
Week 5
PHY 305 Classical Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2020

These notes are provided for the students of the class above only. There is no guarantee for cor-
rectness, please contact me if you spot a mistake.

2.8 Two-body central force problem

As an application of the Lagrangian formalism, we will tackle the problem of two bodies interacting
with central forces with it.

2.8.1 Coordinates and Lagrangian of the two-body problem

By two body problem we refer to the closed system of two (point-like) objects of mass m1 and m2

at locations r1 and r2 that mutually interact through forces F12, F21 (see section 1.4.5), but are
not subject to any further external force.

left: This seemingly simplified settings actually
applies to at least two very important scenarios:
The interactions of planets with stars, or moons
with planets and those of electrons with nuclei.

While in either case there are typically more than two objects (i.e. many planets, other molecules),
frequently two of them will be a lot closer together or one of them much more important, so that
it is a very good approximation to neglect all others. Of course, subatomic interaction have to be
treated quantum mechanically, but doing that rigorously highly benefits from the contents of this
section. We will also see one example where a classical treatment of the atom becomes a good
approximation.

From the position of the two objects, we can first define further coordinates as shown below:

left: A small mass m1 near a
large mass m2, with drawing
of the centre of mass as well as
relative coordinate vectiors.
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Instead of r1 and r2, we can change coordinates to the centre of mass position

RCM =
m1r1 +m2r2

M
, with M = m1 +m2, (2.54)

which we had already seen in Eq. (1.17), and the relative position r = r1 � r2.

The section title states that we wish to restrict ourselves to central force problems, which means
that the forces are derived from a

Central potential, which depends only on the magnitude of the relative position

V (r1, r2) = V (|r|). (2.55)

• Well known central potentials are the gravitational potential

Vgrav = �
Gm1m2

|r|
, (2.56)

and the Coulomb potential

Vcoul = �
1

4⇡✏0

q1q2
|r|

. (2.57)

• The forces can then be found from it as F12 = �rr1V (|r|), F21 = �rr2V (|r|).

The Lagrangian in the direct coordinates of the two objects takes the form

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 � V (|r1 � r2|). (2.58)

The fact that the potential only depends on the relative coordinate, suggest the use of Rcm and
r instead, as generalized coordinates5 You can convince yourself that r1 = RCM + m2

M r and r2 =
RCM �

m1
M r, using which we can convert the kinetic energy to the new coordinates:

T =
1

2
m1

h
ṘCM +

m2

M
ṙ
i2

+
1

2
m2

h
ṘCM �

m1

M
ṙ
i2

=
1

2

✓
MṘ2

CM +
m1m2

m1 +m2
ṙ2
◆
. (2.59)

The second term motivates the definition of the

Reduced mass µ of two massive objects as

µ =
m1m2

m1 +m2
. (2.60)

5
We will not label them with q in this section.
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• The reduced mass is always smaller than either m1 or m2.

• If one object is much heavier, say m2 � m1, the reduced mass is almost equal to the mass
of the lighter object µ ⇡ m1. This applies quite well to both problems given for motivation,
the planet orbiting the star, and the electron orbiting the nucleus.

• For equal mass objects m1 = m2 = m we see that µ = m/2.

We are finally in a position to write the

Lagrangian of the two-body problem

L =
1

2
MṘ2

CM
| {z }

Lcm

+

✓
1

2
µṙ2 � V (|r|)

◆

| {z }
Lrel

, (2.61)

which decomposes as indicated into a centre-of-mass and a relative Lagrangian.

2.8.2 Equations of motion of the two-body problem

We now evaluate the Lagrange equations from (2.61). The one for RCM reads:

MR̈CM = 0 which means ṘCM = const. (2.62)

This is as in example 14, where we saw that if L does not contain a coordinate (here RCM), the
corresponding momentum is conserved. Thus the centre of mass will just move in a straight line,
at whatever velocity it had initially.

The second Lagrange equation is not much more di�cult, we find

µr̈ = �rrV (|r|). (2.63)

We recognise this as mathematically equivalent to Newton’s equation for a single particle of mass µ
experiencing a potential V (|r|). Since the centre of mass motion is trivial, we have thus successfully
removed all two-body character from the two-body problem, and are now e↵ectively dealing with
a single-body problem.

We can make this more formal, by saying we work in the centre-of-mass frame (see section 1.4.2),
defined by RCM being the origin. In that reference frame, ṘCM = 0, hence LCM = 0 and we really
only have the Lagrangian of a single body problem.

2.8.3 Angular momentum in the two-body problem

We also see that the situation of example 16 applies here and hence the net angular momentum
L is conserved. From the definition in section 1.4.5 and considering L in the centre-of-mass-frame
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suggested above, we have

L = r1 ⇥ p1 + r2 ⇥ p2 = r⇥ µṙ. (2.64)

The second equality is true in the entre-of-mass frame and left as an exercise. We see that all
angular momentum is carried by the relative coordinate only, and involves the reduced mass only.

Importantly, you know that for the cross-product ~a = ~b⇥~c, the vector ~a is automatically orthogonal to both,
~b and ~c. All vectors that are orthogonal to a fixed vector form a 2D plane. Looking at (2.64), we
thus deduce that at all times r and ṙ lie in a plane orthogonal to L, so the motion of the two-body
problem can be reduced to two dimensions! Let us pick L to be along the z-axis, then motion
happens in the x, y plane.

Since we have a central potential, a useful choice of coordinates in that 2D plane are polar coordi-
nates r, ', see section 1.4.6. By inserting Eq. (1.25) into Eq. (2.61) we can find (exercise):

Lrel =
1

2
µ(ṙ2 + r2'̇2)� V (r). (2.65)

We can see that it does not contain ', and hence as discussed in section 2.7 the Lagrange equation
(2.29) for ' will give us a conservation law:

@

@'̇
Lrel = µr2'̇ = const = `, (2.66)

where we recognize ` = |L| as the (z-component of the) angular momentum. The Lagrange equation
for r gives us

µr̈ = �
@

@r
V (r) + µr'̇2

= �
@

@r
V (r) +

`2

µr3
= �

@

@r
Ve↵(r). (2.67)

In the first step, we have eliminated '̇ in favor of r using (2.66), which brings in the angular
momentum ` as a constant. In the final step, we have defined an e↵ective potential for the radial
motion

Ve↵(r) = V (r) + Vcf (r) = V (r) +
`2

2µr2
. (2.68)

The motivation for this name, is that the motion in the coordinate r now is simply that of a particle
of mass µ in just one dimension, subject to the potential Ve↵(r). To understand the origin of the

second term in (2.68), let us go to (2.67) and re-write the part `2

µr3 as

Fcf =
`2

µr3
=

µv2�
r

, (2.69)

where v� is the azimuthal part of the velocity. We recognize (2.69) as the modulus of the centrifugal
force. Thus we can think of the second term in (2.68) as “ a potential for the centrifugal force”.
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left: Consider now a drawing of the
e↵ective potential Ve↵(r) (red), decom-
posed into the real potential V (r) (2.56)
and the centrifugal term Vcf (r). The
centrifugal term pushes the particle
outwards as you would expect. It is
larger, the larger the angular momen-
tum (see Eq. (2.68)).

Since we have reduced the dynamics
with Eq. (2.67) to one dimensional mo-
tion in the potential Ve↵(r), the energy
conservation law E = 1

2µṙ
2+Ve↵(r) ap-

plies.
Hence for E < 0 the particle/planet cannot move the violet region between rmin and rmax and we
have a bounded orbit. In contrast, for E > 0 arbitrarily large r is possible. This corresponds to
particle scattering or a comet in an unbounded orbit.

Note that through section 2.8.1-section 2.64 we have achieved a quite dramatic simplification of
our problem, from originally the six dimensions contained in r1 and r2, down to just one radial
coordinate r.

2.8.4 Kepler orbits

We could now solve Eq. (2.67) with the potential (2.56) to find r(t) as a function of time, but it
is instructive to find r(') in order to draw a picture of the orbit, as shown in the figure below.
However if you imagine the orbital motion of a planet in time, r, ' and t are all linked, so we can
re-convert (2.67) from di↵erential equation in terms of t into one in terms of '.

The detailed calculation is described e.g. in [TT] and I urge you to go through it since it contains
many useful tricks. Here I only describe the summary. The two tricks used are the substitution
u = 1/r and di↵erential

d

dt
=

d'

dt

d

d'
= '̇

d

d'
=

`

µr2
d

d'
=

`u2

µ

d

d'
, (2.70)

where we have used (2.66) for the third equality.

We now use (2.70) to replace the time-derivative in Eq. (2.67) and reach

d2

d'2
u(') = �u(') +

Gm1m2µ

`2
. (2.71)

It is very useful that the second term is just a constant, since it allows the definition w(') =
u(') � Gm1m2µ

`2 resulting in the di↵erential equation w00(') = �w('), which you know is solved
by w(') = A cos(' � �) for some constants A and �. We remove � by redefinition of ', undo the
definitions of w and u to get back to r and finally arrive at our
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Kepler orbit

r(') =
r0

1 + ✏ cos (')
, (2.72)

with eccentricity ✏. r0 = `2/(Gm1m2µ) is related via r0 = a(1� ✏2) with the semi-major axis
a.

• The new parameter eccentricity ✏ that occurs in (2.72) came from the integration constant A
seen earlier, instead of A we can directly choose ✏. The eccentricity is crucial for the type of
orbit we get.

• For 0 < ✏ < 1, the orbit is shown in the figure below and takes the form of an ellipse, with
the sun at one of the focal points. You can show this by converting (2.72) back into cartesian
coordinates. That calculation gives the semi major axis a = r0/(1� ✏2) and semi minor axis
b = r0/

p
1� ✏2. We see that for ✏ = 0 the orbit becomes a circle, and for ✏ ! 1 it the ellipse

becomes very elongated.

left: The Kepler orbit of, e.g. the earth
around the sun. In terms of the figure
for Ve↵ shown earlier, rmin = r0/(1+✏) is
reached at the point marked perihelion,
and rmax = r0/(1� ✏) is reached at the
point marked aphelion.

• For ✏ � 1 we get unbounded orbits. Again, by converting Eq. (2.72) into cartesian coordinates,
you can see that for ✏ = 1 the orbit forms a parabola and for ✏ > 1 it is hyperbolic in shape
(see wikipedia “hyperpola”).

• Since both, the parabola and hyperbola describe motion of the object where r ! 1 is
possible, we can directly tell from our drawing of Ve↵ above, that these must apply to energy
E � 0 while the bounded orbits are for E < 0.

We shall now confirm the latter statement more explicitly by looking at the links between energy,
angular momentum and eccentricity, which also help us understanding some qualitative features of
the Hydrogen atom treated quantum mechanically.
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2.8.5 Energy, angular momentum and eccentricity

If we want to relate eccentricity to energy, we can go to the figure of Ve↵ above. We see that
the energy equals the e↵ective potential energy exactly at the inner turning point E = Ve↵(rmin.
Inserting rmin = r0/(1� ✏) from above into (2.68) using V = Vgrav (2.56), we can write

E = �G
m1m2

rmin
+

`2

2µr2min

=
(Gm1m2)2µ

2`2
(✏2 � 1). (2.73)

We also had to use r0 = `2/(Gm1m2µ).

We can now confirm the statement above, that the bounded orbits with ✏ < 1 must have negative
energy, while ✏ > 1 have positive energy. The parabolic orbit with ✏ = 1 corresponds exactly to the
case of zero energy.

left: Some exemplary bounded and un-
bounded orbits, for fixed rmin but vary-
ing eccentricity ✏, forming the geomet-
rical shapes stated.

An important consequence of Eq. (2.73), is that for fixed energy E, the orbit still can have a
variety of di↵erent angular momenta ` if we adjust the eccentricity accordingly. This has important
consequences for atomic physics, that are encoded in the quantum results that you already know:

Example 18, Energy and angular momentum in the Hydrogen atom a : By
swapping the gravitational potential (2.56) for Coulomb’s potential (2.57), we can find a
result such as (2.73) for a fictitious classical Hydrogen atom. We then have

E =

✓
e2

4⇡✏0

◆2
me

2`2
(✏2 � 1). (2.74)

Now let’s look at this result for fixed energy E but varying `. Firstly note that ` ! 0 must
go with ✏ ! 1. At ✏ ⇡ 1 the Kepler ellipse becomes very very stretched, almost like a straight
line. See section 1.4.1: a straight line through the nucleus would indeed have L = 0. We see
from (2.74) that at fixed E, as we lower ✏ towards zero, the angular momentum is increasing.

a
Feel free to skip this is example until you did the Hydrogen atom in PHY303/304, but may already be

able to understand it from PHY106.
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Example continued: It thus takes its maximum value `max at ✏ = 0 corresponding to a
circular orbit.

left: Four di↵erent angular momenta
of the classical Hydrogen atom at
fixed energy E, starting with l = 0
up to the maximum value `max.

We can write equation (2.74) for ✏ = 0 as

�E =
Ryh2

4⇡2`2max
= Ry

~2
`2max

, (2.75)

where we have used the Rydberg constant Ry = mee4/(8✏20h
2). In the hydrogen atom

E = �Ry/n2 and ` = ~
p
l(l + 1), where n is the principal quantum number and l the angular

momentum quantum number. You also know that 0  l < n, hence `max = ~
p

(n� 1)n.
You can now see that (2.75) gives you exactly the same relation for `max if we approximate
n ⇡ (n� 1). This might be OK, for e.g. Rydberg atoms with n � 10.

2.8.6 Additional conservation law

It turns out, in addition to conservation of energy, centre of mass momentum and angular momen-
tum, the Kepler problem has one more conserved quantity, the

Lenz-Runge vector, defined as

A = p⇥ L� µGm1m2
r

r
. (2.76)

• A always points to the Perihelion of the orbit. Its conservation thus indicates that the
orientation of the Kepler orbit ellipse does not change in time, or that that the orbit perfectly
closes on itself.

• For the proof that it is conserved see e.g. GPS chapter 3. We see that it is only conserved
if we have a 1/r2 Force law, or 1/r potential, such as is the case for a perfect classical
gravitational or Coulomb potential. When the force law deviates even slightly, an orbit no
longer perfectly closes on itself. It has been one of the first observations in support of the
general theory of relativity, that the planet Mercury shows a slight Perihelion advance, which
can be traced back to GR causing minor deviations of the gravitational force from an 1/r2

Force law.
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