
Week 7
PHY 305 Classical Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2020

These notes are provided for the students of the class above only. There is no guarantee for cor-
rectness, please contact me if you spot a mistake.

3 Motion of rigid bodies and many-bodies

After we are now equipped with two formalisms for mechanics (Newton and Lagrange), we can
move to more complicated mechanical systems than you may have encountered so far. After we
just looked at non-inertial frames (such as the surface of a rotating body like the earth), we now
move to the dynamics of a rotating rigid body itself, and finally to the collection of many objects.

3.1 Rotational motion of rigid bodies

3.1.1 Rigid bodies

Consider the ellipsoidally shaped rigid body below. It could be a rugby ball or an asteroid. To
place this in the context of our earlier discussions, we can

(i) Consider the rigid body as a collection of particles (see section 1.4.5). In the limit of infinitely
many particles, we describe it in terms of a continuous density (see below).

(ii) To express that these mass points are rigidly attached to each other, we can use the concept
of constraints (see section 2.4).

(iii) Microscopically you know the picture is in fact reasonably realistic, if you take your mass
points to be the atoms making up your rigid bodies and the constraints as arising from
intermolecular binding forces. But going into such a detailed picture is typically excessive.

left: (left) Rigid object decomposed as
collection of constrained mass points.
(right) The same object described by
a continuous mass density distribution
(darker=denser).
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It is intuitively clear, that a rigid object such as above has 6 degrees of freedom: 3 coordinates
(x,y,z) for the center of mass, and 3 more to describe its orientation in space (rotations that decide
where the (Red/green/blue) axes are pointing.

We reduce the 3N DGFs for the individual mass points to six by using the constraint equations:
|rk � r`| = dk`, where dk` is the fixed distance between masses k and ` as shown in the figure. That
seems to be too many constraints, but not all of these constraint equations are independent.7 See
GPS for a discussion on how these conditions constrain the number of degrees of freedom from 3N
to 6.

Since we did not tell whether the collection of particles is constrained or not, when discussing many
particles in section 1.4.5, the important definitions and results from that section carry over here.
Let us repeat them, introducing also a continuum notation in terms of a mass density ⇢(r)

Rigid body properties We have the total mass

M =
X

k

mk =

Z
d3r⇢(r), (3.1)

where ⇢(r) is the mass density, the centre-of-mass positions

RCM =

P
k mkrk
M

=
1

M

Z
d3r ⇢(r)r, (3.2)

the angular momentum

L =
X

k

[rk ⇥mkvk] =

Z
d3r ⇢(r) [r⇥ v(r)] ,

= RCM ⇥Mv +
X

k

(r0k ⇥ p0
k), (3.3)

where in the last part coordinates r0k are in the centre-of-mass frame.

• We have included the continuum variant of all definitions, in addition to those in section 1.4.5.
To convert from one to the other, use the density ⇢(r) =

P
k mk�(3)(rk), where �(3)(r) is a

3D Dirac delta-function (see yellow box below). Depending on the problem, the discrete or
continuum definition may be more useful.

• As discussed in week 1, the first term of (3.3) can be thought of as “angular momentum of
the centre-of-mass” wrt. the origin, and the second as angular momentum of the rigid body
around its centre of mass.

• We had seen in Eq. (1.18) and Eq. (1.19) that the centre-of-mass motion for a rigid body is
typically not that di↵erent from a point object, as long as we are able to easily calculate the

7
The position of any one mass is fully fixed by giving its distance to three of the other masses, distances to all

other masses are not required.
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total external force F(e) =
P

k F
(e)
k on it. Hence for the remainder of this section, we will be

concerned with rotational motion only.

Dirac delta function: We define the object �(x� x0) such that

Z 1

�1
dx f(x)�(x� x0) = f(x0), (3.4)

for any test-function f(x). In practice, you will ever only need Eq. (3.4).

left: You could loosely think of the delta-function as
= 0 everywhere, except at x0 where it is 1. Clearly
this definition is pathological. A better way is to think
of it as the limit

�(x� x0) = lim
�!0

1
p
⇡�

e�
(x�x0)

2

�2 (3.5)

of an ever narrower Gaussian, as shown in the figure.

• The delta function is just a mathematical object, so its argument x can be any physical
variable. For the 3D spatial delta-function used in the comment earlier, we use �(3)(rk) =
�(xk)�(yk)�(zk), which fulfills

Z
d3rf(r)�(3)(r� r0) = f(r0), (3.6)

• Despite the name, the delta-function is not a genuine function, but mathematically a distribution
or generalised function. That means we have to multiply it with a test-function and then
integrate over it, to make sense of it, as we had seen above.

Example 26, Centre-of-mass of a cubic cup: Consider the hollow cubic cup shown
below, and assume all its mass in homogeneously distributed over it surface. We want to use
this example to learn how to find the centre of mass for an object given with a continuous
mass distribution and to use the delta-function.

left: Cubic hollow cup with sidelength a (violet outside,
grey inside), the top face of the cube is open and we as-
sume the other cup faces are infinitely thin. First let us
formulate the above as a continuous mass distribution

⇢(r) = %0(�(z)✓(x)✓(a� x)✓(y)✓(a� y)| {z }
bottom face = 1

+4 other faces)

(3.7)

where %0 is a surface mass density, so it has units of
kg/m2. The total mass, will then be M = 5%0a2. PTO.
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Example continued: We now insert Eq. (3.7) into Eq. (3.2), treating each face separately.
If RCM,k is the CM position of face k, the total CM position is then RCM =

P5
k=1RCM,k/5

RCM,1 =
1

M/5

Z 1

�1
dx

Z 1

�1
dy

Z 1

�1
dz r [%0�(z)✓(x)✓(a� x)✓(y)✓(a� y)] (3.8)

=
%0

M/5

Z a

0
dx

Z a

0
dy r

����
z=0

=
%0

M/5

2

4
(
R a
0 dxx)

R a
0 dyR a

0 dx(
R a
0 dy y)
0

3

5 =
%0

M/5

2

64
(x

2

2

��a
0
)a

a(y
2

2

��a
0
)

0

3

75 (3.9)

Now inserting the mass M from above, the final result for the centre of mass of the bottom
of the cup is RCM,1 = [a/2, a/2, 0]T , i.e. right in the middle of the bottom square as we
would have guessed also without integration. Also RCM,k for k = 2, 3, 4, 5 will be right in
the middle of their respective squares, taking into account three dimensions. All up we can
find

RCM = [a/2, a/2, 2a/5]T . (3.10)

Note that this lies inside the hollow of the cup, at a place r where ⇢(r) = 0.

Heaviside step function: (or ✓ function) is defined as

✓(x) =

⇢
0 x < 0
1 x � 0

(3.11)

• Since ✓ is more frequently an angle, it will be typically stated in the text if it is a Heaviside
function instead.

3.1.2 Rotation about a fixed axis

We shall tackle rotation of an extended body in two stages, first considering a fixed rotation axis.
This is often the case when the body is attached to some mounting point.

Since the axis is fixed, we can place the origin on the rotation axis and also choose the latter
as our z-axis. Using the same definition as in section 2.9.2, Eq. (2.82), we then use the vector
! = (0, 0,!)T to describe the orientation of the rotation axis together with rotational velocity. We
can now also use Eq. (2.83) as before to find the velocity of any of our mass points:

vk = ! ⇥ rk. (3.12)

We now proceed to evaluate the total angular momentum

L =
X

k

`k ⌘

X

k

[rk ⇥mkvk] =
X

k

mk [rk ⇥ (! ⇥ rk)] . (3.13)
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Explicitly using rk = [xk, yk, zk]T we find first ! ⇥ rk = [�!yk,!xk, 0]T and from that

`k = mk![�zkxk, �zkyk, x
2
k + y2k]

T . (3.14)

Inserting this into (3.13) we now found the angular momentum and can define the

Products and moments of inertia: To relate the total angular momentum L to the
rotational velocity as in

L = [Ixz!, Iyz!, Izz!]
T , (3.15)

we define the products of inertia

Ixz = �

X

k

mkxkzk = �

Z
d3r⇢(r)xz,

Iyz = �

X

k

mkykzk = �

Z
d3r⇢(r)yz, (3.16)

and the moment of inertia about the z-axis

Izz =
X

k

mk(x
2
k + y2k) =

Z
d3r⇢(r)(x2 + y2). (3.17)

• As before we give all definitions in a discrete and continuum version.

• Note, that the angular momentum is in general not parallel the rotation axis. This may
be counter-intuitive or surprising, however if so this is probably because the two vectors
have been parallel for the examples you would have seen so far. There are many important
cases where they are parallel. We shall see in examples below, that whether or not angular
momentum and rotation axis are parallel depends on the symmetry of the rigid object with
respect to the rotation axis.

• The moment of inertia about the z-axis depends quadratically on the distance rk =
q
x2k + y2k

of each mass point from the rotation axis.

• Moments and products of inertia depend on the chosen origin of the coordinate system. This
makes sense, we already pointed out in section 1.4.1 that also the angular momentum is
always to be considered with respect to a specific origin.
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Example 27, Moments of inertia of a rugby ball:
left: We model the rugby ball as an ellipsoid of constant
density ⇢0 and shall use cylindrical coordinates r, z, '.
Let us find the moment of inertia about the long axis:
Izz =

R
d3r⇢(r)(x2 + y2). Since the density is constant,

we can write Izz = ⇢0
R
d3r

��
ball

(x2 + y2), where now
the integration is only over the volume of the ellipsoid.
Expanding the integration in the three variables of the
cylindrical coordinates we have

Izz = ⇢0

Z a

�a
dz

Z 2⇡

0
d'

Z rmax(z)

0
dr r ⇥ r2, (3.18)

where we can find the maximally allowed radius rmax

from the equation of an ellipse
�
z
a

�2
+

�
r
b

�2
= 1, hence

rmax(z) = b
p
1 + (z/a)2.

With that we reach Izz = 2⇡⇢0
R a
�a dz

b4

4

⇣
1 +

�
z
a

�2⌘2
= 8

15⇡⇢0ab
4. If we re-express this using

the mass M = 4
3⇡ab

2⇢0 (exercise), we reach Izz =
2
5Mb2.

Nextly we would want to evaluate the products of inertia, which would in principle give
rise to a similar integration. However for those we can use a very important trick. Since
e.g. Ixz = �

R
d3r⇢(r)xz depends on x, and the object is symmetric under an inversion of

the x-axis, for each mass element at +x there is another mass element at �x that exactly
cancels the contribution to the integration. We thus can directly conclude that Ixz = Iyz = 0
by symmetry. Hence, since the ellipsoidal rugby ball is cylindrically symmetric around the
z-axis, product of inertia in other directions cancel and the angular momentum for a rotation
around the z-axis is parallel to the rotation axis. This is true in general for such a symmetry.

Example 28, Moments of inertia of tilted rod:

left: Consider the rod of length L shown on the left,
mounted such that it rotates around the z-axis but forms
an angle ↵ with that axis. At this snapshot in time, assume
the rod is in the zy plane. We neglect the transverse size
(width) of the rod and describe it with a one dimensional
mass density �, so that its total mass is M = �L.
We then find its moment of inertia about the z-axis from

Izz = �

Z L
2

�L
2

ds(sin (↵)s)2 =
� sin (↵)2L3

27
=

M sin (↵)2L2

27
.

(3.19)

We directly see that Ixz = 0 since x = 0 for all elements of
mass on the rod. PTO.
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Example continued: However the product of inertia

Iyz = �

Z
d3r⇢(r)yz = ��

Z L
2

�L
2

ds(sin (↵)s)(cos (↵)s) = �
M sin (↵) cos (↵)L2

27
. (3.20)

is clearly non-zero. The arguments that made this expression zero in example 27 do not
apply here, since the tilted stick is not symmetric under y $ �y.

We now assemble the angular momentum from Eq. (3.15) and find L =
ML2!

27 [0, sin (↵) cos (↵), sin (↵)2]T , which is clearly not parallel to !, but is tilted away from it
in the yz plane. If you picture the rotation of the stick around the z-axis this also means that
L is not constant in time a We know that must mean there always is a torque applied, which
must be exerted by the mounting point. We will consider this in more detail in section 3.2.

a
A little while later the stick will not lie in the zy plane, however we could define a new y0

axis such that

it lies in the zy0
plane and fine the same result as above, so the plane containing the stick, which rotates,

must also contain the angular momentum, which therefore also rotates.

The moment of inertia also appears when we calculate the

Rotational (kinetic) energy of a rigid body for roration around the z-axis, which is given
by

Trot =
1

2

X

k

mkv
2
k =

1

2
Izz!

2. (3.21)

• Proof of the second equality in (3.21):

Trot =
1

2

X

k

mkv
2
k

Eq. (3.12)
=

1

2

X

k

mk|! ⇥ rk|
2 Eq. (2.90)

=
1

2

X

k

mk!
2(x2k + y2k) =

1

2
Izz!

2.

(3.22)

You need to do a bit of trigonometry after using Eq. (2.90) for the middle step, to see that

|rk| sin ✓ will give you exactly the radial distance from the rotation axis, which is
q

x2k + y2k.

3.1.3 Rotation about any axis

As long as the rotation axis remains fixed, we can typically choose it to be along our z-axis and
use the results of the previous section. We will however see in this section, that the rotation axis
often changes direction in time if it is allowed to do so. We thus have to be able to deal with more
general rotations around any axis mathematically, which we work out now.

For this we step back to Eq. (3.13) and evaluate this again, this time without constraining ! to lie
on the z-axis, hence we have ! = [!x,!y,!z]T . To sort out rk ⇥ (! ⇥ rk) we use the
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BAC-CAB rule: A double cross product can be written as

a⇥ (b⇥ c) = b(a · c)� c(a · b). (3.23)

and reach (suppressing subscripts k for now):

r⇥ (! ⇥ r) =

2

4
(y2 + z2)!x � xy!y � xz!z

�yx!x + (z2 + x2)!y � yz!z

�zx!x � zy!y + (x2 + y2)!z.

3

5 , (3.24)

Based on this, we can generalize Eq. (3.16) to the

Moment of inertia tensor (or just “inertial tensor”), which we define as

I =

2

4
Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

3

5 , with Iaa =
X

k

mk(b
2
k + c2k), and Iab = �

X

k

mkakbk, (3.25)

where abc are some permutation of xyz, and the middle expression is valid for identical
indices and the last one for di↵erent ones only. The form (3.25) allows us to write the
angular momentum through a matrix multiplication

L = I!. (3.26)

• For the proof of Fig. 3.26, compare with Eq. (3.24), re-instating the subscript k.

• Mathematically a “tensor” t is a map taking many vectors as an input. You can think of it
as an array of values tijk...lmn with many indices. For two indices this looks like component
notation of a matrix Mkl, hence thinking of the inertia tensor just as inertia “matrix” is safe.8.

• Check that Eq. (3.26) agrees with our earlier result (3.15) for ! = (0, 0,!)T .

• The inertia tensor is symmetric, that means I = IT , or Ixy = Iyx etc.

8
The only additional information implicit in the word “tensor” is a specific transformation under basis changes in

your vector space
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Example 29, Inertia tensor of a cube rotating around its corner: Consider a
cube similar to the cup in example 26, but this time closed and filled homogeneously with
a constant 3D mass density ⇢ = M/a3. Using similar (but simpler) integration techniques
as in example 27, we can find the entire inertia tensor for the cube, relative to the origin at
(0, 0, 0). See TT for details of the calculation. From (3.25), we find

I =
Ma2

12

2

4
8 �3 �3
�3 8 �3
�3 �3 8

3

5 . (3.27)

As seen in example 28, you find from Eq. (3.26) that e.g. for ! = [0, 0,!]T ,the angular

momentum is not parallel to !. However, for example for ! = [!,!,!]/
p
3
T
it would be.

We again recognise the latter axis as one of higher symmetry.

We will see in the next week material that whenever angular momentum and rotational velocity
are not parallel, the dynamics is substantially more complex than if they are. For that reason, it
is of interest to know those rotation axis for which the two are parallel. These are called.

Example 30, Principal axes of a rigid body: For rotation about an axis through a
given origin O, set up the inertia tensor I and solve the eigenvalue equation

Iek = �kek. (3.28)

The (unit) eigenvectors ek are called principal axes of the rigid body. The eigenvalues �k

are the moments of inertia for rotation around ek. Here k = 1, 2, 3.

• Consider a case where the rotational velocity is pointing along a principal axis, that is ! = !e.
It is easy to see by combinging Eq. (3.26) with Eq. (3.28) that these are precisely the cases
where the angular momentum is parallel to the rotational velocity (exercise). By further
comparison with (3.15) we then also understand the statement above, that �e in that case is
the moment of inertia for rotation around that axis.

• Once we know all eigenvalues and eigenvectors of the inertia tensor, we can bring it into
a diagonal form I 0, according to

I 0 = O�1IO =

2

4
�1 0 0
0 �2 0
0 0 �3

3

5 (3.29)

where O is a matrix formed as O = [e1, e2, e3] by writing the three eigenvectors of I beside
each other as column vectors. It is an important result of linear algebra, that because the
inertia tensor is symmetric I = IT and real, we can always bring it into the form (3.29)
with three real eigenvalues �k and orthogonal ek. We also know that the matrix O will be
an orthogonal matrix, which means OT = O�1. O and OT are in fact rotation matrices, that
map vectors between our original basis vectors x̂, ŷ, ẑ and the basis {ek}. See more, later in
section 3.2.1 and section 3.4.
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• Whenever the rigid body has some clearly special axes due to its shape, the principal axes
or at least some of them will point along those directions. For example the rugby ball in
example 27 has e3 = ẑ.

Example 31, Principal axes of a cube around its corner: If we look again at example
3.27, we can diagonalize the inertia tensor of the cube to find

I 0 =
Ma2

12

2

4
2 0 0
0 11 0
0 0 11

3

5 , and O =
1
p
3

2

664

1
q

3
2

1p
3

1 �

q
3
2

1p
3

1 0 �
2p
3

3

775 . (3.30)

We see that e1, which is the first column of 0 is indeed the same axis for which we had
already notes in example 3.27 that for rotations around it the angular momentum will be
parallel to the axis. The other two axes are here just chosen as two arbitrary axes orthogonal
to e1.a

a
The reason why this is allowed, is that the other two eigenvalues �2,3 are degenerate. If that is the case,

any linear combination of the associated eigenvectors e0
2 = (cos�)e2 + (sin�)e3 is also an eigenvector with

the same eigenvalue, so the eigenvectors of a degenerate subspace are not well defined.

We had already stated that the moment of inertia tensor and hence principal axes depend on the
origin chosen. This is also made evident through (1.22), which we can use to derive the

Parallel axes theorem If we know the inertia tensor of a rigid body for an axis passing
through its center of mass Icm, the inertia tensor through another parallel axis is given by
I = IR + Icm, where

IR = M

2

4
Y 2 + Z2

�XY �XZ
�Y X X2 + Z2

�Y Z
�ZX �ZY X2 + Y 2

3

5 . (3.31)

Here M is the total mass and Rcm = [X,Y, Z]T in a frame that has its origin on the new
axis.

• Proof: Exercise, use Eq. (3.12) and Eq. (1.22).

To conclude this section, we also generalize (3.21) to rotational motion around an arbitrary axis
and find

Rotational (kinetic) energy of a rigid body for rotation ! around any axis:

Trot =
1

2

X

k

mkv
2
k =

1

2
!T I! =

1

2
! · L. (3.32)
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• In the middle expression of (3.32) we multiply the matrix I from the left with ! as a row
vector and from the right as a column vector, in the right one we take the scalar product of
! and L.

• Proof: exercise, use Eq. (3.12) and Eq. (3.25).
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