
Week 8
PHY 305 Classical Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2020

These notes are provided for the students of the class above only. There is no guarantee for cor-
rectness, please contact me if you spot a mistake.

In week7 we discussed some kinematics of rotational motion of rigid bodies, mainly how angular
momentum and rotational velocity are linked. We did not yet get to the dynamics of rotational
motion, i.e. how angular momentum and rotational velocity evolve in time, given an initial state.
It turns out the dynamics of rotating objects can be amazingly counterintuitive, see this video or
this one , if you prefer some talking. In this week, will try to understand the e↵ect shown in those
videos based on our results from week7. We will explain these videos in section 3.5.2.

Before, let’s revisit another confusing aspect of rotational motion: We already had hinted at in
example 28 that a scenario where the rotation axis is not parallel to the angular momentum will
lead to interesting complications once we move to time evolution / dynamics. Let us revisit this in
a slightly simpler example:

Example 32, Tumbling of tilted dumbbell:

left: If in example 28 we con-
sider the entire mass restricted to
the endpoints of the stick, we re-
duce the problem to two mass points
at shown, rotating about the z-
axis at time t = 0 (left). As-
sume both mass points are in the
yz plane (at x = 0) with rotational
velocity at shown, but this time
not constrained by any mounting.

You can use Eq. (3.12) and the right hand rule to convince yourself that mass M1 moves
into the paper and M2 out of it. Then you can use the right hand rule again, to confirm
that the angular momentum L for both masses points in the same direction (green) also in
the yz plane.
If the masses were now just rotating with a constant rotational velocity !, some time later
they would be at the locations shown on the right, with velocities reversed compared to
before. Another application of the right hand rule give the angular momentum (green) now
pointing in a di↵erent direction. However, we know from section 1.4.5 and/or section 2.7.2
that for an isolated system, angular momentum is conserved.
The only way to salvage this contradiction, is to allow that the rotation axis ! does in fact
change in time !(t).
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3.2 Free precession

After considering the above example, we should of course investigate how the rotation axis will
evolve in general. In this section we first consider the case without any external torque, e.g. N(e) =
0 in Eq. (1.20). We then combine Eq. (1.20) and Eq. (3.26) to reach in a space-fixed frame (lab
frame):

0 = L̇ =
d

dt

�
I!(t)

�
. (3.33)

Angular momentum is conserved, see also section 2.7.2, however since all components of the (3⇥3)
matrix I are nonzero, it is di�cult yo use Eq. (3.33) in this form to infer !(t). It would be easier
to use the diagonalized form (3.29) of I with the principal axes as coordinates, which we explore
in the next section.

3.2.1 Space versus body frames

We had mentioned below Eq. (3.28) that there are always three real and orthogonal 3-component
eigenvectors of the inertia tensor for any rigid body. This means we can choose these eigenvectors
{ek} as a basis of 3D-space as shown in the figure below.

left: (left) A rigid object can be either described in a usual
space fixed coordinate frame (black) or alternatively in a
body-fixed, rotating frame where coordinate axes are chosen
as the principal axes of the body (red).

We can thus chose to either work in a space-fixed frame, our usual frame with basis vectors x̂, ŷ,
ẑ or a body-fixed frame, with basis vectors e1, e2, e3. To convert any vector written down in the
space fixed frame r = xx̂ + yŷ + zẑ to one in the body fixed frame r0 = r1e1 + r2e2 + r3e3, we
multiply it with the transformation matrix O defined in Eq. (3.29).

r0 = OT r, r = Or0. (3.34)

We shall write vectors and vector components in the body frame with a prime as in Eq. (3.34). The
advantage to work in the body-fixed frame, is that the inertia tensor I is diagonal (per definition).
The disadvantage is, that the body-fixed frame is, in general, a rotating frame and thus non-inertial.
However we already learnt how to deal with non-inertial frames in section 2.9 and thus can use
those results.
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3.2.2 Euler’s equations

Most importantly, we can use Eq. (2.87) to see that

0
Eq. (3.33)

=

✓
@L

@t

◆

space
=

✓
@L

@t

◆

body
+ ! ⇥ L. (3.35)

We now insert (3.26) for L in the body fixed frame, where it gives Lk = �k!k, for k = 1, 2, 3, and
then resolve Eq. (3.35) into vector components using ! = !1e1 + !2e2 + !3e3 to reach

Euler’s equations for the case of no external torque:

�1!̇1 = (�2 � �3)!2!3,

�2!̇2 = (�3 � �1)!3!1,

�3!̇3 = (�1 � �2)!1!2, (3.36)

govern the evolution of the rotation axis !(t) of a rigid body.

• Eq. (3.36) now tell us how the rotation axis will evolve in the body-fixed frame.

• !k with k 2 {1, 2, 3} are the components of the rotational velocity of the rigid body when
expressed in the body-fixed frame, but they do not imply a “rotation in the body-fixed frame”
(which would vanish per definition).

• There is a more complete version of Euler’s equation with external torque, however in that
case it becomes less useful since we ought to express the external torque in the body fixed
frame, making that cumbersome.

• We see that if at t = 0, the rotational velocity ! points along a principal axis, it will be
constant (!̇ = 0). This is because in that case two out of three !k are zero, so all right hand
sides in (3.36) must be zero.

• Also conversely, if the rotation axis is initially not pointing along a principal axis, at least
two components !k must be nonzero, then at least one right had side of (3.36) is nonzero, so
at least one !̇k is nonzero, hence the rotation axis will change in time.

• You can use Euler’s equation to show that rotation is stable when the rigid body is rotating
around a principal axis that has either the largest or smallest moment of inertia, and unstable
otherwise (see assignment 5). Stable means that if you perturb the axis slightly, the axis will
just undergo small oscillations near the principal axis, instead of being driven away entirely.

3.2.3 Precession of rotation axis

We can solve Eq. (3.36) completely for a rigid body that has two principal axes with equal moments
of inertia, let us assume �1 = �2. In that case we immediately see !3 = const from the third
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equation of (3.36). In that case we can rewrite the first two equations as

!̇1 =
(�1 � �3)!3

�1| {z }
⌘⌦b

!2 = ⌦b!2,

!̇2 = �
(�1 � �3)!3

�1
!1 = �⌦b!1.

(3.37)

Fro this we have defined the constant frequency ⌦b. We can solve Eq. (3.37) by di↵erentiating the
first one in time and then inserting the second (or the reverse), to reach !̈1,2 = �⌦2

b!1,2, with the
solution:

Rotational velocity precessing on the body cone
In the body fixed frame, we find

! = [!0 cos (⌦bt),�!0 sin (⌦bt),!3]
T (3.38)

and hence using (3.26) (Lk = �k!k) also

L = [�1!0 cos (⌦bt),��1!0 sin (⌦bt),�3!3]
T (3.39)

The motion of both vectors is depicted in the figure below, in the body-frame as for
Eq. (3.38)-Eq. (3.39) and in the space frame.

top: Principal axis (red), rotation axis (blue) and angular momentum (black) in the
body-fixed frame (left) and in the space frame (right). The precession of the vectors in
time, in either frame, is indicated by circles.

• Let’s remain in the body frame first. From Eq. (3.38) you can see that ! is precessing such
that the vector traces out a cone around e3, with precession frequency

⌦b =
(�1 � �3)!3

�1
. (3.40)

Thus after ⌧b = 2⇡/⌦b, the rotation axis has completed one period of precession in the body-
fixed frame.

• By taking the scalar product !(t) · L(t) using Eq. (3.38)-Eq. (3.39), you can convince your-
self that the 3D angle between !(t) and L(t) is constant. Thus all three vectors must
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remain in one plane, so the angular momentum is precessing around e3 with the same fre-
quency as !(t) but a di↵erent angle.

• When going from the body-frame to the space frame, we know that it is L, which must be
constant, due to angular momentum conservation.

• The conversion from the body-frame to the space-frame is just a rotation, with time-dependent
rotation axis. Rotations do not change (i) angles, and (ii) the fact that three vectors lie in
one plane, so both of these are true in the space-frame as well.

• It is then hopefully reasonable, that we reach the picture on the rhs above, where L is
constant and the plane containing e3 and ! rotates around that. In this frame, we will find a
di↵erent precession frequency ⌦s = L/�1. Note: Showing all these statements mathematically
rigorously is technically tricky. Please see Morin [MM] (newly added book-reference, week 0)
for some more details.

You can attempt to test many of the statements above in your room by experiments, throwing
objects up such that they are rotating and trying to observe the evolution of their rotation axes.
While they are falling up and down, the fictitious force (2.80) in their rest frame cancels gravity
(“free fall”), such that there is no external torque. However the need to be in free fall, restricts
the duration of your experiment. More long term realisation of a (nearly) torque free rotation are
provided in our solar system, for example:

Example 33, The asteroid Toutatis: Most asteroids actually rotate around principal
axes (would you expect that?, why is that?), however a few don’t. One example is called
“Toutatis” and has passed su�ciently close to earth on one instance, that we could make
detailed radar map recordings of its rotation as seen in this video and the file toutspin.mpg
online.

Note that the asteroid has no perfect symmetry axes but, like all rigid objects, has three well
defined principal axes anyway. It has three di↵erent moments of inertia, so the rotational
axis dynamics is more complex than in the discussion of this section.

After having dealt with the torque free case, let us now move to rigid body rotation in the presence
of an external torque. We want to use the Lagrangian formalism for that. However from the
discussion after Eq. (2.29), we know that while we can use the Lagrange equations also in a non-
inertial frame (such as the body-fixed frame), we have to initially set up the Lagrangian in an
inertial frame (such as the space frame). We thus require more formal concepts for conversion
between the two frames, which we set up nextly.

3.3 Euler Angles

As stated in section 3.1.1, there are three degrees of freedom associated with rotation. It should
thus be possible to decompose a general rotation into three separate rotations about some special
axes. One specific procedure/convention to do this decomposition is the use of Euler angles. Be
careful, there are di↵erent definitions for what is meant by “Euler angles” and then there are
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di↵erent procedures alltogether. The use of Euler angles is sketched in the figure below:

top: Euler’s angles quantify a sequence of three rotations about pre-defined axes, in order
to map xyz (the space fixed frame) onto e1e2e3 (the body-fixed frame). The blue (space)
coordinate system never changes. We draw red before (dashed) and after (solid) rotation
in each step. Each of the three rotations is about the cyan axis by the green angle.

We follow the sequence

(i) We rotate by an angle � around the axis ẑ. This angle � is the final desired azimuthal angle
of the body principal axis e3. This rotation turns the initial e2 into e02 (we have to give it a
name, since we need it in the next step).

(ii) We rotate by an angle ✓ around the axis e02. This angle ✓ is the final desired polar angle of
the body principal axis e3. e3 is thus now pointing in its final direction.

(iii) We thus cannot change the direction of e3 any more, and instead do a rotation around e3
by an angle  , such that e1 and e2 reach their final positions. Since all three vectors ek are
mutually orthogonal, this must be possible.

To set up a Lagrangian, we need to expression rotational velocities and angular momenta of a rigid
body in the space fixed frame, taking as dynamical quantities Euler angles �(t), ✓(t),  (t) that
rotate the rigid body as in the sequence above. If we consider the first step only, and compare
back to the diagrams in section 2.9.2, then as � varies in time the first Euler rotation is a rotation
with angular velocity ! = �̇ẑ. We know from (2.85) that rotational velocities add up, so the final
rotational velocity of the the three steps in the figure above will be

! = �̇ẑ+ ✓̇e02 +  ̇e3. (3.41)

This has the disadvantage that it mixes unit vectors from di↵erent frames, so we use ẑ = cos ✓e3 �
sin ✓e01 (exercise, see figure above second panel). to write

! = (��̇ sin ✓)| {z }
=!10

e01 + ✓̇e02 + ( ̇ + �̇ cos ✓)e3. (3.42)

Later we will only cover the rotation of objects called a symmetric top, which have two equal
moments of inertia (as in section 3.2.3). In that case the body axes 1 and 2 can anyway be arbitrarily
rotated, hence we do not need to do the final step to replace e01,2 by e1,2. From Eq. (3.42) we later
also need the expression for the angular momentum in terms of Euler angles, which is easy in the
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body-fixed frame. Using Lk = �k!k, we find

L = (��1�̇ sin ✓)e
0
1 + �1✓̇e

0
2 + �3( ̇ + �̇ cos ✓)| {z }

=L3

e3. (3.43)

We now want to write down the kinetic energy in the inertial space frame for later use in Lagrange’s
equation. From Eq. (3.32) we know that it is T = 1

2! ·L. Now we use the trick that a scalar product
takes the same value in any coordinate system and evaluate it in the body frame, which has the
advantage that we can use Lk = �k!k. Taking the scalar product of (3.42) and (3.43), we reach

T =
1

2
�1(�̇

2 sin2 ✓ + ✓̇2) +
1

2
�3( ̇ + �̇ cos ✓)2. (3.44)

One final result that we need later, and that, with a few technical steps you can derive from
Lk = �k!k and converting that back to find Lz is

�̇ =
Lz � L3 cos ✓

�1 sin2 ✓
. (3.45)

3.4 Rotation matrices [BONUS MATERIAL]

Understanding the relations above, involved quite a lot of technical thinking about axes etc. It
would be nice to have a more automatic method to handle rotation, this is provided by rotation
matrices O, which we already encountered around Eq. (3.29). Let us define more formally a

Rotation matrix, as an orthogonal matrix O , which when multiplied to any vector r
expressed in a coordinate system with basis vectors x̂, ŷ, ẑ gives the representation of that
vector r0 in a rotated coordinate system with basis vectors x̂0, ŷ0, ẑ0

r0 = OT r. (3.46)

Using the Euler angles introduced above, we can write:

OT =

2

4
c�c✓c � s�s �c s� � c�c✓s c�s✓
c�s + c✓c s� c�c � c✓s�s s�s✓

�c s✓ s✓s c✓

3

5 . (3.47)

where c↵ = cos↵ and s↵ = sin↵.

• Most of the calculations of week 6,7,8 could have been expressed using rotation matrices
instead of our approach, however that would not necessarily make it simpler.

• However rotation matrices play a major role in considering symmetries involving rotations in
quantum physics, using group theory. For that reason, it is useful to know that these matrices
form a group (see math), which e.g. for N ⇥N matrices is called SO(N) (O(N) would be the
group of orthogonal N ⇥N matrices, and the “S” specifies detO = 1).
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3.5 Dynamics of a spinning top

In this section, we will finally discuss the dynamical precession of a spinning top, which was the
subject of the movies linked at the beginning of ”week 8”. The main di↵erence between that
problem and section 3.2, is that now we have to consider the torque exerted by gravity.

3.5.1 Net torque

We had seen in section 1.4.5/Eq. (1.20), that for a collection of massive objects the total angular
momentum changes according to L̇ = N(e) in response to the net external torque N(e) =

P
k rk ⇥

F(e)
k . For completeness, let us give the torque also in terms of the continuum notation introduced

for rigid bodies in section 3:

External torque acting on a rigid body with respect to the chosen origin is

N(e) =
X

k

rk ⇥ F(e)
k =

Z
d3r r⇥ f(r), (3.48)

where f(r) is the force density acting on location r.

• The case of particular relevance shortly, is a torque exerted by gravity. Then f(r) = �⇢(r)gẑ
and hence

N(e) = �g

Z
d3r ⇢(r) r⇥ ẑ = �g

✓Z
d3r ⇢(r) r

◆
⇥ ẑ = �gM

�R
d3r ⇢(r) r

�

M
⇥ ẑ

= �gMRCM ⇥ ẑ = RCM ⇥ Fgrav,M| {z }
⌘�gM ẑ

. (3.49)

We thus see that the net external torque due to gravity can be found simply by assuming all
mass is concentrated at the centre of mass.

3.5.2 Precession in a simplified picture

We first tackle the precession of a top in a simple Newtonian approach, to get a hang of things.
The geometry is illustrated in the figure below.
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left: Spinning top (green) with figure symmetry axis/ prin-
cipal axes (red). We assume the point of contact with the
table (grey) remains constant at the origin O. Gravity acts
downwards, but that gives rise to a sideways torque (brown)
[This should be pointing into the paper, so is in the wrong
direction in the diagram]. If this torque is weak, it gives
rise the rotation axis precessing on a cone (blue dashed).

Let us assume the top is initially rotating rapidly about its symmetry (and principal) axis e3 as
shown. Then from Lk = �k!k, we have L = �3! = �3!3e3. Since the only obvious fixed point of
the top is the point of contact with the table, we chose that point as our origin O.

From the previous section 3.5.1, we know gravity will exert a torque N = MRCM⇥g, with g = �gẑ
on the top. Using the right-hand-rule and the diagram, you can see that the torque is a vector that
is pointing into the paper, orthogonal to RCM . By construction here, the torque is thus initially
orthogonal to L, so based on L̇ = N it can change the direction of angular momentum, but not its
magnitude.

Let us make a major simplification, assuming that the angular momentum remains parallel to the
rotation axis, and we can write L(t) = �3!3e3(t) for constant �3, !3. Since we have seen in
section 3.2 that the two vectors need not be parallel, this would have to be shown. It turns out to
be a good approximation, for a weak torque.

We can then turn L̇ = N into

L̇ = �3!3ė3(t) = MRCM ⇥ g = N. (3.50)

Since we know that RCM (t) = Re3(t) from the diagram and g = �gẑ, the middle equality becomes

ė3(t) =
MgR

�3!3
ẑ⇥ e3(t) = ⌦⇥ e3(t), (3.51)

with precession axis

⌦ =
MgR

�3!3
ẑ. (3.52)

By comparison of Eq. (3.51) with Eq. (2.84), we see that the vector e3(t) will move on a cone around
the precession axis that is parallel to ẑ, as indicated in the figure, with an angular frequency |⌦|.

Example 34, Toppling top: A crucial input into the result above was that L is initially
nonzero. If you start the top without rotation (L(t = 0) = 0) at a tilted angle as in the
figure? How will L evolve? Which motion does this describe?

Example 35, Precession in videos: You already saw it in the videos at the beginning of
week 7. Here is another , which also explains the use of gyroscopes for aircraft navigation.
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3.5.3 Precession in the Lagrange formalism

In general L k ! need not be true. Hence we now re-solve the heavy symmetric9 top problem in
the Lagrange formalism. As usual we must start with the Lagrangian, but already did all the hard
work in section 3.3 when deriving the kinetic energy of a rigid body in terms of Euler angles. We
have to subtract the gravitational potential energy, which is however easy as it can be thought of
just acting on the centre of mass (exercise). Hence we have the

Lagrangian of the heavy symmetric top as:

L =
1

2
�1(�̇

2 sin2 ✓ + ✓̇2) +
1

2
�3( ̇ + �̇ cos ✓)2 �MgR cos ✓. (3.53)

From this we derive the Lagrange equations (2.29) as usual and reach

Equations of motion of the heavy symmetric top

�1✓̈ = �1�̇
2 sin ✓ cos ✓ � �3( ̇ + �̇ cos ✓)�̇ sin ✓ +MgR sin ✓, (3.54)

p� ⌘ �1�̇ sin
2 ✓ + �3( ̇ + �̇ cos ✓) cos ✓ = const (3.55)

p ⌘ �3( ̇ + �̇ cos ✓) = const (3.56)

• It turns out the second equation (3.55) implies the conservation of the angular momentum
projection onto the space fixed z-axis, Lz, even though that is not obvious to see.

• According to the third equation (3.56), also the component of the angular momentum along
the figure axis, L3, is conserved. You see this by comparison with Eq. (3.43).

We now want to re-derive the steady precession we had seen in section 3.5.2. For a steady precession,

the angle ✓ of the body symmetry axis e3 wrt. the z-axis ẑ must remain constant, ✓̈ = ✓̇ = 0, which
is one special case. From Eq. (3.45) we know that a constant ✓ must imply a constant �̇ ⌘ ⌦, so
the precession frequency is constant.

For ✓̈ we get from (3.54) that

0 = �1�̇
2 sin ✓ cos ✓ � �3( ̇ + �̇ cos ✓)�̇ sin ✓ +MgR sin ✓,)

0 = �1⌦
2 cos ✓ � �3 ( ̇ + �̇ cos ✓)| {z }

=!3

⌦+MgR,)

0 = (�1 cos ✓)⌦
2
� (�3!3)⌦+MgR. (3.57)

This quadratic equation for ⌦ has in general two solutions. Using the standard formula and
assuming !3 is very large, we find a small precession frequency ⌦� = MgR

�3!3
and a large precession

frequency ⌦+ = �3!3
�1 cos ✓

(exercise). ⌦� agrees10 with Eq. (3.52) in section 3.5.2. The fast possibility

9
symmetric implies that �1 = �2 = �

10
It turns out the assumption of large !3 is equivalent to assuming a weak torque
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is independent of g and corresponds to the free precession derived in section 3.2.3 (not too obviously
so).

3.5.4 Nutation in the Lagrange formalism

In the discussion just completed, we had picked a very specific motion of the top by demanding
✓̈ = ✓̇ = 0 from the outset. When these conditions are not perfectly met, ✓ will not be precisely
constant and does in fact perform small oscillations around the value where it could be constant.
These oscillations are called nutations.

At the same time, using again Eq. (3.45), we see that if ✓ may change in time also the azimuthal
progress of the top �, becomes more complicated. Please look at TT or GPS for more details. Here
we rather directly watch

Example 36, Real dynamics of the heavy symmetric top: on Youtube. Keywords
“top”, “gyroscope”, “precession”, “nutation” will find you plenty of videos. This is a brief
selection of ones I liked.

• For just a fast animation of nutation, see video1 .

• Another longer animation, with explanations, see video2 .

• Now to a real experiment: video3 . Don’t worry about the counter-weight. it is just
a trick to reduce the applied torque, without reducing the mass of the top/gyroscope.

• With link to online experiments (didn’t try): video4 .

Better even: Get your own toy-top and play with it. A main points that we have not yet discussed,
but that is relevant for your own experiments and some of those videos is friction. It will cause the
point of contact of the top on the table to move, and the overall rotation to loose energy.
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