
Week 10
PHY 305 Classical Mechanics

Instructor: Sebastian Wüster, IISER Bhopal, 2020

These notes are provided for the students of the class above only. There is no guarantee for cor-
rectness, please contact me if you spot a mistake.

4 Hamiltonian mechanics

After Newton’s and Lagrange’s, Hamiltonian mechanics is yet a third formulation of mechanics.
While the motivation to learn Lagrange after Newton was that many calculations get significantly
easier in the former, Hamiltonian mechanics does not necessarily provide an advantage in calcu-
lations. However we shall see, that it provides powerful new concepts to mechanics, which then
have been instrumental in setting up statistical mechanics, quantum mechanics and quantum field
theory.

There is a twofold aesthetic motivation for the change from the Lagrangian to Hamiltonian ap-
proach: (i) Lagrange equations always end up as ODEs that are second order in time for the
coordinates qn(t), which require us to specify initial conditions for qn(0) and q̇n(0). We would
rather prefer first order equations, so that the state at any given time completely determines the
future. (ii) Lagrange equations deals with q and q̇ di↵erently, can this be made more “symmetric”.

It turns out both aspects can be achieved by treating q and the generalized momentum pn = @L
@q̇n

(see section 2.5.2) as the dynamical variables. In order to do this, we have to move from the
Lagrangian L(q, q̇, t) to a function called Hamiltonian, with variables H(q,p, t). This is achieved
by a Legendre transformation.

4.1 Legendre Transformation

The plan above is a little tricky, since we want to change the variables of our function to one that
is defined via a derivative. Suppose we have a generic 2D function f(x, y). We can then write the
di↵erential of that function as

df =
@f

@x|{z}
⌘u

dx+
@f

@y|{z}
⌘v

dy. (4.1)

Let us define a new function g = ux� f . Writing down the di↵erential of that function

dg = dux+ udx� df = dux+ udx� udx� vdy = xdu� vdy. (4.2)
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This no longer depends on dx but instead on du, telling us that we swapped the dependence on x
for one on u. In the first equality we used the product rule and in the second (4.1). Based on this
we define the

Legendre Transformation of the function f(x, y) as

g(u, y) = u x(u, y)� f(x(u, y), y) (4.3)

where u = @f
@x .

• A key point, is that the function g contains the same amount of information as the function
f did.

• The Legendre transformation is important in mechanics (as we will see below) and in thermo-
dynamics: Based on the di↵erential definition of the internal energy dU = dQ � dW , where
dQ is the input heat and dW the work done, and its di↵erential dU = TdS � PdV (for tem-
perature T , entropy S, pressure P and volume V ), we can use a Legendre transformation to
generate a couple of di↵erent di↵erential forms, dependent on some variables that are define
via derivatives of U . For example the definition of Enthalpy H

H = PV + U, , dH = TdS + V dP, (4.4)

takes exactly the form (4.3), since pressure P = �@U/@dV , hence also change the di↵erential
through a cancellation such as in Eq. (4.2). The same procedure gives us the Helmholtz
free energy F = U � TS, and Gibbs free energy G = H � TS. See GPS and your favorite
thermodynamics or statistical physics book for more details.

4.2 The Hamiltonian

We now apply the Legendre transformation to our Lagrangian, in order to change variables in a
function f = L from x = q̇ y = q to u = @L/@q̇ reaching a function H. We do this for each
generalized coordinative and then find the

Hamiltonian (function)

H(q,p) =
X

n

pnq̇n � L(q, q̇, t). (4.5)

where we have used the canonical momentum

pn =
@L
@q̇

. (4.6)

• Earlier we had used the name “generalized momentum” for the “canonical momentum”.
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• In the Hamiltonian, q̇n is understood to be replaced on the rhs by pn. For example for a
particle in cartesian 3D coordinates, subject to a potential V (q), the Lagrangian is L =
1
2mq̇2 � V (q), hence p = mq̇ and we can write L = p2

2m � V (q). Then the Hamiltonian H is

H = p · q̇� L =
p2

m
�
✓
p2

2m
� V (q)

◆
=

p2

2m
+ V (q). (4.7)

We see that it is equal to the total energy, and shall comment on this again shortly.

From the Hamiltonian we find the equations of motion by taking partial derivatives

@H
@qk

Eq. (4.5)
=

X

n

pn
@q̇n
@qk

�

2

664
@L(q, q̇, t)

@qk
+
X

n

@L(q, q̇, t)
@q̇n| {z }
=pn

@q̇n
@qk

3

775

= �@L(q, q̇, t)
@qk

Eq. (2.29)
= � d

dt

@L(q, q̇, t)
@q̇k

= �ṗk. (4.8)

Now let’s do

@H
@pk

Eq. (4.5)
=

X

n

2

6664
@pn
@pk|{z}
=�nk

q̇n + pn
@q̇n
@pk

3

7775
�

2

664
X

n

@L(q, q̇, t)
@q̇n| {z }
=pn

@q̇n
@pk

3

775 = q̇k. (4.9)

Together we have found

Hamilton’s equations for a system of M degrees of freedom:

q̇k =
@H
@pk

, k = 1, 2, · · · ,M

ṗk = �@H
@qk

. (4.10)

for the evolution of the canonical momenta pk and canonical coordinates qk from the
Hamiltonian defined in Eq. (4.5).

• These are now nicely symmetric in q versus p and as desired of first order in time, so the
entire solution is specified once you know the initial state pk(t = 0) and qk(t = 0).

• In principle, find the Hamiltonian requires the lengthy sequence of finding generalized coor-
dinates, setting up Lagrangian, doing Legendre transform etc. However it turns out that it
many cases usually encountered, the Hamiltonian is in fact the energy in terms of the gen-
eralized coordinates. In that case it is possible to write it down directly. Exceptions are
e.g. when the link between generalized coordinates and original coordinates involves time
explicitly. See GPS for more details.
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Example 39, Particle in a central potential:
Let us re-consider the central force problem of section 2.8 in the Hamiltonian approach. We
start with the Lagrangian (2.65) which was

L=
1

2
µ(ṙ2 + r2'̇2)� V (r). (4.11)

We stick to our variables r and ' and find their associated canonical momenta pr = @L/@ṙ =

µṙ and p' = @L/@'̇ = mr2�̇. The latter turns out to be the angular momentum `, by
comparison with Eq. (2.66). Either by writing the total energy or by doing a Legendre
transformation, we then arrive at the Hamiltonian

H=
1

2m

 
p2r +

p2'
r2

!
+ V (r). (4.12)

From this we can now derive the four Hamilton’s equations (4.10) which turn out to be:

ṙ =
@H
@pr

=
pr
m

, ṗr = �@H
@r

=
p2'
mr3

'̇ =
@H
@p'

=
p'
mr2

, ṗ' = �@H
@'

= 0 (4.13)

With the equation for ṗ' we rediscovered that angular momentum is conserved, and we can
combine those for ṙ and ṗr easily to reproduce the radial equation of motion for the Kepler
problem (2.67). Finally the '̇ equation just reproduced the definition of `. Alltogether we
just saw that the Hamiltonian approach gives the exact same equations of motions as the
Lagrangian one, and the solution thus is as in week5.

Example 40, Particle in an electro-magnetic field:
Consider a particle with massm and charge q in an electro-magnetic field with scalar potential
�(r) and vector-potential A(r). It has a Lagrangian

L =
1

2
mṙ2 � q(�� ṙ ·A). (4.14)

To understand that this is the right Lagrangian, and as a good advanced exercise, show that
the Euler-Lagrange equations (2.29) describe the Coulomb and Lorentz forces:

mr̈ = q(E+ ṙ⇥B), (4.15)

with the electric field E = �r�� Ȧ and magnetic fielda B = r⇥A.
The conjugate momentum to r is

p =
@L
@ṙ

= mṙ+ eA. (4.16)

a
Use the epsilon-tensor (2.96) to handle the curl of the vector potential
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Example continued: Importantly note, that p is not just the usual momentum, but
contains the vector potential! We can now follow the Legendre transformation (exercise) to
find the classical Hamiltonian of a charged particle in an electromagnetic field

H =
1

2m
(p� eA(r))2 + e�(r). (4.17)

4.3 Conservation laws in the Hamilton formalism

It is also relatively straightforward to identify conservation laws in the Hamiltonian formalism
(similar to what we had seen for Lagrange in section 2.7). Let us start by calculating the total
derivative of the Hamiltonian with respect to time:

dH(q,p, t)

dt
=
X

n


@H(q,p, t)

@qn| {z }
�ṗn

dqn
dt

+
@H(q,p, t)

@pn| {z }
q̇n

dpn
dt

�

| {z }
=0

+
@H(q,p, t)

@t
=

@H
@t

(4.18)

Since we had earlier seen that the Hamiltonian typically is actually the total energy, we have seen
that the total energy is conserved as long as the Hamiltonian does not depend on time explicitly.
(i.e. there is no “t” in the equation, other than as argument of q or p).

Even easier is to see (again), that if a coordinate qn is cyclic/ ignorable, which means that the
Hamiltonian does not depend on qn, the corresponding canonical momentum is conserved:

ṗn = �@H(q,p, t)

@qn
= 0. (4.19)

4.4 Phase space

We can now put our earlier preview of the concept of phase space in section 4.4 onto a much
firmer footing: Phase-space is chosen to discuss the physical state of a mechanical system, because
knowing the variables q(t0), p(t0) at a certain time t0 tells us the entire future t > t0 evolution of
a physical system, because Hamilton’s equation (4.10) are of first order in time.

An important consequence of this, is that

Trajectories in phase-space cannot cross! By a given trajectory or phase-space orbits
we refer to the dynamical evolution p(t) q(t) at t > t0 of the system starting from some
specific initial condition q(t0), p(t0). Di↵erent initial condition will thus refer to di↵erent
trajectories.

We best see what that means and why it might be useful by looking at extending the earlier example
of the phase-space for the harmonic oscillator, to the simple pendulum in example 11 instead.
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Example 41, Phase space of simple pendulum:

left: As we had seen earlier, thanks to the constraint
` =

p
x2 + y2 the simple pendulum can be described

with the generalised coordinate q = �.

We start with setting up the Lagrangian

L =
1

2
m`2�̇2 �mg`(1� cos�). (4.20)

From this we find a canonical momentum p = @L/@�̇ = m`2�̇. As a result of our Legendre
transformation we thus reach the Hamiltonian

H =
1

2
m`2�̇2 +mg`(1� cos�) =

p2

2m`2
+ 2mg` sin(�/2)2. (4.21)

From this we obtain Hamilton’s equations

ṗ = �@H
@�

= mg` sin(�),

�̇ =
@H
@p

=
p

m`2
. (4.22)

Thanks to the sine the equations are not easy to solve analytically. However we can resort
to the idea of a phase-space portrait, shown below: We see that the Hamiltonian above is
the total energy, which is conserved according to Eq. (4.18). Hence phase-space trajectories
must be lines of constant H = E.
Those are easier to find than the actual time dependent solution of (4.22), and tell us already
a lot about the motion. Solving H = E for p(�) gives

p = ±
p
2m`2

q
E � 2mg` sin2 (�/2). (4.23)

left: Now drawing lines for di↵erent E relative to 2mg`
into phase-space on the left, we find three di↵erent
cases. (i) For E < 2mg`, p in Eq. (4.25) becomes com-
plex for some finite �⇤, so the pendulum does not have
enough energy to reach beyond the angle �⇤, it performs
oscillatory motion (cyan), which for small energies looks
just like that of the harmonic oscillator in example 11.
(ii) For E = 2mg` (orange), we have �⇤ = ±⇡, so the
pendulum could reach the inverted position given infi-
nite time.
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Example continued: (iii) For E > 2mg` p remains positive or negative for all ranges of �
(violet). This corresponds to the case where the pendulum has enough energy to go over the
top, and hence preserve its direction of rotation. We see also here that no trajectories cross.
The case (ii) forms a separatrix between the oscillatory and rotational types of motion.

4.4.1 Liouville theorem

• The mathematics for the proof of the theorem is bonus material, but should be familiar to
you from electro-magnetism courses.

• The theorem content is exam relevant.

In statistical mechanics you encounter the idea of an ensemble (a large number of identical replica
of your physical system, filling all of phase-space subject to certain constraints). In phase space,
we can visualize the evolution of an ensemble as the motion of a cloud of dots, see below. Since
di↵erent trajectories do not cross, this resembles fluid flow lines in continuum mechanics. Let us
define the phase space velocity ż = v = [q̇, ṗ]T . This has nothing to do with a real velocity, it just
states how a point in phase-space is moving.

left: (left) Evolution of an en-
semble of systems in phase space.
How does the volume enclosed
in brown change?. (right) The
change of a phase-space volume
element within a short time in-
terval �t, will depend on the
phase space velocity v at the sur-
face.

Geometrically from the figure above, we realize that the change of the volume V in phase space
will be

�V =

Z

S
n · v �t dA, (4.24)

where
R
S dA is a surface integral over the surface enclosing the volume, and n a normal vector on

that surface. You will have encountered these surface integrals in electro-magnetism. Bringing �t
on the left side and making it infinitesimally small gives

dV

dt
=

Z

S
n · v dA. (4.25)

At this point we can invoke:
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Gauss’s theorem: The volume integral over the divergence of vector field v is equal to the
flux of that vectorfield through the surface enclosing the volume.

Z

S
n · v dA =

Z

V
r · v dV. (4.26)

This works in any number of dimensions. V is a volume in our N dimensional space, S its
N � 1 dimensional surface, n a normal unit vector on that surface, then

r =
h

@
@x1

, @
@x2

, · · · , @
@xN

iT
.

But the divergence of the phase-space flow v vanishes due to Hamilton’s equations:

r · v def of v
=


@q̇1
@q1

+ · · ·+ @q̇M
@qM

+
@ṗ1
@p1

+ · · ·+ @ṗM
@pM

�

Eq. (4.10)
=


@

@q1

@H
@p1

+ · · ·+ @

@qM

@H
@pM

+
@

@p1

✓
�@H
@q1

◆
+ · · ·+ @

@pM

✓
� @H
@qM

◆�
= 0. (4.27)

Combining Eq. (4.27), (4.26) and (4.25) we have now shown

Liouville’s theorem Hamiltonian evolution in phase-space is such that the phase-space
volume V of an ensemble of trajectories does not change:

dV

dt
= 0. (4.28)

• The number of totally di↵erent proofs for this, seems to be near equal to the number of books.

• Liouville’s theorem provides a crucial backbone of statistical physics, by allowing us to average
quantities over all available phase-space, disregarding time-evolution. In doing those averages,
all phase-space elements accessible are given an equal probability. If Liouville’s theorem was
not true, those probabilities would change in time, because a certain part of the ensemble
might increase its phase-space volume at the expense of others.
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Example 42, Phase space of object falling under gravity: An easy case to verify
the preservation of phase-space volume, is an object falling under gravity, possibly with an
initial momentum in the downwards direction. The phase-space coordinates then evolve as:

z = z0 +
pz
m

t� 1

2
gt2, pz = pz0 �mgt. (4.29)

left: We see from Eq. (4.29) that the momentum dif-
ference between two phase-space points never changes
compared to the initial value. For two trajectories with
equal initial momentum, also the position di↵erence
never changes. Overall, a phase space volume such as
the green one thus changes from rectangular into paral-
lelogram, but the base-width a and height h remain con-
stant, and hence the volume V = ah does not change.

4.4.2 Integrable systems

We had seen in section 4.4 that the phase-space of the simple pendulum attained a simple structure,
thanks to energy conservation E = H(p, q). This equations acts like a constraint, turning the two-
dimensions of phase space into one dimension (a line) for eery given trajectory. Since these lines can
neither cross nor suddenly terminate, not too many really complicated structures in phase space
are possible.

The same holds in higher dimensions and leads us to the following definition.

Integrable system
A mechanical system is called integrable, if it has as many constants of the motion as degrees
of freedom.

• As for the pendulum, this means that we can slice up phase-space into lower dimensional
subspaces for di↵erent values of the conserved quantities. I

• The name “integrable” refers to the possibility to formally solve the equations of motion by
integration, which does not necessarily imply that these integrals are practically solvable.

• An important consequence of integrability, is that that the system cannot be chaotic (see
later).
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