
PHY 305, I-Semester 2020/21, Assignment 1 Solution

(1) Block sliding on a wedge: A pink cube of mass m slides on a wedge without
friction as shown in Fig. 2. The wedge itself has mass M and angle α and is in turn
sliding on a frictionless floor. All are at rest at t = 0. If the cube was initially at a height
h, at what time will it reach the bottom? Solve the problem using Newtonian mechanics.

Figure 1: Cube, sliding on wedge, where the wedge is sliding on the floor.

Solution: Since the inclined plane frictionless the only force exerted on the cube by the
inclined plane is the constraint force in given by N. And lets consider the cube moves with
a acceleration a and the inclined plane move with an acceleration A in an inertial frame
of reference. We will have only x component of the acceleration A (hence its magnitude
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Mg

Figure 2: Cube, sliding on wedge, forces acting on the cube.

is represented as Ax). Let the force acting on the cube be

FC = m(a + A). (1)

FC has parallel and perpendicular components to the slope of the inclined plane and can
be written as FC = FC , || + FC ,⊥.

FC , || = mg sin(α) = ma|| +mAx cos(α), (2)

FC ,⊥ = N −mg cos(α) = ma⊥ +mAx sin(α), (3)
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where ma||+mAxcos(α) is the parallel component of RHS of Eq.(1) and ma⊥+mAxsin(α)
is the perpendicular component. Since the constraint is present a⊥ = 0. Hence constraint
force will be,

N = mg cos(α) +mAx sin(α). (4)

Now looking at the net force acting on the inclined plane. According to Newton’s Third
law there will be a equal and opposite force acting inclined plane by the cube which is −N
and another constrain force acted by the floor on the inclined plain which is written as
N1 = N1 ĵ (in y direction). Hence we can write,

FIP = −N + N1 −Mg ĵ = MA. (5)

Here N1 −Mg cancels the downward component of −N resulting to,

N1 −Mg = −N cos(α). (6)

Also the horizontal component of −N1 equals to the acceleration of the inclined plain,

MAx = −N sin(α). (7)

Using Eqs. (7) and (4) we can write acceleration of the inclined plain as,

Ax = −g

(
sin(α) cos(α)

sin2(α) + M
m

)
. (8)

From Eq. (2) the acceleration of the cube along the plane a|| can be obtained as,

a|| = g sin(α) − Ax cos(α). (9)

The acceleration of the cube down the slope is given by,

a|| = g sin(α)

(
M +m

M +m sin2(α)

)
. (10)

The cube which was initially at a height h will reach bottom in a time t given by solution
to h

sin(α)
= a||

t2

2
,which gives t =

√
2h/a|| sin(α). Hence,

t =

√√√√√√
2h

g sin2(α)

(
M+m

M+m sin2(α)

) (11)

(2) Two-dimensional harmonic oscillator: A two-dimensional harmonic oscillator
of mass m is one which has two-degrees of freedom x and y, and with a potential energy

Vpot(x, y) =
1

2
m
(
ω2
xx

2 + ω2
yy

2
)
. (12)
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(2a) Using the definition of the gradient, write down Newton’s equation for this oscillator
explicitly in terms of x, y.
Solution: Newton’s equation is mr̈ = F = −∇Vpot(x, y). Using Eq. (1.13) of the lecture
for 2D, we evaluate

∇Vpot(x, y) =

 ∂
∂x
Vpot(x, y)

∂
∂y
Vpot(x, y)

 =

mω2
xx

mω2
yy

 (13)

which yields for Newton’s equation

m

[
ẍ
ÿ

]
= −

mω2
xx

mω2
yy

 , (14)

or without vector notation ẍ = −ω2
xx and ÿ = −ω2

yy.

(2b) From your result in (a) and your knowledge of the 1D harmonic oscillator, find
all conserved quantities, discuss how the dynamics will look like. What is the difference
between this 2D harmonic oscillator and two separate 1D harmonic oscillators?
Solution: Let’s answer the last question first: from the equation we can see that there is
no difference between the equation of motion of the x and y components of a 2D harmonic
oscillator compared to the case where these coordinates would describe two completely
different oscillators, say x = r1, y = r2. We say that the two dimensions completely
de-couple. We can thus use our knowledge of a 1D oscillator to directly state that the

conserved quantities will be Ex = 1
2
mẋ2 + 1

2
mω2

xx
2 and Ey = 1

2
mẏ2 + 1

2
mω2

yy
2 the (total)

energies associated with the motion in the x and y direction, and the general solution will
be x(t) = C1 sin (ωxt) + C2 cos (ωxt) and y(t) = C3 sin (ωyt) + C4 cos (ωyt), where the Ck
are determined by the initial conditions.

(2c) Find the time-averaged kinetic energy and potential energy separately for the motion
related to x. How are they related?
Solution: For a period T = 2π/ωx, using the result above,

Ēkin =
1

2
m

∫ T

0

ẋ(t)2dt/T =
m

2T

∫ T

0

(C1ωx cos (ωxt) − C2ωx sin (ωxt))
2dt

=
mω2

x

2T

∫ T

0

[C2
1 cos2 (ωxt) − 2C1C2 cos (ωxt) sin (ωxt) + C2

2 sin2 (ωxt)]dt (15)

Using a drawing of sin and cos we can immediately tell that the integral of their
product over one period is zero. Separate integration tell us that

∫ T
0

sin (ωxt)
2/T =∫ T

0
cos (ωxt)

2/T = 1/2 (this result is needed so frequently, it is worth remembering). Thus
Ēkin = mωx

4
(C2

1 + C2
2).
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Doing the same for the potential energy average:

Ēpot =
1

2
mω2

x

∫ T

0

x(t)2dt/T

=
mω2

x

2T

∫ T

0

[C2
1 sin2 (ωxt) + 2C1C2 sin (ωxt) cos (ωxt) + C2

2 cos2 (ωxt)]dt (16)

Using the same arguments as before we reach Ēpot = mωx

4
(C2

1 + C2
2). Thus the average

kinetic and average potential energy of the harmonic oscillator are the same.

(3) Line integrals The harmonic oscillator from the previous questions is being moved
from position r1 = (x1, y1) = (1, 0) to position r2 = (x2, y2) = (0, 3) in a straight line
in 2D. Calculate the work exerted on the oscillator using the explicit line integral over
the force in two dimensions. Which would be a much simpler way to arrive at the same
answer? Solution: We follow the definition of the line integral over a vector function in
the lecture. We first need a parametrisation of the chosen path, which can be for example
s(t) = r1 + (r2 − r1)t for 0 ≤ t ≤ 1, or in vector form

s(t) =

[
1 − t

3t

]
, ds(t) =

[
−1
3

]
, (17)

To find the work W12, we now plug together Eq. (17) and the gradient Eq. (14) using
Eq. (1.9) and Eq. (1.10) of the lecture to find;

W12 =

∫ 2

1

F · ds =

∫ 1

0

[−∇V (s(t))] · ds(t)dt = −
∫ 1

0

[
mω2

xx(t)
mω2

yy(t)

]
·
[
−1
3

]
dt

= −
∫ 1

0

[−mω2
x(1 − t) + 3mω2

y(3t)]dt =
[
mω2

x(t− t2/2) − 3mω2
y(3t

2/2)
]1
0

=
1

2
mω2

x(1)2 − 1

2
mω2

y(3)2. (18)

We recognise this as the difference between the initial and final potential energies W12 =
V (r2) − V (r1), which would of course have been the much simpler way to arrive at the
same result.

(4) Computational question: harmonic oscillator, damping driving and mod-
ulation Newton’s equation for a point mass m in one-dimension subject to a force F (t)
is mr̈ = F (t).

(4a) Computational algorithms typically need us to convert second order differential equa-
tions in time into a system of first order differential equations in time. By using both, the
position r and the velocity v as variables, do this conversion, i.e. find a coupled system of
first order differential equations that is equivalent to Newton’s equation.
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Solution: We can simply write

ẋ = v,

v̇ = F (t)/m. (19)

(4b) Write these equations for the case of a 1D simple harmonic oscillator, where Fk =
−kx and implement them in the template file Assignment1 program draft v1.m. Solve
the equations for a couple of different choices of parameters, and analyse your result
using Assignment1 plot oscillator v1.m and Assignment1 plot phasespace v1.m,
discuss.

Solution : The classical harmonic oscillator in 1D can be written as ,

ẍ = −kx/m (20)
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Figure 3: Position and velocity vs time
plot for a harmonic oscillator in the ab-
sence of driving force.
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Figure 4: Phasespace diagram plot for
a harmonic oscillator in the absence of
driving force.

Since there is no external external driving or damping force the oscillator keeps on
oscillating with the same amplitude with the time and follows an elliptical path in
phasespace.

(4c) Now we extend the calculations to add a friction force Ff = −γv and a driving force
Fd = F0 sin (ωt). Again analyze your result and compare it with solutions for the damped,
driven harmonic oscillator that you can find in textbooks or the internet. (Use some
arbitrary dimensionless units throughout question 4, e.g. mainly pick parameters in the
range [0, 5]).
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Solution :
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Figure 5: Position and velocity vs time
plot for a harmonic oscillator in the
presence of the driving force.
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Figure 6: Phasespace diagram plot for
a harmonic oscillator in the presence of
the driving force.
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