-3 differently shaped slides. Discuss your
results. For plotting these, you have to also adjust xf in the file phi funct.m.
Solution:Slides for xf = 2, 5 and 10 are compared in Fig. 7. We see that the longer
the slide, the more prominent the counter-intuitive upwards slope at the end, in order to
exploit the longer horizontal acceleration phase provided by going to negative heights ỹ.
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Figure 7: Slides for different values with numerical parameters as in Fig. 5.
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