
Week 6
PHY 305 Classical Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2020

These notes are provided for the students of the class above only. There is no guarantee for cor-
rectness, please contact me if you spot a mistake.

2.9 Mechanics in non-inertial frames

We had seen in section 1.4.2 that reference frames are either inertial or non-inertial, and Newton’s
equations are only valid in the former. Nonetheless one may want to work out physics in noninertial
frames, particular when sitting in one, such as an accelerating vehicle or the surface of our rotating
earth.

2.9.1 Straight acceleration

Consider the two frames S (train station) and S
00 (accelerating train) shown in section 1.4.2, but

extending our picture to 3D such that the instantaneous velocity of S 00 seen in S is V(t) and its
acceleration constant A = V̇(t).

Let’s consider the apple of mass m at position r(t) dropped in the cartoon in section 1.4.2. When
viewed in the inertial frame S, we know it is described by Newton’s law mr̈(t) = F, where F is the
sum of all forces acting on it (for now gravity).

We now denote all variables in the accelerating frame S
00 by double-primes (the 00 are not spatial

derivatives in this section). We know that the velocity of an object in the original (unmoving)
frame, ṙ, is the velocity as seen in the moving frame ṙ00, plus the velocity V of that moving frame
itself:

ṙ = ṙ00 +V. (2.77)

Up to now, it has not been important that the frame S
00 is accelerating. However when we take

one more time derivative

r̈ = r̈00 + V̇ = r̈00 +A, (2.78)

which directly gives us
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Newton’s equation in an accelerating frame

mr̈00(t) = F�mA| {z }
=Fin

(2.79)

where F is the same forces as before, r̈00 the acceleration felt in the accelerating frame and
Fin labels the inertial force.

• The inertial force arises from the frame transformation only, not from some additional fun-
damental interaction. For that reason it is called a fictitious force. The inertial force is what
presses you into the seat in an accelerating car or plane.

• You can see from (2.79) that the apple dropped in the accelerating train would indeed move
slightly sideways.

• The discussion above and the following ones are phrased in terms of Newtonian mechanics
instead of Lagrangian mechanics, you may wonder why after we just went through all the
e↵ort to establish Lagrange. The reason is that it would be almost too simple using Lagrange,
so in order to carefully introduce frame dependent concepts such as the inertial force above,
it is more instructive to stick to Newton. We will see at the end of this part, in section 2.9.3,
how e↵orts get simplified with Lagrange.

Instead of the apple, let’s consider a

Example 19, Pendulum in an accelerating train:

left: Train with acceleration A containing a
pendulum. At rest in the accelerating frame,
the tension of the string T will be balanced by
the vector sum of the gravitational force mg
and the inertial force �mA, which causes a
tilted equilibrium position of the pendulum as
shown.

Using (2.79), we can write the equation of motion of the pendulum bob as

mr̈00(t) = T(r) +mg �mA, (2.80)

where T is the tension force exerted by the string. We see that we can combine gravity
and the inertial forces as mg �mA = mge↵ into a new e↵ective gravitational force. It just
points in a slightly di↵erent direction than the real one, and has a slightly di↵erent strength.
However we can just use it in the usual solution of the pendulum and thus infer its dynamics
at this point. See TT for more details.
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Example continued: Importantly, this example shows that there is no practical way to
distinguish a gravitational force from an inertial force. This forms one of the starting points
of the theory of general relativity, the principle of equivalence. It requires that the parameter
m entering both forces is exactly the same. Note that while doing Newtonian physics, there
is no reason for them to be the same. However they are experimentally constrained to be
the same up to a fraction 10�15.

For the next example we zoom into the Kepler problem of section 2.8 where we now consider the
orbiting bodies to be extended objects. At every given moment, the force exerted by one of the
two orbiting bodies onto the other causes an acceleration, hence when fixing the frame in one of
those bodies for a short time, the frame is accelerated as in the example above6. We can now use
Eq. (2.79) to explain the

Example 20, Origin of the tides in the ocean:

left: Sketch of earth moon system.
d0 points from the centre of the moon
to the centre of the earth, d to a
drop of the ocean of mass m at the
indicated position. The blue halo
of the earth indicates the bulge of
the tides, pointing towards the moon
and opposite from it.

We consider three forces acting on the drop, the gravitational forces by the moon Fmoon, the
earth Fearth and the inertial force Fin, and neglect any other forces:

Fmoon = �GMmm
d

d3
, Fearth = mg, Fin = GMmm

d0

d30
, (2.81)

where Mm is the mass of the moon. The inertial force Fin arises here because we work in
the reference frame of the earth, which is accelerated. The earth is attracted by the moon
and thus feels an acceleration MeA = �GMmMe

d0
d30
.

Let us combine the pieces involving the mass of the moon into

Ftid = �GMmm

✓
d

d3
�

d0

d30

◆
. (2.82)

By looking at the signs and vector directions, you can convince yourself that this points
towards the moon for d on the side of the earth close to the moon, and away from moon on
the side farther to the moon. This gives rises to two outwards bulges of the ocean surface,
as sketched in the figure, and thus to high tides twice per day.

• There are additional separate tides due to the sun, which are not a lot weaker.

6
Technically the direction of acceleration changes over one orbital period, but for now we consider only times

much shorter than that.
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• Note, tides also act on land, which however resists the e↵ect more since land is a solid.
Nonetheless it has noticeable consequences: the friction due to tides of the crust can eventually
slow down a planetoids rotation about its own axis such that it always faces the same side to
its heaviest companion. This is called “tidal locking” and has happened to our moon, which
is why it always points the same side towards earth.

2.9.2 Rotating reference frames

We now zoom even further into the Kepler problem, sitting ourselves, as we are, onto the surface
of the earth. While for most practical purposes our seat appears to define an inertial frame, it isn’t
in fact. We know the earth rotates round its axis, so we are dealing with a rotating frame, which
is again non-inertial, but of a di↵erent character than the linearly accelerated frame that we saw
in section 2.9.1.

A useful concept for the description of anything involving rotations is the

Angular velocity vector

! = !u, (2.83)

where ! is the rotational velocity and u a unit vector along the rotation axis.

• To specific the direction of u we use the right hand rule, thumb u, curved fingers direction
of motion. See figure below.

• If the origin of our coordinate system is on the rotation axis, the motion due to rotation of a
point at r is given by

v = ! ⇥ r, (2.84)

see figure below. In fact this argument works for the rate of change of any vector e that is
fixed in the rotating frame, it evolves as ė = ! ⇥ e, when viewed from the fixed frame.

• We can use Eq. (2.84) to show that rotational velocities add up: If we have three frames,
where the relative velocity of 1 and 2 is v12 and that of 2 and 3 v23, we know that the relative
velocity of frame 1 and 3 will be v13 = v12 + v23. Using this, if now instead 2 is rotating
relative to 1 with !12 and 3 is rotating relative to 2 with !23, then from (2.84)

!13 ⇥ r = !12 ⇥ r+ !23 ⇥ r = (!12 + !23)⇥ r, (2.85)

hence !13 = !12 + !23.
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left: Sketch of rotation axis u and angular velocity vector
!, with resultant motion of a point at r, subject to this
rotation, according to Eq. (2.84).

Let us know specify what we mean by rotating frame, using the figure below:

left: We display a static frame S0 with cartesian axes x, y,
z as usual. Relative to this, the frame S

00 is rotating with
angular velocity ⌦ (green). We choose ⌦ along ez to draw
a clearer picture of how the x and y axes rotate.
We can explicitly write down the coordinate transformation
shown, as

x00 = x cos (⌦t) + y sin (⌦t),

y00 = y cos (⌦t)� x sin (⌦t),

z00 = z. (2.86)

As in section 2.9 we again know that Newton’s equation takes the usual form in the fixed frame
mr̈(t) = F, and want to now derive which form it takes in the rotating frame.

First, we can show from the statement ė = ! ⇥ e after Eq. (2.84) the following

Transformation of time derivatives between frames:
✓
@Q

@t

◆

S0

=

✓
@Q00

@t

◆

S00
+⌦⇥Q00, (2.87)

where Q is an arbitrary time-dependent vector, and the frames and angular velocity ⌦ are
defined in the figure above. (· · · )S0

implies a time-derivative as seen in frame S0.

Proof: Exercise, then check solution in TT.
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We now start from Newton’s equation in the fixed frame

m

✓
d2r

dt2

◆

S0

= F. (2.88)

Using (2.87) we can write firstly
�
dr
dt

�
S0

=
⇣
dr00

dt

⌘

S00
+⌦⇥ r00, then apply it a second time to get:

✓
d2r

dt2

◆

S0

=

✓
d

dt

◆

S00

✓
dr00

dt

◆

S00
+⌦⇥ r00

�
+⌦⇥

✓
dr00

dt

◆

S00
+⌦⇥ r00

�

= r̈00 + 2⌦⇥ ṙ00 +⌦⇥ (⌦⇥ r00). (2.89)

We have used here that the rotation axis and rotational velocity are time independent, i.e. d⌦/dt =
0. Inserting into (2.88), we finally reach

Newton’s equation in the rotating frame

mr̈00 = F+ 2mṙ00 ⇥⌦| {z }
Fcor

�m⌦⇥ (⌦⇥ r00)| {z }
Fcf

. (2.90)

As before, double primes indicate that we are in the rotating frame S
00 and are not spatial

derivatives. We have highlighted two new types of inertial forces, the Coriolis force Fcor and
the centrifugal force Fcf.

• Same as the inertial force in Eq. (2.79), the Coriolis force and the centrifugal force arise from
the frame transformation only, hence they are also fictitious forces. We will look at their
consequences in some examples below.

• You can convince yourself with multiple right-hand rules and the vector diagram on the left,
that the centrifugal force points always radially outwards from the rotation axis, see figure in
example below. By using the rule (2.91) below, we see that the magnitude of the centrifugal
force is |Fcf| = m⌦2⇢, where ⇢ is the distance of r00 from the rotation axis, see figure below.

• The centrifugal force is a manifestation of Newton’s first law, that things want to go straight
in the absence of forces. Since undergoing a rotation is not straight, you have to overcome
the centrifugal force in order to keep an object on a rotating motion.

left: Vector diagram for cen-
trifugal force.
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Magnitude of cross product: We can show that

|a⇥ b| = ab sin (✓), (2.91)

where ✓ is the angle between vectors a and b.

Example 21, Centrifugal force in astronaut training:
left: The centrifugal force can be used to generate
strong forces/acceleration for a long time in a small
spatial volume. Astronauts during rocket launch
have to deal with acceleration of at least 3g, with
g = 9.81 m/s2, giving rise to an inertial force as
in (2.79). You can see from Eq. (2.90), that sitting
on the wall of a cylinder rotating at an angular
velocity |!| = 2.5/s (which means a full cycle every
T = 2⇡/! ⇡ 2.5s) at a distance |r00| = 5m from the
rotation axis will generate an outwards centrifugal
force of similar magnitude.

• Again using rules for cross products, we se that the Coriolis force Fcor = 2mṙ00 ⇥ ⌦ always
points perpendicular to the velocity. It vanishes for motion that is parallel to the rotation axis,
see again Eq. (2.91). In contrast to the centrifugal force, it also vanishes for objects that are
not moving.

Example 22, Walking on a turntable:
left: Suppose you are walking on the disk shown
on the left, which is rotating as shown (pink). Thus
the frame rotation axis ⌦ points out of the paper.
At the positions indicated by • and walking into
direction v the Coriolis force will act as shown. It
will always point at right angles to your velocity.
The Coriolis force takes care of the fact that mo-
tion that is on a straight line with constant velocity
in the nonrotating frame, must appear curved side-
ways in the rotating frame, see e.g. this video or
this .
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Example 23, Cyclones:

left: Huge planetary scale storms are generated
by air (blue arrows) moving radially into a low pres-
sure region (brown). While doing so, the Coriolis
force (pink) acts on the air, for all streams of air
with the same relative orientation to the velocity.

• Another famous example involving the Coriolis force is Foucault’s pendulum, essentially like
example 8 but treating that in 2D and including the rotation of the earth. Due to the
Coriolis force, the plane of oscillation of the pendulum will rotate, essentially due to the earth
“rotating underneath it” ( movie ).

2.9.3 Non-inertial frames in the Lagrange formalism

(i) Lagrange’s equations can be applied in non-inertial frames, as long as the (ii) Lagrangian is
originally formulated in an inertial frame. The reason for (ii) is that we constructed the Lagrangian
such that the output of Lagrange formalism reproduces Newton’s equation as given in inertial
frames. The reason for (i) is that the action principles does not care about coordinates, so we can
use it in non-inertial frames as well. Let’s see how this works in two examples:

Example 24, Constant acceleration: Let us denote the location of the accelerating train
by x(t) and the position of a person inside by q(t). We want to use q as our generalized
coordinate. Since we have to set up the Lagrangian in an inertial frame, we do so in S0 and
write L = 1

2m(ẋ(t) + q̇(t))2 for a 1D free particle. However we can now evaluate Lagrange’s
equation (2.29) directly in the accelerating frame and find

@L

@q
= 0,

d

dt

@L

@q̇
=

d

dt
m(ẋ(t) + q̇(t)) = mẍ(t) +mq̈(t). (2.92)

and hence mq̈(t) = �mA, which is the same as (2.79).

Example 25, Rotating frame: We again want to use the Lagrangian for a free particle
L = 1

2mṙ(t)2 in the static frame, this time in 3D. The task is now to express this in a
rotating frame S

00. Originally we had r = [x, y, z]T , we now convert this to coordinates
r00 = [x00, y00, z00]T using (2.86). By simple substitution, we find

L =
1

2
m(ṙ00 +⌦⇥ r00)2. (2.93)

e.g. for ⌦ = ⌦ẑ this gives L = 1
2m

⇥
(ẋ00 � ⌦y00)2 + (ẏ00 + ⌦x00)2 + ż2

⇤
. PTO
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Example continued: Evaluating the parts of the Lagrange equation we find:

d

dt

✓
@L

@ṙ00

◆
= m(r̈00 +⌦⇥ ṙ00), (2.94)

@L

@r00
= m[ṙ00 ⇥⌦�⌦⇥ (⌦⇥ ṙ00)]. (2.95)

While the first equations is a relatively straightforward application of the chain rule, the
second one is more tricky, see mathbox below. Combining the two equations above into the
Lagrange equation, we reproduce (2.90) as claimed.

Component notation for cross-product: Sometimes dealing with equations such as
(2.95) directly in vector form can be tricky, particularly when cross products are involved.
Often it helps to revert to component notation. For the cross-product a ⇥ b = c, we can
write

ci =
X

jk

✏ijkajbk, (2.96)

where ✏ijk is called Levi-Civita symbol or perfectly anti-symmetric tensor. Its indices i, j, k
can take the values 1, 2, 3 or x, y, z for the three dimensions of space, and ✏123 = 1. Whenever
two indices are equal, it is zerol, ✏ijj = 0. Whenever you swap two indices, it changes sign,
e.g. ✏132 = �1. A useful consequence is that the ✏ tensor remains constant under a cyclic
change of indices, e.g. 1 = ✏123 = ✏231 = ✏312.

Using this, we can now write the starting point of (2.95) as

@L

@r00n
=

@

@r00n

1

2
m

X

i

(ṙ00i +
X

jk

✏ijk⌦jr
00
k)

2

= m
X

i

(ṙ00i +
X

jk

✏ijk⌦jr
00
k)

@

@r00n
(
X

`m

✏i`m⌦`r
00
m)

= m
X

i

(ṙ00i +
X

jk

✏ijk⌦jr
00
k)(

X

`m

✏i`m⌦`�nm). (2.97)

Here we have used the Kronecker delta symbol �nm = 1 for n = m and �nm = 0 for n 6= m.
Then

@L

@r00n
= m

X

i`

✏i`n|{z}
=✏ni`

ṙ00i ⌦` +m
X

ijk`

✏ijk⌦jr
00
k ✏i`n⌦`)

= m
X

i`

✏ni`ṙ
00
i ⌦` +m

X

i`

✏ni`|{z}
=�✏n`i

⌦`

0

@
X

jk

✏ijk⌦jr
00
k

1

A . (2.98)

Now comparing back to (2.96) we can revert back to vector notation to reach directly (2.95).
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• It appears the inertial forces in the rotating frame emerge somewhat easier in the Newtonian
formalism. However an important conceptual advantage of Lagrange seen here, is that while
Newton’s equations have changed form from (1.5) to (2.90) when going to the inertial frame,

Lagrange’s equation still reads d
dt

�
@L
@ṙ00

�
�

@L
@r00 = 0, completely unchanged!!!
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