
Week 12
PHY 305 Classical Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2020

These notes are provided for the students of the class above only. There is no guarantee for cor-
rectness, please contact me if you spot a mistake.

4.7 Nonlinear Mechanics and Chaos

It turns out, an important criterion regarding the complexity of solutions for any given mechanical
problem, is whether the equations of motion are linear or non-linear in the coordinates. Linear
ones will typically give rise to relatively straightforward behavior such as oscillations, as we had
seen in section 3.6.2. Nonlinear ones, can give rise to what is colloquially called “chaos” and more
carefully “strong sensitivity to initial conditions”. This final week section of the course is meant as
only an “appetiser” for non-linear mechanics, this could easily be a standalone course (and in fact
is one, PHY 411). As mention in section 1, non-linear mechanics is one of the major arenas with
ongoing research in classical mechanics.

However another purpose of this section is to practice the important concept of phase-space intro-
duced in week10, and to see some more uses for it.

4.7.1 Linearity and Nonlinearity

We already stated above, that we distinguish linear and non-linear physical systems, by whether
their equations of motion are linear or non-linear in the coordinates. Let us look at examples that
we had seen already:

Example 48, Linear and Non-linear systems:
One of the simplest linear systems is the simple harmonic oscillator, e.g. consider a single
cart in section 3.6.1, for which we can write

q̈ = �!2
0q, (4.59)

which contains q only linearly.
In contrast for the simple pendulum, see example 4.22, we have upon writing a single equation
of motion

�̈ = �g

l
sin (�), (4.60)

which is non-linear due to the sin function.
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Example continued: In this case however, once could linearise the problem by considering
only small deviations of the pendulum from equilibrium � ⇡ 0, for which we can expand
sin (�) ⇡ �, which makes the equation linear again (and equivalent to Eq. (4.59)).
A more complicated non-linear problem we had seen was the two-body or Kepler problem,
e.g. Eq. (2.67) with inverse square law

µr̈ = �GmM

r2
+

`2

µr3
. (4.61)

The classification of further examples is e.g. the block sliding on sliding plane example 12
(linear), the bead on hoop, example 13 (nonlinear), heavy-top Eq. (3.54) (nonlinear).

• From the examples above, one might think that linear and non-linear systems are about
equally common. In fact, in reality the large majority of systems are non-linear. The reason
linear systems are nonetheless the more common ones considered in lectures and books, is
that near equilibrium one can very often linearise the description, as shown above and for
the general case in section 3.6.2. One could say that despite most systems being non-linear,
luckily12, we can frequently look at linear problems nonetheless, thanks to linearisation.

• The most important di↵erence in the solution and math between the two systems, is that the
superposition principle does not hold for non-linear systems. In a linear system, if you found
two solutions q1(t) and q2(t) of the dynamics, their sum is also a solution. Further, since
the equations of motion are typically second order in time, once we have two such solutions,
with arbitrary coe�cients we can then write the general solution. Since it is only based on
two ingredients, the complexity of such a solution is greatly limited. None of this holds for a
non-linear equation, where even a single equation can have a much larger set of qualitatively
di↵erent solutions.

4.7.2 The driven simple pendulum

In the list above, one of the simplest non-linear systems we have looked at is the simple pendulum.
However we have seen in example 41, that despite the non-linearity the pendulum has a nicely sorted
phase-space and regular behaviour, either showing oscillations or librations. This is a consequence
of energy conservation, or the fact that the system is integrable (see section 4.4.2).

What if we now break integrability? We would for example expect energy to cease being conserved,
if we externally drive the system. Since we will need it later, let us already introduce the

Driven damped pendulum (DDP) with equation of motion

�̈+ 2��̇+ !2
0 sin� = !2

0 cos (!t) (4.62)

12Since a linear problem is typically easier
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• Please look at the TT book for an extensive derivation of the ingredients. I use the same
notation as TT here. If you look at example 41, you can reach the main part of (4.62) by
di↵erentiation the �̇ equation wrt. time and then inserting ṗ, finding !0 =

p
g/`. For the two

new terms:

• Damping due to the term 2��̇ is added ad-hoc without derivation, we set � to zero for now
and shall only use it in section 4.7.4. We then have just a driven pendulum (DP).

• The driving force !2
0 cos (!t) could be added on the level of the Lagrangian or Hamiltonian

via a time dependent addition to the potential energy V (t) = !2
0 cos (!t)�.

Let us now look at what consequences driving has for the phase-space trajectories:

Example 49, Stroboscopic Poincaré section: The first thing that we loose when
driving the system ( 6= 0), is the nice features that phase space trajectories cannot cross.
They now can cross (at di↵erent times), as shown in the figure below. This makes the
phase space diagram much less clear than before. The problem can be addressed, by

moving to a Stroboscopic Poincaré plot of phase-space. For that, instead of following the
phase-space trajectory at all times drawing [q(t), p(t)], we only make a “dot” after an

integer completion of driving periods [q(nT ), p(nT )], where n 2 Z, and T = 2⇡/!, where !
is the driving frequency in Eq. (4.62). It turns out this quite tidies up the picture, where

we now can see regular structures as before (green, violet) and an irregular region (orange).

left: (left) Drawing of a collec-
tion of phase-space trajectories
as in example 41 (samish color
coding), but now for a driven
pendulum. (right) Stroboscopic
Poincaré section as explained in
the text, for the same setup.

To understand more how a figure like the above comes about, let us look at one
characteristic trajectory per colored region.

top: (left) Driven oscillatory regular trajectory. (middle) Driven chaotic
trajectory. (right) Driven regular libration.

Through the stroboscopic recording we just pick certain snapshots of these trajectories, but
if the underlying motion is still constrained on a regular surface in phase-space (as is the
case), taking more and more snapshots still traces these regular structures.
Of most interest are the irregular trajectories (orange), that cover a large area of phase-space.
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• To explain the name “Poincaré section”: The main use of the concept is not (only) for time-
dependent 1D systems, like here, but instead to visualize phase-spaces for higher-dimensional
system. Since we cannot draw in more than 2 dimensions, what one does then is take a 2D
cut or “section” of phase-space, and draw a dot for every trajectory that crosses that cut.
For example in a 2D non-linear oscillator with phase space variables qx, qy, px, py, we can
take the cut at qy = py = 0 and draw a dot whenever a trajectory crosses these values.

• The irregular trajectories in the example above are an example for what is called “chaotic
dynamics”, which we now look at in more detail nextly.

4.7.3 Chaos

We had see in example 49 that some trajectories of the driven simple pendulum behave rather
erratically, ending up as time goes on in lots of di↵erent corners of phase space. In particular,
even though we may have started o↵ two trajectories with nearly equal initial conditions (red

crosses in the right panel in orange region), if we started them in the messy region of phase space,
they might end up in quite di↵erent places (red circles in orange region). We show these again in
a representations as function of time below. This does not happen for trajectories in the regular

regions (same style symbols in green region).

top: (left) Trajectory started in the regular region of phase-space compared
second trajectory with initial conditions di↵ering by factors 0.001 overlaid as
dashed line. (right) The same concept for two trajectories started in the chaotic
region of phase-space.

We can characterise a systems sensitivity to the initial conditions, by the evolution of the separation
between trajectories

d(t) = |q1(t)� q2(t)|. (4.63)

Consider two trajectories that begin from very similar initial conditions, such that d(t) ⇡ 0 (but
not fully zero).

If d(t) then remains small at all times, the system is not sensitive to initial conditions. However if
d(t) can increase by orders of magnitude during time evolution it is sensitive. Particularly we shall
see that there are systems where d becomes as large as the entire phase-space, even if it starts of
infinitesimal.

We can quantify this using the
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Lyapunov exponent The Lyapunov exponent of a dynamical system is �, if

d(t) ⇠ e�t, (4.64)

on average and for large times.

• The precise definition is somewhat more complicated, this is just to give the gist of the idea.

• Lyapunov exponents are used to make sure if a system is chaotic (� > 0) or not (� < 0), and
if it is chaotic to quantify “how chaotic” it is.

With this we can now quite precisely define what we mean by

Chaos A dynamical system is called chaotic, if motion is bounded but nonetheless displays
sensitivity to initial conditions as discussed above, or equivalently has a positive largest
Lyapunov exponent.

• A linear finite dimensional system such as Eq. (3.60) cannot be chaotic. Proof, exercise. Use
that all solutions are either oscillatory (so not sensitive to initial conditions) or exponential,
and use the superposition principle. There are some examples of infinite dimensional linear
systems, namely wave-equations, that show behaviour associated with chaos. Nonetheless,
chaos is typically associated with non-linear mechanics.

• Integrable systems cannot be chaotic, because we can find a canonical transformation to
describe them with action-angle variables as in example 43. The evolution equations in these
new variables are then necessarily trivial and linear.

• Even though, classical mechanics allows in principle to always determine the future of a
mechanical system without uncertainty, we realize now that this is in practice not possible
for chaotic systems: Since they are sensitive to the tiniest variation of the initial conditions,
and it is typically impossible to know the initial conditions to arbitrary precision, also classical
chaotic systems become indeterministic (as quantum systems always are).

An unsatisfactory aspect of the discussion so far, that was not solved until about 1960, is the
following: We had seen that the undriven pendulum is integrable with hence regular dynamics,
while the driving breaks integrability and may lead to chaos. However, what if the driving is very
weak, intuitively, we would expect that this cannot change the dynamics (and hence e.g. the phase
space) very dramatically, while the transitions from an integrable to a chaotic systems seems rather
abrupt. Reassuringly it is however continuous, which is expressed in the
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Kolmogorov-Arnold-Moser (KAM) theorem
LetH0 be an integrable Hamiltonian, and�H a small perturbations that breaks integrability.
As long as the perturbation is weaka, there will still be regular regions (KAM torii) in phase
space.

aOther terms and conditions apply.

• We could see this in example 49 already. The regular regions for oscillations and librations are
the “surviving” KAM torii. Only near the earlier separatrix, these get dissolved into chaotic
regions.

4.7.4 Attractors and bifurcations

Let us now add dissipation to the DDP in Eq. (4.62), moving to � 6= 0, and then looking at the
concepts of attractors in phase-space and bifurcations. Before looking at the damped DDP, we
review the damped and driven simple-harmonic-oscillator (SHO). We recover it from the DDP in
the small angle approximation, where we can write sin� ⇡ � in Eq. (4.62) and reach

�̈+ 2��̇+ !2
0� = !2

0 cos (!t). (4.65)

This is called an in-homogeneous ODE of second order in time, because the function on the rhs
is non-zero and does not contain �. Suppose we know the solution �0(t) of the corresponding
homogeneous system, which is the damped but not driven Harmonic oscillator. We can then see
directly, that the total solution can be a combination �sho(t) = �0(t) + �s(t), where �s(t) is a
special solution of the inhomogeneous system. We can guess the latter as a sinusoidal function with
a phase, for which we find [see e.g. PHY101 or PHY10613]

�s(t) = A(!) cos [!t+ '(!)],

A(!) =
!2

0p
(!2 � !2

0)
2 + 4�2!2

,

'(!) = arctan

✓
2�!

!2 � !2
0

◆
. (4.66)

We also know the solution of the damped-only oscillator is (for � < !0).

�0(t) = exp [��t]
⇥
C1 cos (!

0t) + C2 sin (!
0t)

⇤
,

!0 =
q
!2
0 � �2. (4.67)

The constants C1 and C2 depend on the initial conditions. We however see, that for times t � ⌧
with ⌧ = 1/�, the solution will essentially not contain the part (4.67) any more. This part is hence
called transient solution, where transient means “existing for a short time after start only, and then

13When comparing e.g. with the result I gave you there, note the input equation is di↵erent here, as are the phase
definitions (use of sin/cos).
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disappearing”. Regardless of the initial condition, we thus know that after some time the solution
of the SHO will have settled onto the steady form (4.66).

In the phase space of a driven dissipative system, this gives rise to the concept of an

Attractor This is a phase-space orbit onto which all trajectories started in some vicinity
will evolve in the presence of dissipation and driving.

• The phase-space ellipse defined by (4.66) constitutes the attractor of the damped SHO. Tra-
jectories in phase-space “spiral” onto this attractor (revisit assignment 1, Q4).

In a non-linear system, attractors can be more interesting and there can be more of them. First
let’s see what happens when we now move to the driven damped pendulum, instead of SHO.

Example 50, Attractors in the DDP: We choose parameters ! = 2⇡, !0 = 1.5!,
� = !0/4, and then solve Eq. (4.62) numerically for a few di↵erent drive strengths . As in
the linear case, the motion has a transient that dies out on a time-scale given by �, after
which the solution settles into periodic motion.
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trajectory simple pendulum, kappa=1.06

left: Up to some  < crit,
we see that the period of
this motion is equal to the
driving period.
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trajectory simple pendulum, kappa=1.0699

left: For higher  the pe-
riod changes to twice the
driving period, in what is
called period doubling.
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trajectory simple pendulum, kappa=1.0813

left: It then again dou-
bles for even stronger driv-
ing, and now has a period
four times the driving pe-
riod.

• This is discussed in much more detail in TT, from where I took the parameters.
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This qualitative change of the steady state solution happens fairly suddenly. To explore it in more
detail, let us do a di↵erent kind of plot:

Example 51, Bifurcation diagram: We again vary  as above, but with many more
values. Instead of plotting trajectories as a function of time, we again do so stroboscopically.

left: We plot the angle �(nT )
after an integer n 2 N number
of periods T = 2⇡/! of the
drive, at late times where the
transient has died out. Each
thusly found � then is the y-axis
for a point, where  is the
x-axis. We plot many di↵erent
n for the same .

On the left, the solution is periodic with the driving period. Thus, no matter what
value of �(nT ) we accidentally hit, the next value �((n+ 1)T ) must be the same. Then we
see a period doubling bifurcation, where for higher  the solution has shifted to twice the
drive period. Thus �(nT ) and �((n+ 1)T ) are now di↵erent, but then �((n+ 2)T ) must be
again the same as �(nT ). We nextly see another period doubling bifurcation, followed by
many more with increasing shorter  intervals within. At the highest values of  the system
has become chaotic. Thus these sequential bifurcations are also called a route to chaos.

• If you zoom closely into the region of close-by successive bifurcation (which you can do in
assignment 7), you notice what is called a fractal structure. No matter the zoom level, the
tree-like structure of the plot will always look very similar.

5 Outlook

We now reached the end of this course. There is much still that we could not cover in the short
time, such as

• D’Alembert’s principle.

• Relativistic mechanics.

• Much more on nonlinear mechanics.

• Much more on canonical transformation, action angle variables and Hamilton-Jacobi theory.

• Canonical (classical) perturbation theory.

• Continuum mechanics: Shearing and strain within materials.
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Some of this you can learn in follow up courses, when needed. All the topics above are covered or
at least introduced among all the text-books given.
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