
Week 0 / 1
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

0 Administrative affairs

(i) Office: AB1 - 014
Phone: 1213
Email: sebastian@iiserb.ac.in
Office hours: Tue 3-6 p.m.
webpage: http://home.iiserb.ac.in/∼sebastian/teaching.html

(ii) Literature:

• Demtröder, ”Atoms, Molecules and Photons” [DT]

• Brandsen and Joachain, ”Physics of Atoms and Molecules” [B&J]

• Atkins, Friedman, ”Molecular quantum mechanics”

• Shankar, ”Principles of quantum mechanics” [Shankar]

• Griffiths, ”Introduction to quantum mechanics”

• Sakurai, ”Modern quantum mechanics”

There is no primary text-book, I collect material from wherever I find it best covered case-
by-case.

(iii) Assessment:

• Surprise Quizzes: 10% These are ”open notes” quizzes, so please always bring yours.
Times are random. These will be simple questions on material of maybe the last week’s
lecture to motivate attendance and continuously keeping on top of the material.

• Assignments: 20% I don’t mind you working in groups. However, every student
must hand in one seperate personally handwritten solution. It should be tidy and with
commented steps. TA is authorised to deduct marks for messy presentation and blatant
copying.

• Mid-Sem exam: 20%

• Final exam: 50% The exam will try to test understanding of the essential physics con-
cepts taught, not maths. For guidance regarding what are the most important concepts
look at the quizzes and assignments of this and last year. All exams will be designed to
give a significant advantage to those students that solved all assignments by themselves.
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1 Motivation and Review

1.1 Toolkit for building a universe with life

@$.9t/-*o.'*
0 pr.cort *J;,

- .rEq 0^ CeS

-Wl"y'
A/,0 s e. r9

- f(d"t L;/fi/

rtrftaphys;rs
gSpectrorcagv

"(ftr6/
rr&rrftt{ar
o(at

gpecI t'oscd PI l^atI.*
qr^aflrirkdlft
I i'* a r 'rr7 n

iat\flidwl
v;t 6<>atm
r'lftro r fi44

fvvafi,t',rn trhyrirry

SNa utu- I'tfo ('rtof)arr

' ffi*,*u'!'" ,i,,+,,

r8r.e; Pir^lt<rrr
Cdndal(srrtet

o Or/rin {u*-
.n i* Yla h t(

6rpi', laofi J4rciple

{uF'\y't^\
ffit, '{;ons

7+r, It pkyf,rr.lf elrz,oP,

,- o{=,r1;,Ey V{t'<

ycl,o"";st-t7) 6io

tJLlra- d(d /act&t,t[

'WatL-- 1e/c'6' dx

lyraw;c)
, r)F/ -RfSvvL- vw'

(@ 9t-0ve(

grienrt

-il'[ouldl
C ou^ l/t1"

- /Va *t -+tt cii nts

0l qr,fv c^e'vtiffV-f-
o.:|eacftoYT)

'"tf'rtl!^',iull)S
4 p\df'n\ a c/
a qu a#uu - chss;,

" fra'^s:ti/\ '/

q^Qrytr-T-(o6 t/c

/ r;nlr4 -houwtt;,y- ii 
1r 
(an|t r Vh'tt:,s1"'

*d,ls-,"n''!i>e/
"sd(at ceIf:

/V10TiV /+ri 0N rtND R FYiF V/
o $vi ,l i.lqfse w;tL

o Vast noroT;V d{-

Vfuf@Afu pl't"omzr^&

"['rt$t .r.,.^ 6. 
,

yn/,trrtoaol 6ssea
01\ e,n1?,Y
-iattrac(in7 k (.dft;/
ftt Otnr V mol c tv(aS

Non-Al'tt0 Pirct-r onl

Ur ;Yc ric
o.wucGa r k7 pa(ttcQ f\/t t()

,n

Cc'r.otr.^ * lestru't;o'
- dtr our 6os'c

;'^y r<ol;vtl

N -> rJ "'rnat/
aftr"s, crJsfu(r

s4h / *rtah/
C7.nolPn*S -waff<f

-Y-r*l'
-P-i-"i
- (-f?- s

2.a; c 4( phTr,cr

[;;o cltevrrirlr/

t$a &.ructr
1n acfi, yel

e (sis -axkl/(r5
t -o r{; a{;ovt

d.a^an o

6lo- ro" 1a t;6[r
(vndfftt

Quantum Physics/
Quantum information

• Q-Bits in quan-
tum computer

• Bose-Einstein
condensates

• Quantum simula-
tion

Material Science

• Many materials
are primarily
interrogated
via γ ↔atom
interactions.

Astrophysics

• Spectroscopy of
Stars / Interstel-
lar dust

Optics
optical response of
media

• Resonances

• Laser/Masers

• Slow light

Chemical Physics/
Quantum chemistry

• reactions

• new molecules
(e.g. Fullerenes)

• pharmacy

• quantum-
classical tran-
sition

Bio-chemistry

• molecular ma-
chines

• bio-molecules

• radiation damage

• bio-compatible
imaging

Nano science

• Molecular com-
puters

• Nano machines

Energy production

• Light harvesting
by plants, photo-
synthesis

• Dye-sensitized
solar cells

• Vast majority of nat-
ural science phenom-
ena can be understood
based on e−, n, p,
γ having formed into
atoms and molecules
through their interac-
tions.

Non-AMO pieces of Universe:

• Cosmology / GR

• Nuclear and particle
physics (creation and
destruction of our basic
ingredients

• Solid-state condensed-
matter: N → ∞, many
atoms, crystals
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• You will mostly not have to advance fundamental atomic- or molecular physics itself, we are
approaching a complete understanding. Exceptions are very exotic or extreme circumstances,
such as U89+.

• However you are likely to need a solid AMO background in many other physics disciplines,
and if only to understand standard experimental interrogation techniques for materials or
other objects.

• Atoms and basic molecules are fully governed by quantum mechanics: This course will thus
fully use your knowledge of QM-I/II to understand how atoms and molecules are built and
interact with their surroundings.

Course outline

1) Motivation and Review: ∼ 1 week
• Why is AMO compulsory course?, brief review of QM-I/QM-II

2) Atoms: ∼ 4-5 weeks
• single e−, Rydberg atoms, fine-/ hyperfine structure, Stark/Zeeman effect, two and more e−,
periodic table, brief overview of advanced methods (HT, TF, DFT...).

3) Interactions of atoms with electromagnetic radiation: ∼ 3-4 weeks
• electronic transitions, line shapes and intensities, selection rules, scattering of light, absorption-
spontaneous and stimulated emission of photons, Rabi oscillations.

4) Molecules: ∼ 4-5 weeks
• Born-Oppenheimer approximation, diatomic molecules, rotations and vibrations, polyatomic
molecules, chemical bonds, spectroscopy

5) Frontiers of modern AMO physics1: ∼ 2weeks
• ultra-fast processses, HHG, femtosecond lasers, strong fields, Bose-Einstein condensates, laser
cooling and trapping, atomic clocks, quantum simulation

1time permitting
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1.2 Review and Notation

• See QM text-books for much more complete review.

• Please ask whenever anything is unclear here, because these concepts are essential for the rest
of the course.

1.2.1 Basic concepts of quantum-mechanics

Quantum states: Position space representation of free particle state (matter-wave)

ϕk(r) = A exp [i(k · r− ωt)], r ∈ R3, ϕ ∈ C. (1.1)

comments:

• Bold face symbols denote vectors, · scalar product.

• Momentum p = ℏk

• de-Broglie wavelength

λdB =
ℏ
|p|

(1.2)

• Frequency and energy

ωk =
ℏk2

2m
, Ek = ℏω. (1.3)

for a free particle of mass m.

• A: Normalisation factor, such that ∫
d3r

V

|ϕk(r)|2 = 1, (1.4)

where the integral runs over some finite quantisation volume V.

Operators and Observables: Quantum mechanical osbervables are represented by Hermitian
operators (Ô = Ô†), e.g.
Hamiltonian operator:

Ĥ =
p̂2

2m
= − ℏ2

2m
∇2

r , (1.5)

Momentum operator:

p̂ = −iℏ∇r, (1.6)
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Reminder on Operators:

• linear mapping Ô : f → g, for f, g functions ∈ H, H Hilbert-space, space of normaliz-
able functions with inner product/ norm.
Example: (−iℏ∇r)[exp (−x2)] → iℏ2x exp (−x2)

• analogous to matrices, which are linear maps on your common vector spaces, e.g. R3,
M : v → w, Mv = w

• in this analogy a function can be though of as an ∞-dimensional vector

Energy spectra Energy eigenstates ϕk(r) satisfy the time-independent Schrödinger equation
(TISE)

Ĥϕk(r) = Ekϕk(r). (1.7)

comments:

• e.g. ϕk(r) from Eq. (1.1) and Ĥ from Eq. (1.5).

• A general quantum state Ψ(r) can be written as superposition of eigenstates of the Hamilto-
nian (or any other Hermitian Operator)

Ψ(r) =
∑
k

ckϕk(r). (1.8)

• Probability pk to find/measure energy Ek is

pk =

∣∣∣∣∫ d3r ϕ∗k(r)Ψ(r)

∣∣∣∣2 = |ck|2. (1.9)

• Expectation value / mean value of E in the state Ψ(r):

Ē = ⟨Ĥ⟩ =
∫
d3rΨ∗(r)ĤΨ(r) =

∑
k

|ck|2Ek. (1.10)
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More on states and operators: We can also use abstract quantum states (bra/ket) to write

Ĥ|ϕk ⟩ = Ek|ϕk ⟩ (1.11)

instead of Eq. (1.7). This leaves out the specification of a basis (or representation) for the quantum
state. We can recover the usual position space representation

ϕk(r) = ⟨ r |ϕk ⟩ (1.12)

and momentum space representation

ϕ̃k(p) = ⟨p |ϕk ⟩. (1.13)

through equally abstract position and momentum space bases | r ⟩ and | p ⟩.

Importantly, many operators do not commute, for example[
r̂, p̂
]
= r̂p̂− p̂r̂ = iℏ ̸= 0. (1.14)

In those cases the corresponding observables (here momentum and position) cannot be known
(measured) simultaneously.

1.2.2 Orbital angular momentum and Spin

Orbital angular momentum The operator L̂ for orbital angular momentum is defined
analogous to classical physics

L̂ = r̂× p̂, (1.15)[
L̂i, L̂j

]
= iℏϵijkL̂k (1.16)

Eigenstates | l,m ⟩ are defined by the angular momentum quantum number l and the one for
the z-component m.

L̂2| l,m ⟩ = ℏ2l(l + 1)| l,m ⟩, (1.17)

L̂z| l,m ⟩ = ℏm| l,m ⟩. (1.18)

Spin Spin Ŝ is an ”abstract” angular momentum. That means it fulfills the angular mo-
mentum commutation relations [

Ŝi, Ŝj
]
= iℏϵijkŜk, (1.19)

just like Eq. (1.16), but there is no underlying relation Eq. (1.15).
Spin-states | s,ms ⟩ are defined analogously to orbital angular momentum.

Ŝ2| s,ms ⟩ = ℏ2s(s+ 1)| s,ms ⟩, (1.20)

Ŝz| s,ms ⟩ = ℏms| s,ms ⟩. (1.21)
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comments:

• The concept of spin arises naturally when doing relativistic quantum mechanics for charged
particles.

• Most frequently we will encounter spin s = 1
2 (e.g. electron spin), for which we use the

short-hand symbols | ↑ ⟩ = | s = 1
2 ,ms =

1
2 ⟩ and | ↓ ⟩ = | s = 1

2 ,ms = −1
2 ⟩.

• It is frequently helpful to add different quantum mechanical angular momenta L̂1 and L̂2,
such as orbital angular momentum and spin of the same electron, or two different spins, or
orbital angular-momenta of two different particles.

• This is called angular momentum coupling. We define a total (or coupled) angular
momentum operator

Ĵ = L̂1 + L̂2 (1.22)

(where one of the L̂ may in fact be a spin).

• This two-body problem could be described in a separate / uncoupled basis:

L̂2
n| l1,m1; l2,m2 ⟩ = ℏ2ln(ln + 1)| l1,m1; l2,m2 ⟩, (1.23)

L̂z,n| l1,m1; l2,m2 ⟩ = ℏmn| l1,m1; l2,m2 ⟩, n ∈ {1, 2}. (1.24)

• Sometime is is advantageous to use a combined / coupled angular momentum basis:

Ĵ2| j, l1, l2,mj ⟩ = ℏ2j(j + 1)| j, l1, l2,mj ⟩, (1.25)

Ĵz| j, l1, l2,mj ⟩ = ℏmj | j, l1, l2,mj ⟩, (1.26)

where j is the total angular momentum quantum number, andmj the one for its z-component.

• One also finds relations how we can express one basis through the other one:

| j, l1, l2,mj ⟩ =
∑

m1,m2

Cl1,l2;m1,m2
j,mj

| l1,m1, l2,m2 ⟩. (1.27)

The coefficients Cl1,l2;m1,m2
j,mj

are called Clebsch-Gordan coefficients. You can find out how to cal-

culate them in your QM textbook or various online apps, e.g. https://www.volya.net/index.php?id=vc

• By using the definition Eq. (1.22) and angular momentum algebra, one can find the constraints
on quantum numbers l1+l2 ≥ j ≥ |l1−l2| andmj = m1+m2. This means all Clebsch-Gordan
coefficients where these relations are not fulfilled will be equal to zero.

1.2.3 The Hydrogen(ic) atom

• Hydrgen-”ic”: Like Hydrogen, but might have larger nuclear charge q = Z|e|. For example
He+, with Z = 2.

• Covered in your QM courses, now also logical starting point for AMO course.
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• Simplest atom and only analytically solvable one.

• Center of mass-frame: 3D problem, r ≈ electron co-ordinate and m ≈ electron mass in the
following. (reduced mass mred = meM/(me +M) ≈ me).

• Hamiltonian

Ĥ = − ℏ2

2m
∇2

r + V (r), V (r) = − Ze2

4πϵ0

1

|r|
(1.28)

• Laplacian in 3D spherical co-ordinates r, θ, φ (using r = |r|)

∇2
r = ∆ =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin (θ)

∂

∂θ

(
sin (θ)

∂

∂θ

)
+

1

r2 sin (θ)2
∂2

∂φ2︸ ︷︷ ︸
=−L̂2/(ℏ2r2)

. (1.29)

• Solve TISE (1.7) in 3D, using separation of variables, find

Ĥϕnlm(r) = Enlϕnlm(r) (1.30)

with Ansatz

ϕnlm(r) = ϕnlm(r, θ, φ) = Rnl(r) Ylm(θ, φ)︸ ︷︷ ︸
spherical harmonics

(1.31)

• Spherical harmonics fulfill

L̂2Ylm(θ, φ) = ℏ2l(l + 1)Ylm(θ, φ), (1.32)

L̂zYlm(θ, φ) = −iℏ ∂

∂φ
Ylm(θ, φ) = ℏmYlm(θ, φ). (1.33)

Thus they are the position space representation of angular momentum states, see Eq. (1.25).

Radial Schrödinger equation: Obtained by inserting Eq. (1.31) into Eq. (1.30)− ℏ2

2m

[
1

r

d

dr

(
r2
d

dr

)]
+

ℏ2l(l + 1)

2mr2
+ V (r)︸ ︷︷ ︸

≡Veff(r)

Rnl(r) = EnlRnl(r). (1.34)
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left: Veff(r) contains the effect of a cen-
trifugal force pushing the electron out-
wards, if l > 0.

Energy eigenstates of Hydrogen atom

ϕnlm(r) = ϕnlm(r, θ, φ) = Rnl(r)Ylm 3D wavefunction (1.35)

Rnl(r) = Nnle
−ρ/2ρlL2l+1

n−l−1(ρ) radial wavefunction. (1.36)

Ylm(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos [θ])eimφ angular wavefunction (1.37)

ρ =
2Zr

na0
scaled radius (1.38)

Nnl =

√(
2Z

na0

)3 (n− l − 1)!

2n(n+ l)!
normalisation factor (1.39)

Lb
a(ρ) generalised/associate Laguerre polynomials (1.40)

Pm
l (cos [θ]) generalised Legendre polynomial (1.41)

a0 =
4πϵ0ℏ2

mee
=

ℏ
mecα

Bohr radius (α ∼ 1/137 fine-structure constant). (1.42)

Corresponding energy eigenvalues

Enl = En = −mee
4Z2

8ϵ20h
2n2

= −Z2 R
n2
, (1.43)

R =
mee

4

8ϵ20h
2
, Rydberg constant (1.44)

Integer quantum numbers

• principal quantum number n = 0, 1, 2, . . .∞

• angular momentum quantum number l = 0, . . . n− 1

• azimuthal quantum number m = −l, . . . , l

• (electron spin orientation ms = −1
2 ,

1
2)

• Note, we had earlier allowed quantum numbers nl for the energy, which would be used for

12



a general central potential V (r). In the case of the Coulomb potential (or any precise 1/r
form), there is an accidental degeneracy due to which energy does not in fact depend on l,
see Eq. (1.43).

To leading (non-relativistic) order listed above, Hydrogen energies and spatial wave functions
to not depend on spin. In chapter 2 we will see some small corrections due to spin. See also
http://falstad.com/qmatom/
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1.2.4 Quantum dynamics/ time-dependence

Time-dependent Schrödinger equation TDSE

iℏ
∂

∂t
|Ψ(t) ⟩ = Ĥ(t)|Ψ(t) ⟩. (1.45)

• We can always write

|Ψ(t) ⟩ =
∑
n

cn(t)|ϕn ⟩, (1.46)

where |ϕn ⟩ is any orthonormal basis of our choice, and reduce (1.45) to a set of coupled

ODEs for iℏ∂cn(t)
∂t = · · · .

• If the Hamiltonian is actually time-independent Ĥ(t) = Ĥ = const, we then have

|Ψ(t) ⟩ =
∑
n

cn(0) exp

[
−iEn

ℏ
t

]
|ϕn ⟩, (1.47)

where |ϕn ⟩ are the eigenstates from Eq. (1.7) and cn(0) = ⟨ϕn |Ψ(0) ⟩ are fixed by the initial
conditions. Self-test: show this in a few lines from Eq. (1.45) and Eq. (1.7).

• If the Hamiltonian is fully time-dependent, the solution of Eq. (1.45) is generally difficult.
We can use numerical calculations, e.g. based on (1.46), or perturbation theory.
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1.2.5 Approximation methods

Time-independent perturbation theory (non-degenerate)
Let

Ĥ = Ĥ0 + λĤ ′, (1.48)

where λ is a small parameter and the spectrum (eigenstates and eigenvectors) of Ĥ0 is known

Ĥ0|ϕ(0)k ⟩ = E
(0)
k |ϕ(0)k ⟩ and non-degenerate.

We write the full eigen-energies and eigen-states of (1.48) as

Ek = E
(0)
k + λE

(1)
k + λ2E

(2)
k + λ3E

(3)
k + · · ·

|ϕk ⟩ = |ϕ(0)k ⟩+ λ|ϕ(1)k ⟩+ λ2|ϕ(2)k ⟩+ λ3|ϕ(3)k ⟩+ · · · , (1.49)

insert these expansions into the TISE (1.7) and solve order by order in λ

First order energy correction (non-degenerate PT)

E
(1)
k = ⟨ϕ(0)k |Ĥ ′|ϕ(0)k ⟩. (1.50)

• Beware, hidden danger!!: using this if E
(0)
k is in fact degenerate gives wrong results. (See why

in derivation in your QM course).

Time-independent perturbation theory (degenerate)

Let us assume E
(0)
k is α-fold degenerate and label the unperturbed degenerate eigenfunctions |ϕ(0)kr ⟩,

for r = 1, · · · , α. The perturbation Ĥ ′ will in general break the degeneracy, yielding new eigenfunc-
tions

|χ(1)
kr ⟩ =

∑
s

cks|ϕ
(0)
ks ⟩. (1.51)

New eigenfunctions and energy shifts are found from

Diagonalisation in degenerate subspace (degenerate PT)

H ′ · c = E
(1)
kr c, the matrix H ′ has elements H ′

us = ⟨ϕ(0)ku |Ĥ ′|ϕ(0)ks ⟩ (1.52)

• The vector c = [ck0, ck1, · · · , ckα]T (T means ”transposed” of the vector) contains the coeffi-
cients that give the new eigenvector in Eq. (1.51).

• H ′ is the perturbing Hamiltonian in the degenerate subspace.

14



Time-dependent perturbation theory
Now instead of (1.48) we start from

Ĥ(t) = Ĥ0 + λĤ ′(t), (1.53)

thus assuming the unperturbed Hamiltonian Ĥ0 is still time-independent. We modify (1.47) to now
include time-dependent weights of each part

|Ψ(t) ⟩ =
∑
n

cn(t) exp

[
−iE

(0)
n

ℏ
t

]
|ϕn ⟩, (1.54)

again with a perturbation expansion

cn(t) = c(0)n + λc(1)n (t) + λ2c(2)n (t) + λ3c(3)n (t) + · · ·

(1.55)

If we assume our system starts in state a, that means c
(0)
n = δna, where δ is the Kronecker delta,

then

First order time-dependent perturbation theory coefficients

ċ
(0)
b =

∂

∂t
c
(0)
b = 0, (1.56)

ċ
(1)
b =

∂

∂t
c
(1)
b = (iℏ)−1

∫ t

0
dt′H ′

ba(t
′) exp [iωbat

′]. (1.57)

• ωba = (E
(0)
b − E

(0)
a )/ℏ

• H ′
ba(t

′) = ⟨ϕ(0)b |Ĥ ′(t′)|ϕ(0)a ⟩

Periodic perturbation
Lets look at a special case of (1.53) that will be important later:

λĤ ′(t) = Â exp [iωt] + Â† exp [−iωt]. (1.58)

We are starting in a (since c
(0)
n = δna as before), then the transition probability a→ b to first order

PT will be given by

P
(1)
ba (t) = |λc(1)b (t)|2

=

∣∣∣∣Aba

(
1− exp [i(E

(0)
b − E

(0)
a + ℏω)t/ℏ]

E
(0)
b − E

(0)
a + ℏω

)

+A†
ba

(
1− exp [i(E

(0)
b − E

(0)
a − ℏω)t/ℏ]

E
(0)
b − E

(0)
a − ℏω

)∣∣∣∣2 (1.59)

Here Aba = ⟨ϕ(0)b |Â|ϕ(0)a ⟩. Now let us define the detuning ℏ∆ = |E(0)
b − E

(0)
a | − ℏω, then
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• for large detuning P
(1)
ba (t) ≪ 1, since Aba small and Pba ∼

∣∣∣Aba
∆

∣∣∣2
• On resonance (∆ ≈ 0),

P
(1)
ba (t) = 2

ℏ2 |Aba|2F (t, ωba ∓ ω), where the upper sign is in the absorbing case (second term,

Eq. (1.59)), and the lower in the emitting case (first term). F (t, ω) = 2 sin2 [ωt/2]
ω2 .
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1.2.6 Many particles

For each particle we have to add one set of co-ordinates and quantum numbers to the wave-function.
Lets denote with

q = {r,ms, · · · } (1.60)

the collection of all such variables. For N = 2 particles, we then have to write e.g. energy eigenstates
ϕk(q1, q2), where the subscripts on qj now number the particle j.

An exemplary Hamiltonian for two equal mass particles that interact (with interaction potential
U) would be written as

Ĥ = − ℏ2

2m
(∇2

r1 +∇2
r2) + V (r1) + V (r2) + U(r1, r2). (1.61)

• Quantum mechanically we cannot distinguish identical particles, while classically we might
for example via their history, see box 1.

• Thus wave-function must be ”equivalent” under exchange of two particles •1 ↔ •2 (q1 ↔ q2)

• This requirement leads to ...

Symmetry requirements for wave-functions of two indistinguishable parti-
cles

Ψ(q1, q2) = ±Ψ(q2, q1) (1.62)

+ for Bosons (=integer spin)
− for Fermions (=half-integer spin)

• Allocation to the spins is done in relativistic quantum mechanics (spin-statistics theorem).

• These symmetry properties only matter when particles try to share the same space (i.e.
0 < r1, r2 < L, not 0 < r1 < L and 3L < r2 < 4L).
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• Leads to
Pauli exclusion principle: Two Fermions cannot be in the same quantum state.
(i.e. position Ψ(r, r) = 0.
Bose enhancement: Bosons ”like to be” in the same quantum state (see chapter 5).

Box 1:

17



Week 2
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

2 Atoms

2.1 Single (active) electron Atoms

See section (1.2.3) for most basic : Hydrogen atoms

• Directly applies to Hydrogenic atoms:
- deuterium (pn+e−), tritium (pnn+e−) (these are just heavier atoms due to nucleus, but
the electron behaves the same).

• Next simplest are Hydrogenic ions
He+, Li++ etc, here nuclear charge Z>1 in section 1.2.3

• Also almost applicable to Rydberg states of Alkali atoms,
Li, Na, K, Rb, Cs (mainly their single valence electron is important)

Rydberg States (n≫10)
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• In this chapter, we first take a more detailed look at spins, E/ B fields and relativistic cor-
rections. In section 1.2.3 we had just added ms quantum number without consequences.
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]

2.1.1 Relativistic corrections, effect of spins, fine structure

• Spins arise naturally in relativistic Quantum Mechanics, hence they are part of ”relativistic
corrections”.

• Calculations in section 1.2.3 are however fully non-relativistic, i.e. we use Ĥ = p2

2m not

Ĥ =
√
p2c2 +m2

0c
4. (2.1)

Fine Structure:
Start from relativistic wave-equation (Dirac Equation), expand for v ≪ c (electron velocity much
less than speed of light) and get,

Ĥ = Ĥ0 + Ĥ ′
FS , (2.2)

where Ĥ0 is same as in section 1.2.3 for Hydrogen and,

Ĥ ′
FS = Ĥ ′

1 + Ĥ ′
2 + Ĥ ′

3. (2.3)

Relativistic Corrections, fine-structure Hamiltonians

Ĥ1
1 = − p4

8m3c2
relativistic correction to Kinetic Energy (2.4)

Ĥ1
2 =

1

2m2c2
1

r

dV

dr
L̂ · Ŝ spin-orbit coupling (2.5)

Ĥ1
3 = − πℏ2

2m2c2
Ze2

4πϵ0
δ (r) Darwin term (2.6)

Comment on relativistic correction: Rather than from Dirac equation, Ĥ1
1 can also be gotten di-

rectly by expanding Eq. (2.1) to O(p4) and replacing kinetic energy T̂ = p̂2/(2m) accordingly.
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Comment on spin-orbit coupling:

• Let us work in the rest-frame of the electron, where the proton moves with velocity −v (where
v is the electron velocity in the lab-frame).

• The electron ”sees” a positively charged proton orbiting itself and hence a magnetic field:

B = −eµ0
4π

v × r

r3

(
from B =

µ0
4π

qv × r̂

r2
, see E-dyn.

)
(2.7)

Now we use

Ĥmag = −µ̂ ·B Energy of spin in magnetic field (2.8)

µ̂ = −gsµbŜ/ℏ Electron magnetic moment (2.9)

Ĥmag = +gs
µb
ℏ
B · Ŝ µ̂ ∼ −Ŝ since q < 0 (2.10)

gs ≃ 2 Gyromagnetic factor (2.11)

µB =
eℏ
2me

Bohr Magneton e>0 here (2.12)

and then get:

Ĥmag = gs
µb
ℏ︸︷︷︸

= e
2me

(
− µ0e

4πme

p× r

r3

)
︸ ︷︷ ︸

=B

·Ŝ (2.13)

L=r×p
=

gsµ0ϵ0
2m2

e

e2

4πϵ0r3︸ ︷︷ ︸
1
r

dV (r)
dr

L̂ · Ŝ = 2Ĥ ′
2. (2.14)

This is (2.5) up to a factor of two, which is due to the e− rest frame not being inertial, see Shankar.

Comments on Darwin term:

• Further consequence of relativistic QM is the existence of anti-particles (positrons, e+). Can

have
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Zitterbewegung
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(Amplitude ℏ
2mec

= λc
2 , freq = 2mec2

ℏ , where λc is the Compton

wavelength, 2.4×10−12 m).

• Effectively smears out nuclear position,
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• This is the origin of Darwin term

Calculation of Energy Shift in Perturbation Theory, sketch:

• term 1: Relativistic correction: ∆E1 = ⟨ϕnlm|Ĥ ′
1|ϕnlm⟩. See B&J book, we can use non-

degenerate PT because Ĥ ′
1 is diagonal in l,m.

• term 2: We have to rewrite the second term (since Ĥ ′
2, does not commute with L̂, Ŝ).

Define Total angular momentum of electron (see section 1.2.2)

Ĵ = L̂+ Ŝ, (2.15)

New Eigenfunctions |ϕn,l,j,mj
⟩

Ĵ
2|ϕ⟩ = ℏ2j (j + 1) |ϕ⟩, (2.16)

Ĵz|ϕ⟩ = ℏmj |ϕ⟩. (2.17)

With eigenvalues

j =
1

2
(l = 0, s =

1

2
), (2.18)

j = l ± 1

2
(l > 0, s =

1

2
). (2.19)

For non-relativistic Hydrogen (without (2.4)-(2.6)), the states |ϕnljmj
⟩ are still degenerate in l, j,

mj , energy only depends on n.

Now write:

L̂ · Ŝ =
1

2

(
Ĵ2 − L̂2 − Ŝ2

)
. (2.20)

Now we can again use non-degenerate Perturbation Theory (in coupled basis)

∆E2 = ⟨ϕnljmj
|Ĥ ′

2|ϕnljmj
⟩ (2.21)

=
ℏ2

2
⟨ξ (r)⟩

[
j (j + 1)− l (l + 1)− 3

4

]
. (2.22)
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Where ℏ2
2 comes from Ĵ2

2 and we used the short hand Ĥ ′
2 = ξ (r) L̂ · Ŝ and,

⟨ξ (r)⟩ =
∫
d3rϕ∗nljmj

(r) ξ (r)ϕnljmj
(r) . (2.23)

See B&J for detailed integration and result.

• term 3: Darwin term:

∆E3 = ⟨ϕnljmj
|Ĥ ′

3|ϕnljmj
⟩ = πℏ2

2m2
ec

2

Ze2

4πϵ0
|ϕnljmj

(0) |2. (2.24)

From Eq. (1.36) we see that this shifts l = 0 states only (others have |ϕ(0)|2 = 0).

Fine structure Energy Shifts: All terms together:

Enj = En

(
1 +

(Zα)2

n2

(
n

j + 1
2

− 3

4

))
(2.25)

with En from Eq. (1.43).

• Here α = e2

(4πϵ0)ℏc ≃ 1
137 is again the fine structure constant.

• Now degeneracy of energy in j is lifted.

• Note En < 0, the sign of shift depends on n, j but is mostly towards lower energies.

2.1.2 Lamb-Shift

So far, even when discussing interactions of spins, we always used classical formulae for electric /
magnetic fields and interaction potentials.
Fundamentally, electromagnetic-fields and their interactions are due to discrete quanta (photons),
as described by quantum electro-dynamics (QED).
The resulting vacuum fluctuations of γ, e+, e− cause a further,

Lamb Shift:

∆ELamb = α5mec
2

 1
4n3

[
k(n, l)± 1

π(j+ 1
2)(l+

1
2)

]
when l ̸= 0, j = l ± 1

2

1
4n3k(n, 0) when l = 0

(2.26)

Here k(n, l) < 0.05 are small numerical constants.
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• This lifts the degeneracy between s and p states (so might cause splitting not only shift)

• The Lamb-Shift or splitting is much smaller than the fine-structure splitting, see also sec-
tion 2.1.4 later.

2.1.3 Hyperfine-structure

Some more details neglected so far that we will consider now:

• Nuclear spin, operator Î, quantum numbers I, mI .

• Finite nuclear extension, hence correction to Coulomb potential at very short r (inside the
nucleus).

• Due to finite nuclear extension, the nucleus can also have an electric quadrupole moment.
However we will not discuss that case here and assume it vanishes, which is true for some
nuclei. See Bransden/ Joachain for non-vanishing case.

left: Sketches of nuclear Quadrupole-
moment, potential in the nucleus.

Let us write the Hamiltonian now as

Ĥ = Ĥ ′
0 + Ĥ ′

HFS , (2.27)

where Ĥ ′
0 already includes fine-structure effects (Ĥ ′

0 = Ĥ0 + Ĥ ′
FS , see Eq. (2.3)).

Hamiltonian of Hyperfine Interactions e.g. l = 0 electron, nucleus without quadrupole
moment.

Ĥ ′
HFS =

µ

4π

2

ℏ2
gIµBµN

1

r3

L̂ · Î − Ŝ · Î + 3

(
Ŝ · r̂

)(
Î · r̂

)
r3

 (2.28)

• Here gI is the nuclear g-factor (gI= -2 ......6), that means:
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• Nuclear magnetic moment µ̂N = gIµN Î/ℏ, c.f. Eq. (2.9)

• µN = 5× 10−27 J/T is the nuclear magneton, µN = (me/Mp)µB ∼ 5× 10−4µB.

• Î is the nuclear angular momentum operator (contains proton and neutron spins and possibly
orbital angular momentum of these).

• r̂ = r/r.

We can again use perturbation theory. As for fine-structure, it will be useful to change to a coupled
spin basis, using

Total Angular Momentum of the atom Is given as the sum of electron- and nuclear
angular momenta.

F̂ = Î+ Ĵ (2.29)

As for the other angular momentum operators, eigenstates and eigenvalues are given by

F̂2|F,mf ⟩ = ℏ2F (F + 1) |F,mf ⟩, (2.30)

F̂z|F,mf ⟩ = ℏmf |F,mf ⟩, (2.31)

with ranges
F = |I − J |, ....., |I + J | (2.32)

and
mF = −F, ...., F. (2.33)

Treating Eq. (2.28) and corrections at r = 0 using perturbation theory (see book) we find the

Hyperfine energy-shift

∆E =
µ0
4π

2gIµBµN
Z3

a30n
3

(
mred

me

)3 F (F + 1)− I (I + 1)− j (j + 1)

j (j + 1) (2l + 1)
(2.34)

=
gI
2
[mec

2]

(
me

Mp

)
α4Z3

n3

(
mred

me

)3 F (F + 1)− I (I + 1)− j (j + 1)

j (j + 1) (2l + 1)
(2.35)

Note: This uses SI units, BJ book uses atomic units (see later).

• After considering fine structure and Lamb shift, levels are already split according to their
different values of j and l, and nuclear spin I is fixed for a given atom.

• Hence 2.34 now causes additional splitting into different allowed values of F in the range,

j + I ≥ F ≥ |j − I| (2.36)

• Hyper-fine effects are, as the name suggests, again much smaller than the Lamb-shift, see also
section 2.1.4
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2.1.4 Hierarchy of level splittings

• Now that we have collected the most important corrections to atomic energy levels, let us
estimate their relative strengths.

• We have (for Z=1).

Ebase = −α
2[mec

2]

2

1

n2
∼ α2 (2.37)

∆Efine = (α)2EbaseNfine ∼ α4[mec
2] (2.38)

∆ELamb = α5[mec
2]NLamb ∼ α5[mec

2] (2.39)

∆Ehyperfine
gI
2
[mec

2]

(
me

Mp

)
︸ ︷︷ ︸
5×10−4

α4

n3
NHFS ∼ (5× 10−4)α4[mec

2] (2.40)

from Eq. (1.43), Eq. (2.25), Eq. (2.26), Eq. (2.34), where we have only re-expressed some
energy scales in terms of α and mec

2, and written N for expressions that depend on quantum
numbers and are of O(1).

• Since α≪ 1 and 5×10−4 ≪ α we see the typical hierarchy already mentioned: Fine Structure
> Lamb-Shift > Hyperfine Structure.

2.1.5 Alkali Rydberg atoms

Alkali atoms: Li, Na, K, Rb, Cs have a single valence electron above fully-filled electron shells, as
we shall see in section 2.4.
Valence electrons are responsible for chemistry and visible spectra.
Consider very highly excited states, e.g. n≫ 10. These are called Rydberg States.

left: Sketch of n = 1 versus n = 10
radial probability density

Mean electron orbital radius

⟨ϕnlm ||r̂||ϕnlm ⟩ = a0
n2

Z

(
1 +

1

2

[
1− l(l + 1)

n2

])
. (2.41)

Orbital radius roughly scales like a0n
2 (l = 0, Z = 1).
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For,e.g. Li-atom with 3 electrons, two in (1s) and the outer one in (n=60):
→Valence e− much further out than others (we call the others + nucleus the atomic core).
Let N be the number of electrons and Z the nuclear charge. The potential ”seen” by the valence
electron is as follows:

We can phenomenologically describe this by a modified Coulomb potential

Veff = − e2

4πϵ0

1

r
+ Ud(r), (2.42)

with Ud(r) = 0 for r > r0 (outside the tiny atomic core).
A possible choice is Ud(r) = −e2/(4πϵ0)[(Z − 1)e−a1r − r(a3 + a4r)e

−a2r].

Using this effective potential V (r) = Veff we can again solve Eq. (1.34) radial SE ⇒ get slightly
different energies compared to Hydrogen.

Energy levels for Alkali Rydberg atoms (Z=1)

E = − Ry

(n− δl,j (n))
2 (2.43)

Where δl,j includes fine-structure and, δl,j = quantum defect (due to Ud(r))

• The lower the l the higher the quantum defect, since ϕn,l,m (r) reaches closer to/ into the core
(less centrifugal barrier)

• We will see these features over and over again for multi-electron systems.
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Alkali spectra:
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top: Energy spectrum for Rb87, Z = 37, s = 1
2 , I = 3

2

Example 1. • Courtesy Daniel A. Steck http://www.steck.us/alkalidata/ .

• Spectroscopic Notation |n(2s+1)lj ⟩, e.g. | 52s1/2 ⟩ means
|n = 5, s = 1/2, l = 0, j = 1/2 ⟩. Very important to understand literature or
exam questions!!!!

• Energy splittings in Hz: ∆E = hν. (ν frequency in Hertz).

• Energy splittings in nm: νλ = c.

• also see: https://www.nist.gov/pml/atomic-spectra-database .
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3

Week 3
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

2.2 Interaction of one electron atoms with static electric and magnetic fields

Useful for: Probing, trapping, and controlling atoms

Probing fields

2.2.1 The Stark effect: (Electric fields)

Hamiltonian for electron in both electric field of core and external field:

Ĥ =

Ĥo︷ ︸︸ ︷
− ℏ2

2m
∇2 − Ze2

4πϵor
+

Ĥ
′︷ ︸︸ ︷

eE · r . (2.44)

• Let us assume E = Eok̂ (along z-axis) and constant across atom.

• Hamiltonian (2.44) assumes E-field strong enough for fine-structure to be negligible.

• TISE Eq. (1.7) can still be fully solved analytically without perturbation theory, exploiting
the cylindrical symmetry around the direction of E and using parabolic coordinates. see BJ
book.

• Here, we use the approach of perturbation theory, splitting the Hamiltonian into Ĥo + Ĥ
′
.

Linear Stark effect:

First order energy shift of a state |nlm⟩ from Eq. (1.50)

∆E = eE · ⟨ϕnlm|r |ϕnlm⟩ = 0 ∀ nlm. (2.45)
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• You derived this in assignment 1. The simplest way to show it, is by remembering the
symmetry of spherical harmonics under a parity operation: Ylm(r) = (−1)lYlm(−r), thus
they are either symmetric or anti-symmetric. Then

eE · ⟨ϕnlm|r |ϕnlm⟩ = eE ·
∫
d3r |Rnl(r)|2|Ylm(r)|2r

r̃=−r
= eE ·

∫
d3r̃ |Rnl(−r̃)|2|Ylm(−r̃)|2(−r̃)

= eE ·
∫
d3r̃ |Rnl(r̃)|2|(−1)lYlm(r̃)|2(−r̃)

rename r̃→r
= − eE · ⟨ϕnlm|r |ϕnlm⟩. (2.46)

The only way for this to be true is if the integral vanishes.

• Caution: We cannot apply Eq. (1.50) if states are degenerate. So the result that the first
order shift ∆E = 0 is valid for |100⟩ only.

• For other state we need to think again, using Eq. (1.52) for degenerate perturbation theory.

So fix n = no and write ⟨ϕnolm|eE · r |ϕnol
′m′ ⟩ → H

′
as a matrix.

e.g. for no = 2, Eq. (1.52) becomes
0 0 H

′
00 0

0 0 0 0

H
′
00 0 0 0
0 0 0 0



C200

C21−1

C210

C211

 = E
(1)
n=2


C200

C21−1

C210

C211

 . (2.47)

(see also later chapter-3, dipole selection rules)

• We can use (2.46) to quickly eliminate all diagonal entries, but have to look now at non-
diagonal matrix-elements:

eE · ⟨ϕn0lm|r |ϕn0l′m′⟩ = eE0⟨ϕn0lm|r cos θ |ϕn0l′m′⟩

= eE0Ñ
∫ ∞

0
r2Rn0l(r)rRn0l′(r)

∫ π

0
dθ sin [θ]Pm

l (cos[θ])Pm′
l′ (cos[θ])︸ ︷︷ ︸

∼δl(l′±1)

∫ 2π

0
dφei(m

′−m)φ︸ ︷︷ ︸
∼δmm′

,

(2.48)

where N is just the collection of all normalisation factors from (1.36)-(1.37).

• We now see eEo⟨ϕnolm|rcosθ |ϕnol
′m′ ⟩ ∼ δl l′±1δmm′ . (obtained by explicit integration or

realizing that Ĥ
′
is odd under parity, and [Ĥ

′
, L̂z] = 0)

• The only non-zero matrix element is thus H
′
00 = eEo⟨ϕ200|rcosθ |ϕ210⟩ = −3eaoEo. (do this

explicitly as an exercise, like for assignment 1)
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Linear Stark effect: After diagonalisation, we obtain the following picture

(2.49)

• Note that the energy shift |E(1)| cam about in first order PT and is ∼ E0, hence there in fact
is a first order (linear) energy shift for degenerate states. Note: This is an example where the
invalid application of degenerate PT clearly gives the wrong result.

Non-linear Stark effect: For non-degenerate states (in Hydrogen only |100⟩), we have to
go to second order perturbation theory to get a non-vanishing Stark effect

∆E
(2)
100 =

∑
n ̸=1,l,m

|⟨ϕnlm|eEoz |100⟩|2

E100 − Enlm
. (2.50)

• Technically |ϕnlm⟩ includes continuum (unbound states), let’s ignore these for now.

• As in Eq. (2.47), all matrix elements |⟨ϕn10|eEoz |100⟩|2 will be non-zero. Also E100−En10 < 0
for all n.

We then deduce ∆E
(2)
100 < 0 and ∼ (eEo)

2 =⇒ quadratic stark effect.

Interpretation of both variants of the Stark effect: Non-degenerate states do not possess any
permanent dipole moment (see assignment-1). However, the external field can induce one ∼ E,
which then in turn interacts with the field ∼ E2. In contrast, out of degenerate states you can form
superpositions (that are also energy eigenstates), which do have a non-vanishing dipole moment,
such as |Ψ ⟩ = (|ns0 ⟩+ |np0 ⟩)/

√
2, for which you did this in assignment 1. That’s why we get a

first order shift here.
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2.2.2 The Zeeman effect (Magnetic fields)

Hamiltonian for electron in electric field of core and external magnetic field:

Ĥ =

see electro-dynamics︷ ︸︸ ︷
1

2m

(
p+ eA

)2 − Ze2

4πϵor
+

added a in section 2.1.1︷ ︸︸ ︷
gsµB
ℏ

B · S+ ζ(r)L · S . (2.51)

• For interaction of e− spin Ŝ with field, see Eq. (2.8).

Classical vector potential:

A =
1

2

(
B× r

)
for a constant B-field. (2.52)

Insert A, p and lots of vector calculus (see book)

Ĥ =

Ĥa︷ ︸︸ ︷
− ℏ2

2m
∇2−

Ĥb︷ ︸︸ ︷
Ze2

4πϵor
+

Ĥc︷ ︸︸ ︷
ζ(r)L · S+

Ĥd︷ ︸︸ ︷
µB
ℏ
(
L+ 2S

)
B+

Ĥe︷ ︸︸ ︷
e2

8m

(
B× r

)2
. (2.53)

For Ĥc and Ĥd, see Eq. (2.5) and Eq. (2.8) respectively.

Let B = Bok̂ (along z-axis).
Now analyze Eq. (2.53) with perturbation theory depending on relative importance of terms a− e,
which depends on the state to be perturbed |ϕnlm⟩ and the magnetic field strength |B|.

Linear Zeeman effect: (strong B-field)

• Energy due to magnetic field is large compared to fine-structure.

First neglect Ĥc and Ĥe. Then, Ĥo = Ĥa + Ĥb + Ĥd.

The first two just constitute the usual Hydrogen Hamiltonian Eq. (1.28) and the last part

Ĥd =
µB
ℏ
B0

(
L̂z + 2Ŝz

)
can be expressed in terms of angular momentum z-components (and thus commutes with L̂2, Ŝz,
Ŝ2, Ŝz. So, |ϕnlml

⟩ ⊗ |sms⟩ of Eq. (1.35) are already eigenfunctions of Ĥ in Eq. (2.53), solving

Ĥo|ϕnlmlsms⟩ = Enmlms |ϕnlmlsms⟩.

to obtain
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Zeeman-shifted energies

Enmlms =

see Eq. (1.43)︷︸︸︷
En + µBB0(ml + 2ms), ms = ±1

2
. (2.54)

Interpretation: L and S decouple in B-field and align to it separately.

Paschen-Back effect: (medium B-field)

We now add spin-orbit coupling Ĥ
′
= Ĥc = ζ(r)L · S as a perturbation.

• This is for slightly lower fields.

Can use non-degenerate perturbation theory Eq.(1.26) (see book for subtle reasons) to find

∆E = ⟨ϕnlmlsms |Ĥ
′ |ϕnlmlsms⟩ (2.55)

= ⟨ϕnlmlsms |ζ(r)(L̂xŜx + L̂yŜy + L̂zŜz) |ϕnlmlsms⟩. (2.56)

Use

Raising and lowering operators (BJ book 2.185)

L̂± = L̂x ± iL̂y =⇒ L̂x = (L̂+ + L̂−)/2

L̂y = −i(L̂+ − L̂−)/2 (2.57)

L̂±|lm⟩ = ℏ[l(l + 1)−m(m± 1)1/2] |l(m± 1)⟩

to see that the first two terms in Eq. (4.4) vanish and thus

∆E = ⟨ϕnlmlsms |ζ(r) L̂zŜz︸ ︷︷ ︸
=ℏ2mlms

|ϕnlmlsms⟩ = λnlmlms (2.58)

with λnl = ℏ2
∞∫
0

drr2[Rnl(r)]
2ζ(r) = −α2Z2

n
En

[l(l+ 1
2
)(l+1)]

; l ̸= 0.

• Now shift dependent on l (unlike Eq. (2.54)).

Anomalous Zeeman effect: (weak B-field, most common case)

• The name ”anomalous” is historical.

• We now consider
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Ĥo = Ĥa + Ĥb + Ĥc with Ĥ
′
= Ĥd (still neglect Ĥe)

Eigenstates of Ĥo are the same as for fine-structure (section 2.1.1). Can expand total angular
momentum states in terms of orbital angular momentum and spin states as section 1.2.2.

|j, l, s,mj⟩ =
∑

ml,ms

⟨l, s,ml,ms|j, l,mj⟩︸ ︷︷ ︸
≡Cl,s;ml,ms

j,mj

|l, s,ml,ms⟩,

where Cl,s;ml,ms
j,mj

are Clebsch-Gordan coefficients (cgc), see section 1.2.2.

Using the coupled j basis as for fine-structure, let us first evaluate the easy part:

∆E = ⟨ϕnjlmj
| µB
ℏ

(Ĵz + Ŝz)Bo |ϕnjlmj
⟩

= µBmjBo +
µBBo

ℏ
⟨ϕnjlmj

|Ŝz |ϕnjlmj
⟩. (2.59)

Now we need some cgc, but we only look at s = 1
2 , so j = l ± 1

2 . Then∣∣∣∣∣(j = l +
1

2

)
, l, s,mj

〉
=

√
l +mj + 1/2

2l + 1

∣∣∣∣∣l, s,ml = mj −
1

2
,ms =

1

2

〉

+

√
l −mj + 1/2

2l + 1

∣∣∣∣∣l, s,ml = mj +
1

2
,ms =

−1

2

〉
(2.60)

and ∣∣∣∣∣(j = l − 1

2

)
, l, s,mj

〉
= −

√
l −mj + 1/2

2l + 1

∣∣∣∣∣l, s,ml = mj −
1

2
,ms =

1

2

〉

+

√
l +mj + 1/2

2l + 1

∣∣∣∣∣l, s,ml = mj +
1

2
,ms =

−1

2

〉
. (2.61)

We now use these two expressions in Eq. (2.59) and simplify to get

Anomalous Zeeman shift
∆E = gµBmjB0, (2.62)

with Landé g-factor

g = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
.

So the number of split energy levels is now given by the number of different values for mj .

• Even stronger fields than for Eq. (2.54) =⇒ Treat Ĥe, even neglect Ĥb (Landau levels).

• Even weaker fields than for Eq. (2.62) =⇒ Consider hyperfine-structure (Breit-Rabi equa-
tion).
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Example-(1) for section section 2.2: Magnetic trapping

Consider double anti-Helmholtz coil (quadrupole trap) with current I.

This is designed to have a local minimum of the magnetic field strength |B(x)| at the origin
Assume a single atom is in mj =

1
2 . According to Eq. (2.62) its energy is

∆E = gsµBmj |B(x)| (2.63)

This energy shift increases everywhere from origin =⇒ atom can be trapped at origin.

Q: Can one magnetically trap mj < 0 states?
Caution: Typical magnetic traps have so weak fields that we need to look at the Zeeman
effect of hyperfine-structure, roughly similar to Eq. (2.62) with mj → mF .

Example-(2) for section section 2.2: (see online code ”zeeman effect of finestructure.m”
From strong to weak fields: The energy shifts in Eq. (2.54) and Eq. (2.62), valid for different
regimes of magnetic field strengths, depend on different quantum numbers. How does the
transitions happen for intermediate magnetic fields?

Let us consider hydrogen |2p⟩, with spin we have 2p 1
2
, p 3

2
.

Use coupled basis A =
{
|2p 3

2
,mj =

3
2⟩, |

3
2 ,

1
2⟩, |

3
2 ,−

1
2⟩, |

3
2 ,−

3
2⟩, |2p 1

2
,mj =

1
2⟩, |

1
2 ,−

1
2⟩
}
.

In matrix form

ĤFS (Fine−Structure) =



E3/2 0 0 0 0 0

0 E3/2 0 0 0 0

0 0 E3/2 0 0 0

0 0 0 E3/2 0 0

0 0 0 0 E1/2 0

0 0 0 0 0 E1/2


Basis−A

The energy terms on the diagonal follow from Eq. (2.25).
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Example-(2) contd.: The effect of the magnetic field is easier to capture in the uncou-
pled basis B =

{
|2p1,ml =

1
2⟩, |0,

1
2⟩, | − 1, 12⟩, |1,−

1
2⟩, |0,−

1
2⟩, | − 1,−1

2⟩
}
, using part d of

Hamiltonian Eq. (2.53), which gives

Ĥd =
µBBo

ℏ



ℏ
(
1 + 2 · 1

2

)
0 0 0 0 0

0 ℏ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ℏ 0
0 0 0 0 0 2ℏ


Basis−B

.

Here the energy terms on the diagonal follow from Eq. (2.53), part d.

To write it all into one matrix we perform a basis transform on the latter part, thus Now,

Ĥtot = Ĥfs + Û †ĤdÛ ,

where Û is the unitary matrix converting from A to B.

Eigenvalues of Ĥtot, from numerical diagonalisation as a function of magnetic field strength:
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Week 4
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

2.3 Two Electron Atoms

These include , e.g., H−︸︷︷︸
Z=1

, He︸︷︷︸
Z=2

, Li+︸︷︷︸
Z=3

Important because they are the simplest atoms where we see the Pauli Exclusion Principle at work
(see Eq. (1.62)) and can introduce essential approximation techniques. We cannot solve any two
e− problems exactly analytically.

2.3.1 The Schrödinger Equation for two-electron atoms

We need co-ordinates for both electrons now, see diagram below.

r12 = |r1 − r2| (2.64)

r1 = |r1| (2.65)

In terms of these we write the
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TISE (see Eq. (1.7)) for the Helium problem[
− ℏ2

2µ
∇2

r1 −
ℏ2

2µ
∇2

r2 −
ℏ2

M
∇r1 ·∇r2 −

Ze2

(4πϵ0) r1
− Ze2

(4πϵ0) r2
+

e2

(4πϵ0) r12

]
︸ ︷︷ ︸

≡Ĥhel

ψ (r1, r2)

= Eψ (r1, r2) (2.66)

• µ = meM
me+M is reduced mass of the electron, me electron mass, M nuclear mass. (We used

µ = me for M → ∞ in section 1.2.3)

• Mass polarisation term ∇r1 · ∇r2 comes from separation of centre of mass coordinate. It
vanishes for M → ∞.

From now on, use atomic units:

ℏ = 1
1

4πϵ0
= 1 e = 1 m︸︷︷︸

electron mass

= 1 (2.67)

(then hydrogen energy Enlm = − 1
2n2 (see Eq. (1.43)) and a0 = 1)

• The Hamiltonian is symmetric with respect to particle position interchange operator

P12 : r1|r2 −→ r2|r1 (2.68)

⇒ Also eigen-functions must have this symmetry [=be eigenfunction of P12]

⇒ ψ (r1, r2) = ±ψ (r2, r1) (2.69)

• Note, this is not the same as the complete particle exchange operation used in writing Bose/Fermi
symmetries Eq. (1.62), where we have to swap all properties, not just position.

There are two types of two electron states
Para States, wave functions spatially symmetric:

ψ+ (r1, r2) = ψ+ (r2, r1) (2.70)

Ortho States, wave functions spatially anti-symmetric:

ψ− (r1, r2) = ψ− (r2, r1) (2.71)
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2.3.2 Spin Wave functions and Pauli Exclusion Principle

• Now we add electron spin into the picture, it becomes essential now, not jut a small pertur-
bation as for Hydrogen.

• e− are fermions, total state must be anti-symmetric under 1⇔2

• Possible spin states for two electrons are: | ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩, see section 1.2.2.

• Useful to move to coupled spin basis, where Ŝ = ŝ1 + ŝ2, see also section 1.2.2.

We find

Spin pair states

|S = 0,mS = 0⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩)

Anti-symmetric

spin singlet (2.72)

|S = 1,mS = −1⟩ = | ↓↓⟩ Symmetric (2.73)

|S = 1,mS = 0⟩ = 1√
2
(| ↑↓⟩+ | ↓↑⟩) spin triplet (2.74)

|S = 1,mS = 1⟩ = | ↑↑⟩ (2.75)

Solutions to the helium problem have to satisfy Eq. (2.70)-(2.71) (spatial symmetry) and Eq. (1.62)
(total fermionic symmetry). Thus all allowed solutions can be written as

ψ (q1, q2) = ψ+ (r1, r2)
1√
2
(| ↑↓⟩ − | ↓↑⟩) (Para) (2.76)

ψ (q1, q2) = ψ− (r1, r2)


| ↓↓⟩
1√
2
(| ↑↓⟩+ | ↓↑⟩)

| ↑↑⟩
(Ortho) (2.77)

• Despite not actually appearing explicitly in the Hamiltonian of (2.66), the total spin dictates
which spatial symmetry the solution must have!

2.3.3 Approximate methods for 2 electron groundstate wavefunction

So far we only classified solutions according to spin and spatial symmetry, we yet have to actually
determine the symmetric and anti-symmetric eigen functions ψ± (r1, r2)
Lets split Ĥhel = Ĥ0 + Ĥ ′ again, where (in atomic units, abbreviated a.u.)

Ĥ0 = −
∇2

r1

2
−

∇2
r2

2
− Z

r1
− Z

r2
Ĥ ′ =

1

r12
(2.78)
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Note: Atomic units save a lot of writing!
We see that the unperturbed eigen-problem Ĥ0ψ

(0) (r1, r2) = E(0)ψ(0) (r1, r2) is solved by the
product Ansatz:

ψ(0) (r1, r2) = ϕnlm (r1)ϕn′l′m′ (r2) , (2.79)

E(0) = Enlm + En′l′m′ , (2.80)

with ϕnlm and Enlm given by Hydrogen solutions ((1.35) and (1.43)).

• Note, that for every energy E(0), the wavefunctions with swapped indices: ϕn′l′m′ (r1)ϕnlm (r2)
are an equally valid solution. This is called ⇒ exchange degeneracy.

• This allows us now to construct solutions satisfying Eq. (2.70)-(2.71), namely

Zero’th order approximation for Helium wavefunctions
This is also called independent particle model

ψ
(0)
± (r1, r2) =

1√
2
[ϕnlm (r1)ϕn′l′m′ (r2)± ϕn′l′m′ (r1)ϕnlm (r2)] (2.81)

Where + =Para, and− =Ortho. Only for Para states {n′, l′,m′} = {n, l,m} is possible,
then ψ

(0)
+ (r1, r2) = ϕnlm (r1)ϕnlm (r2).

• Gives ground-state energy of Helium︸ ︷︷ ︸
(Para only)

: E
(0)
100,100 = −Z2

2

(
1
12

+ 1
12

)
= −Z2 He

= −4

So far we have completely ignored electron-electron interactions in Ĥ ′, let’s rectify this now:
PerturbationTheory

Take into account Ĥ ′ as in Eq. (1.50), focussing on the ground-state only for now:

E(1) = ⟨ψ(0)
± |Ĥ ′|ψ(0)

± ⟩ (2.82)

Ground
=

state

∫
d3r1

∫
d3r2 |ϕ100 (r1) |2︸ ︷︷ ︸

Charge density at r1

1

|r1 − r2|
|ϕ100 (r2) |2︸ ︷︷ ︸

Charge density at r2

(2.83)

See
=

Book
......+

5

8
Z in a.u. (2.84)

In the second line above we recognize the electro-static interaction energy of the charge densities
due to electron 1 and 2.

• Now we have E(0) + E(1) = −Z2 + 5
8Z = −2.75︸ ︷︷ ︸

getting better

(”exact” -2.904)
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left: Sketch of helium electron wave-functions with (yellow) and
without screening (green).
Look at

ψ
(0)
+ (r1, r2) = ϕ100 (r1)ϕ100 (r2) , (2.85)

ϕ100 (r1)
a.u.
=

Eq. (1.35)

√
Z3

π
exp[−Zr1] (2.86)

Now try to improve on this by introducing a screened (or effective) charge Z → Zeff. Let us take
the trial state

ψ(0)
trial (r1, r2) = ϕtrial(r1)ϕtrial(r2)

ϕtrial(r) =

√
Z3
eff

π
exp[−Zeffr], (2.87)

as guess for the two-electron wave function. We have to find the ”best” value of Zeff from variational
principle

Variational Principle

• Energy functional

E [ϕ] =
⟨ϕ|Ĥ|ϕ⟩
⟨ϕ|ϕ⟩

(2.88)

is extremal at an eigenstate ψn of Ĥ, that means

δE [ψn] = 0. (2.89)

• The groundstate energy E0 ≤ E [ϕ] for any trial state ϕ. Thus the minimal energy
we can reach by changing the parameters in our trial state, will be closest to the true
ground-state energy.
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Variational derivatives:

• δE is a variation of the energy functional: Multiply Eq. (2.88) by ⟨ϕ|ϕ⟩ and take the
total derivative wrt. the state

δE⟨ϕ|ϕ⟩+ E⟨δϕ|ϕ⟩+ E⟨ϕ|δϕ⟩ = ⟨ϕ|Ĥ|δϕ⟩+ ⟨δϕ|Ĥ|ϕ⟩ (2.90)

(”How does the energy E[ϕ] change for a small variation ϕ+ δϕ around ϕ?”)

• Related to functional derivative δE
δϕ(x) (see books)

• A special variation is δE = ∂E
∂Zeff

δZeff
!
= 0

To find ∂E
∂Zeff

, we insert Eq. (2.87) into the energy functional Eq. (2.88):

E
[
ψ(0)

trial

]
= ⟨ψ(0)

trial| T̂1 + T̂2 −
Z

r1
− Z

r2︸ ︷︷ ︸
see QM1/ standard methods

+
1

r12
|ψ(0)

trial⟩ = Z2
eff − 2ZZeff +

5

8
Zeff. (2.91)

• The term involving 1/r12 gives rise to the same integral as in the perturbation theory segment
one page above.

• In the expression above, factors Z stem from the Hamiltonian, but factors of Zeff from the
trial function.

•
∂E

∂Zeff
= 0 ⇔ Zeff = Z − 5

16
effective charge reduced, as expected (2.92)

• Now ground state energy of Helium E [ϕtrial] = −
(
Z − 5

16

)2
a.u.= -2.848 a.u. (even closer to

”exact” -2.904)

Screening in the Central Field approximation
Going back to independent particle model/ 0’th order P.T, we can rewrite Hamiltonians as indicated
by the vertical arrow below:

Ĥ0 Ĥ ′

−
∇2

r1

2
−

∇2
r2

2
− Z

r1
− Z

r2

1

r12
⇓

−
∇2

r1

2
−

∇2
r2

2
+ V (r1) + V (r2)

1

r12
− V (r1)− V (r2)−

Z

r1
− Z

r2
(2.93)

This just constitutes a re-allocation of what we call Ĥ0 and what we call Ĥ ′.
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See that if we choose the central field below for our potential energy,

V (r) = −Z − S

r
= −Zeff

r
(2.94)

with Zeff = Z − 5
16 we obtain variational solution as eigenstates in 0’th order PT.2

The re-writing has effectively made Ĥ ′ ”smaller”. S is the screening factor. (S = 5
16 = 0.31 for He)

• This central field concept will be even more useful for N > 2 electrons.

2.3.4 Excited States of Two electron atoms

Much of section 2.3.3 can be generalised to excited states.
Let us consider perturbation theory of:

ψ
(0)
± (r1, r2) =

1√
2
[ϕ100 (r1)ϕnlm (r2)± ϕnlm (r1)ϕ100 (r2)] (2.95)

The unperturbed energy is E(0) = Enlm + E100. For the perturbed results we find:

First Order excited state with interaction energy

E
(1)
± = J ±K + =para, − =ortho, (ortho not possible for ground state) (2.96)

J =

∫
d3r1d

3r2 |ϕ100(r1)|2
1

r12
|ϕnlm(r2)|2 Coulomb (direct) integral (2.97)

K =

∫
d3r1d

3r2 ϕ
∗
100(r1)ϕ

∗
nlm(r2)

1

r12
ϕ100(r2)ϕnlm(r1) Exchange integral (2.98)

• Using Ŝ1 · Ŝ2 = 1
2 Ŝ

2 − 3
4 , we can express the energies as

E
(1)
± = J − 1

2

(
1 + 4Ŝ1 · Ŝ2

)
K ⇒ spin dependence of energy. Note that the energy became

spin dependent because of the required allocation (2.76)-(2.77) of spatial symmetry to total
electron spin.

• When evaluating integrals we find that J > 0 (see BJ book). It also turns out that J,K
depend on n, l, hence (J → Jnl, K → Knl).

• Usually also K > 0 ⇒ Thus the ortho state (S = 1) has a lower energy.

All that we have learnt so far (and some more) enters the energy level diagram of helium on the
next page:

2Finding eigenstates of the newly arranged Ĥ0 in (2.93) proceeds as we did for finding Eq. (2.81), except in the
solution we have to replace everywhere Z → Zeff. Thus we obtain the solution (2.87).
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Week 5
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

2.4 Many-electron atoms

• Already cannot solve the two electron problem exactly. The variational approach also becomes
too hard for large numbers of electrons. Now, the central field approximation will be very
useful.

Many-electron (N) Schrödinger equation:

Ĥ ψ(q1, q2, ..., qN ) = Eψ(q1, q2, ..., qN )

qk = {msk, rk} (spin and position variables)

Ĥ =
N∑
i=1

(
− 1

2
∇2

ri −
Z

ri

)
+

N∑
i<j=1

1

rij
(in atomic units) (2.99)

• Eq. (2.4) constitutes a PDE, for a wavefunction with 3N spatial plus 2N discrete co-ordinates
=⇒ very impossible to solve directly.

• This problem generically arises in quantum-many-body-physics.

• Unlike two electron case, Ĥ
′
=
∑N

i<j=1 1/rij generally is not small due to many terms in the
sum.
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2.4.1 Central field approximation

Now the independent-particle model and central field approximation become indispensable:

left: When considering a selected electron, the
most important effect of other (N − 1) electrons
is collectively screening the nuclear charge, which
however still leaves the potential for the Nth elec-
tron spherically symmetric (to a good approxima-
tion).

Similar to our treatment of Helium, we write for this radial potential felt by electron number i

V (ri) = − Z

|ri|
+ S(|ri|) (Now screening is r-dependent). (2.100)

We now re-write Eq.(2.99), ignoring spin for now

Ĥc =
N∑
i=1

(
− 1

2
∇2

ri + V (ri)

)
=

N∑
i=1

ĥi (2.101)

Ĥ
′
=

N∑
i<j=1

1

rij
−

N∑
i=1

(
Z

ri
+ V (ri)

)
=

N∑
i<j=1

1

rij
−

N∑
i=1

S(ri) (2.102)

such that Ĥ = Ĥc + Ĥ
′
(just re-writing).

• Ĥc is central field Hamiltonian.

• Expect eigenfunctions of Ĥc to be better than those of Ĥo =
∑N

i=1

(
− 1

2∇
2
ri − Z/ri

)
.

• Challenge is to find out suitable S(ri) or V (ri).

Central field Schrödinger equation

Ĥc ψ(r1, r2, ..., rN ) = Ec ψ(r1, r2, ..., rN ). (2.103)

can be solved using

ψ(r1, r2, ..., rN ) = ua1(r1)ua2(r2) ...uaN (rN ); ai ≡ {nilimi} (2.104)

where, (
− 1

2
∇2

ri + V (ri)

)
uai(ri) = Eiuai(ri), Ec =

∑
i

Ei. (2.105)

The functions unimili(ri) are called central-field orbitals.

• Excercise: Show directly that (2.104) is a solution for (2.103).
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• To actually find the central field orbitals, as for hydrogen states, we write unlm(r) = Rnl(r)Ylm(θ, ϕ)
with Ylm exact same as for H (spherical harmonics), but Rnl determined from the radial equa-
tion:

−1

2

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)
Rnl(r) +V (r)︸︷︷︸

̸=
potential used for Hydrogen

due to screening

Rnl(r) = EnlRnl(r). (2.106)

• Now we can use the following iterative procedure:

(i) Solve (2.106) with some trial V (ri) to determine the uai(ri).

(ii) Use the obtained uai(ri) to infer the electron charge distributions.

(iii) Use the charge distribution to infer the screened potential V (ri) with usual electro-statics
methods.

(iv) Loop back to step (i) using the updated screened potential V (ri).

(v) Repeat iteration until nothing changes any more.

• We will see one method that formalises this later.

• However we can learn a lot without doing the actual iteration, from two known limits:

V (r) → −Z
r

(for r 7→ 0), (2.107)

here the electron is closer to the nucleus than all others, so no screening can take place, and

V (r) → −Z − (N − 1)

r
(for r 7→ ∞), (2.108)

here all N − 1 other electrons are closer to the nucleus and screen its charge as much as
possible.

2.4.2 Spin and Pauli-exclusion principle

• Product states ψ(r1, ..., rN ) = ua1(r1) ...uaN (rN ) do not in general satisfy the anti-symmetry requirements
of Eq. (1.62) for fermions, and we have not yet included spin (rN → qN , see Eq.(2.99)).

Introduce spin-orbitals:

unlmlms︸ ︷︷ ︸
≡ α

(q) = unlml
(r) |χ ⟩ms

= Rnl(r)Y (θ, ϕ) |χ ⟩ms (2.109)

with
|χ ⟩+ 1

2
= | ↑ ⟩, |χ ⟩− 1

2
= | ↓ ⟩.
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In terms of these, a valid fermionic N -electron total wavefunction is given by a
Slater-determinant

ψc(q1, ..., qN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
uα(q1) uβ(q1) · · · uν(q1)

uα(q2)
. . .

...
...

. . .
...

uα(qN ) · · · · · · uν(qN )

∣∣∣∣∣∣∣∣∣∣
(2.110)

Reminder: For matrix A = {aij}, the determinant detA = |A| =∑
σ ϵSN︸ ︷︷ ︸

Permutations

sgn(σ)
∏N

i=1 aiσi .

• We see that this enforces antisymmetry, since determinant changes sign when we exchange
two rows (math course).

• Also, if for any indices α = β =⇒ det = 0. (Since, it also changes sign if we exchange two
columns. This means there can never be two electrons in the same spin-orbital.)

• Set of electron quantum numbers [α, β, ..., ν] in (2.110) is called electron-configuration.

• Let us define also

the total angular momentum of all electrons Jtot =

N∑
i=1

Ji

the total orbital angular momentum of electrons Ltot =
N∑
i=1

Li (2.111)

the total spin of electrons Stot =
N∑
i=1

Si

• Note that [Ĥc,Ltot] = 0, [Ĥc, Ŝtot] = 0 for the central field Hamiltonian Ĥc in Eq.(2.101).

=⇒ We can in principle write all many electron eigenstates also as eigenstates of L̂tot, Ŝtot.
However, note, the the Slater determinant (2.110) is not yet in general an eigenstate of L̂tot,
Ŝtot.

Atomic terms A state of multi-electron atoms with well defined quantum numbers for the
total angular momenta J for Jtot, L for Ltot and S for Stot is called term, denoted with a
term symbol

2S+1LJ , (2.112)

c.f. Example p. 24.
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2.4.3 Ground state energetic ordering and periodic table

• So far we have not really solved the many-electron-atom problem since we did not yet calculate
S(r). But, most essential properties of all atoms, incorporated into the periodic table, can be
understood already now, based on some V (r) with properties (2.107)-(2.108).

Angular momentum versus screening (N = Z atoms):

Revisit Eq.(2.106):

−1

2

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)
Rnl(r) + V (r)Rnl(r) = EnlRnl(r). (2.113)

We can again combine the underlined pieces into an effective potential Veff = V (r) + l(l+1)
2r2

that
includes the centrifugal barrier due to angular momentum (as in section 1.2.3).

• The centrifugal potential l(l + 1)/2r2 pushes the wavefunction further out (to larger r), the
higher the value of l.

• All higher l-states thus feel the unscreened and stronger −Z/r potential less than lower l
states thus energy typically increases with l.

• Energy Ei in Eq.(2.105) depends on n, l of all electrons (but not their ml, ms while we ignore
fine and hyperfine structure).
=⇒ electrons with the same n, l are said to belong to the same sub-shell and are also called
equivalent electrons.
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• For a given selection of the two numbers (n, l), there are 2(2l + 1) equivalent electrons (size
of shell).

• To build the periodic table, we fill shells starting from low energies.

See table 8.3, Fig 8.1 of the book BJ, also follow https://ptable.com/

— 4s states fill before 3d (because 3d has so much centrifugal potential) †.
— Filled sub-shells always have zero total spin and zero total angular momentum. This is

because we have to fill all possible ml, ms and at the same time maintain fermionic total
anti-symmetry.

— Still reminiscent of the situation in Hydrogen, the binding energy of the outer electron
jumps up (becomes muss less negative) whenever n→ n+1, this gives periodic recurrence of chemical
properties, mainly determined by outermost (valence) electron and how easily it is lost.

— The confusing middle part of the periodic table (transition metals) exists due to 3d↔ 4s
swap in the energy ordering (see † above) (This happens again for higher energy states
4d↔ 5s, 4f ↔ 5d).

— Note that all chemical variety in the world around us is due to the Pauli exclusion
principle. Without it, any atom with varying nuclear charge Z would be just in a
configuration (1s)Z , thus all atoms would behave chemically very similar.

2.4.4 Approximation methods for many-electron systems

Thomas-Fermi theory: Assume electrons are (i) degenerate Fermi gas, (ii) numerous, (iii) can
be treated in WKB/semi-classical approximation =⇒ Obtain electron charge density ρ(r) and
from that V (r) (screened potential). Not very accurate, but interesting conceptually and useful in
e.g. ultra-cold gases (also Bosons, see Chapter-V). Precursor to:

Density-functional theory: (Based on theorem by Hohenberg and Kohn)

For an N -electron system with ground-state wave function ψ(r1, ..., rN ), the ground-
state electron density is

ρ(r) =

∫
d3r2

∫
d3r3 · · ·

∫
d3rN |ψ(r, r2, ..., rN )|2. (2.114)

Then,

(a) every observable is uniquely determined by ρ(r).

(b) there exists a functional I[ρ] such that for a given potential U(r) (felt by all e−), ground
state energy is minimum of

Eo[ρ] = I[ρ] +

∫
d3rU(r)ρ(r), for

∫
d3rρ(r) = N.

49

https://ptable.com/


• Useless unless we know I[ρ]. By now many ”good” choices for I[ρ] are available.

• Very successful method for quantum-chemistry/ material science.

Hartree-Fock method and the self-consistent field:

Idea: (i) Calculate unlm(r) as in (2.105) using trial V (r).

(ii) Calculate electron charge density ρ(r) = −e
∑

|unlm(r)|2, this gives screening V ′
(r).

(iii) Re-calculate u
′
nlm(r) with new V

′
(r), iterate until converged.

(iv) In practice, this is all embedded in a many-body variational method, so won’t directly
recognize ρ, V .

Now, a sketch of derivation:

Use natural splitting of Hamiltonian (2.99)

Ĥ1 =

N∑
i=1

ĥi, ĥi = −
∇2

ri

2
− Z

ri
, Ĥ2 =

N∑
i<j=1

1

rij
, Ĥ = Ĥ1 + Ĥ2

from variational principle (2.89), the true ground-state energy E0 fulfills

E0 ≤ E[ϕ] = ⟨ϕ |Ĥ|ϕ ⟩, (2.115)

but now ϕ is a many-electron Slater-determinant as in (2.110). Let us re-write

ϕ(q1, ..., qN ) =
√
N !A ϕH(q1, ..., qN ) (2.116)

with Hartree function:
ϕH(q1, ..., qN ) = uα(q1)uβ(q2) ...uν(qN ). (2.117)

uα(qi) etc. are again spin-orbitals, with form yet to be determined. We also used the
anti-symmetrisation operator

A · · · = 1

N !

∑
P

(−1)P P
[
· · ·
]

(2.118)

Here the sum runs over all possible permutations P of the set of integers 1 · · ·N , P is the sign
of the perturbation, and P

[
· · ·
]
tells us to permute coordinates that occur within the brackets

according to P, i.e. uα(q1)uβ(q2) → uα(qP[1])uβ(qP[2]).

We now have to evaluate E[ϕ] = ⟨ϕ |Ĥ1|ϕ ⟩ + ⟨ϕ |Ĥ2|ϕ ⟩ for a Slater-determinant. We will use
[Ĥi,A ] = 0 (both Ĥk are symmetric under all particle label swaps) and A 2 = A (A is a projector,
if the expression in · · · is already anti-symmetrised, anti-symmetrising it again does nothing).

Now:

⟨ϕ |Ĥ1|ϕ ⟩
Eq. (2.116)

== N !⟨ϕH |A Ĥ1A |ϕH⟩ [Ĥi,A ]=0
== N ! ⟨ϕH |Ĥ1A

2|ϕH⟩

A is
==

projector
N !⟨ϕH |Ĥ1A |ϕH⟩ Eq.(2.118)

==

N∑
i=1

∑
P

(−1)P ⟨ϕH |ĥiP|ϕH⟩
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Now we can check that:

⟨ϕH |ĥiP|ϕH⟩ =

{
⟨ϕH |ĥi|ϕH⟩ ; if P = identity

0 ; else
(2.119)

To see this explicitly expand the many-body scalar product as in the next step.

⟨ϕ |Ĥ1|ϕ ⟩ =
N∑
i=1

⟨ϕH |ĥi|ϕH⟩

Eq.(2.117)
==

N∑
i=1

∫
dq1

∫
dq2 ...︸︷︷︸

No i

∫
dqN

(
u∗α(q1)uα(q1)

)(
u∗κ(qi−1)uκ(qi−1)

)(
u∗η(qi+1)uη(qi+1)

)
(
u∗ν(qN )uν(qN )

)[∫
dqi

(
u∗λ(qi) ĥiuλ(qi)

]
all orbitals

==
orthonormal

N∑
i=1

⟨uλi
(qi)|ĥi|uλi

(qi)⟩ ≡
N∑
i=1

Iλi
; using an index vector λ⃗ = [α, β, ..., ν].

The Iλi
can be thought of as non-interacting energy of electron number i being in the spin-orbital

uλi
(qi).

Similarly:

⟨ϕ |Ĥ2|ϕ ⟩ =
∑
i<j

∑
P

(−1)P
〈
ϕH

∣∣∣∣ 1rijP
∣∣∣∣ϕH〉︸ ︷︷ ︸

whenever P “touches” any index ̸= i, j this is = 0

only allowed
==

permutation

∑
i<j

〈
ϕH

∣∣∣∣ 1rij (1− Pij)

∣∣∣∣ϕH〉
as
==
above

∑
λ,µ

(Pairs)

〈
uλ(qi)uµ(qj)

∣∣∣∣ 1rij
∣∣∣∣uλ(qi)uµ(qj)〉︸ ︷︷ ︸

≡ Jλµ

direct term, compare Eq. (2.97)

−
〈
uλ(qi)uµ(qj)

∣∣∣∣ 1rij
∣∣∣∣uµ(qi)uλ(qj)〉︸ ︷︷ ︸

≡ Kλµ

exchange term, compare Eq. (2.98)

In the second line, the only allowed permutations that don’t give zero in the scalar product, is the
identity (giving the 1), and Pij which flips i↔ j.

• All together, we have now obtained a much simpler looking energy functional

E[ϕ] =
∑
λ

Iλ +
1

2

∑
λµ

[
Jλµ −Kλµ

]
. (2.120)

That consists of single particle energies Iλ and interaction energies J and K. The 1/2 just
avoids double counting of pairs.
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• Now, in a more complex variational principle than used for Helium, we vary all the uλ(qi)
themselves:

δE −
∑
λ

Eλ︸︷︷︸
Lagrange-multiplier

(see math and book)

δ⟨uλ|uλ⟩ = 0. (2.121)

The Lagrange multipliers implement the constraint ⟨uλ|uλ⟩ = δλµ.

From variation δuλ(qi) we obtain (see books)

Hartree-Fock equations:[
− 1

2
∇2

ri −
Z

ri

]
uλ(qi) +

[∑
µ

∫
dqj u

∗
µ(qj)

1

rij
uµ(qj)

]
uλ(qi)

−
[∑

µ

∫
dqj u

∗
µ(qj)

1

rij
uλ(qj)

]
uµ(qi) = Eλuλ(qi). (2.122)

• Set of integer-differential, coupled equations for N spin orbitals uλ(qi).

• Lagrange-multipliers Eλ take role of energy eigenvalues.

• We can define a direct potential

V (d)(qi) =
∑
µ

∫
dqiu

∗
µ(qi)

1

rij
uµ(qi)

and exchange potential (operator)

V (ex)(qi)[f ] =
∑
µ

[ ∫
dqiu

∗
µ(qi)

1

rij
f(qi)

]
uµ(qi)

such that [
− 1

2
∇2

ri −
Z

ri
+ V (d) − V (ex)︸ ︷︷ ︸
≡ V (qi)

]
uλ(qi) = Eλuλ(qi). (2.123)

Comparison with Eq.(2.103), V (qi) takes the role of central field here.

• For atoms with filled subshells, can show that V (qi) is indeed spherically symmetric. Other-
wise not, but derivations are small.

• Solve (2.122) by iteration: Start with some trial solution u
(0)
λ (qi) (e.g. the one for Hydrogen

or guessed V (qi)). Then find solution of[
− 1

2
∇2

ri −
Z

ri

]
u
(1)
λ (qi) +

[∑
µ

∫
dqj u

∗(0)
µ (qj)

1

rij
u(0)µ (qj)

]
u
(1)
λ (qi)

−
[∑

µ

∫
dqj u

∗(0)
µ (qj)

1

rij
u
(0)
λ (qj)

]
u(1)µ (qi) = Eλu

(1)
λ (qi). (2.124)
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etc. until u
(n)
λ (qi) is converged.

Example-(1) for section 2.4: Radial electron density in Neon

Define radial electron density

D(r) = r2
∫

dΩ︸︷︷︸
angles

ρ(r) =
∑
nl

qnl︸︷︷︸
# of equivalent electrons

in subshell (nl)

|ρnl(r)|2. (2.125)

Neon configuration (1s)2(2s)2(2p)6, thus

D(r) = 2|P1s(r)|2 + 2|P2s(r)|2 + 6|P2p(r)|2.

which can be obtained via Eq. (2.122). The result is

2.4.5 Corrections to the central field. L-S/J-J coupling

There are two important correction terms to the central field picture discussed so far:

Ĥ1 =

N∑
i<j=1

1

rij
−

N∑
i=1

(
Z

ri
+ V (ri)

)
, (2.126)

Ĥ2 =

N∑
i=1

ζi(r)L̂i · Ŝi. (2.127)

First is non-central field part of Hamiltonian, which we had listed as Ĥ ′ in Eq. (2.102). Second
spin-orbit coupling for each electron (c.f. Eq. (2.5)), the most important of relativistic corrections
neglected in Eq. (2.99).

Which one is more important depends on Z.
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L-S coupling (or Russell-Sanders coupling): : Warning: L-S coupling means sth. very dif-
ferent from the words “spin-orbit coupling”!!
L-S coupling is used for small or intermediate Z, in this case

|Ĥ1| ≫ |Ĥ2| (nontrivial to link this to “small Z”).

• First consider only Ĥ1. Ĥ commutes with Jtot, Ltot, Stot, see section 2.4.2.

• Determining which quantum numbers J , L, S are possible for a given state is nontrivial due
to Pauli-exclusion principle0. Energy level with given fixed values of L, S is called a term.

Hund’s rules: For ground states:

• the term with the largest possible S for a given configuration has the lowest energy;
energy then goes up as S goes down.

• for a given S, the term with maximum L has the lowest energy.

• So far we considered Ĥ1 only. Now we can add Ĥ2 as perturbation → Fine-structure.

• Now each term with fixed L, S splits into separate J-components, which form a multiplett.

• Landé interval rule:

E(J)− E(J − 1) = Ā× J, within one multiplett, (2.128)

where Ā is a constant. One finds Ā > 0 for less than half filled shells, so that the ground-
state has the lowest allowed J . However, Ā < 0 for more than half filled shells, so that the
ground-state then has the hightest allowed J .

0e.g. see section 4, helium ground-state can be only L = 0, not L = 1
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Example-(2) for section 2.5: L-S coupling and fine-structure for two electrons

J-J coupling: This takes place for large Z (Z ≈ 80), then we have |Ĥ2| ≫ |Ĥ1|.

• First: Ĥc+ Ĥ2 =
∑N

i=1 ĥi → for each electron separately couple spin and angular momentum

to jk, giving orbitals unljmj
(based on Ĵi = L̂i + Ŝi).

• Second: We only then consider Ĥc+ Ĥ2+ Ĥ1 and have to label our many-electron state with
Ĵ =

∑N
i=1 Ĵi, only labelled by J .

Example-(3) for section 2.5: J − J coupling
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Week 6
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

3 Interaction of Atoms with Electromagnetic Radiation

So far we had looked at what is called atomic structure, i.e. their energy levels and electron states,
without any time dependence. Now we will begin to look at dynamics, in particular how to get
from one energy level to another.

3.1 Atomic Transitions

3.1.1 Electromagnetic fields and charged particles

Unlike section 2.2 on static fields, we now want to simultaneously consider time-dependent E and
B fields such as they occur within an electromagnetic wave.

It is often convenient to,

Express fields via potentials

E(r, t) = −∇φ(r, t)− ∂

∂t
A(r, t) φ = Scalar Potential (3.1)

B(r, t) = ∇×A(r, t) A = Vector Potential

Warning: Make sure in the following not to confuse E with an energy or φ with a wave function,
it should be obvious from context what they are!

Potentials are not unique, they can be changed via a
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Gauge Transformation

A → A+∇χ(r, t) φ→→ φ− ∂

∂t
χ(r, t) (3.2)

where, χ(r, t) ∈ IR is any differentiable function

We now use this freedom to choose the

Coulomb Gauge
∇ ·A = 0 and φ = 0. (3.3)

We can show from Maxwell’s equations the

Wave equation

∇2A− 1

c2
∂2A

∂t2
= 0, (3.4)

with the following solution which represents an electro-magnetic wave-packet

A(r, t) =

∫ ∞

0
A0(ω)ϵ cos(k · r − ωt+ δω)dω. (3.5)

here A0(ω) is the spectral Amplitude, ϵ ∈ C3 is the polarisation vector, ω = |k|c as usual
and δω is the phase of frequency component ω.

• For a laser we would have δω = fixed ∀ω, e.g.=0

• For incoherent radiation: δω is random for all ω.

• For a simple spectral distribution, imagine a narrow Gaussian cantered on a central frequency
ω0 such as A0(ω) = Ā exp [−(ω − ω0)

2/σ2ω].

Hamiltonian for charged electron in radiation field

Ĥ =
1

2m
(p̂+ eA)2 − Ze2

(4πϵ)r
(3.6)

Insert p̂ = −iℏ∇ and using ∇ · (A · .....) = A · (∇ · ....) + (∇ · A)︸ ︷︷ ︸
=0

..... we get the
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Atom-Radiation Hamiltonian

Ĥ(t) = − ℏ2

2m
∇2 − Ze2

(4πϵ)r︸ ︷︷ ︸
=Ĥ0

− iℏ
e

m
A(r, t) ·∇+

e2

2m
(A(r, t))2︸ ︷︷ ︸

=Ĥ′(t)

(3.7)

• This is written in the form (1.53) for time dependent perturbation theory

• it seems to depend on the gauge, but gauges just change inconsequential spatial phase of
wavefunction, so any dependence cancels (see book)

• can neglect A2 term (and will do from now) except in very strong fields

3.1.2 Transition Rates

Assume we start in the specific atomic state |ϕa ⟩ = |ϕnalama ⟩. (a is thus a short-hand index for
all quantum numbers na, la, ma).
Solving the TDSE iℏ∂|ψ(t) ⟩/∂t = Ĥ(t)|ψ(t) ⟩ for state vector |ψ(t) ⟩ =

∑
k ck(t)| k ⟩ is in general

too hard. Hence, we use TDPT (see section 1.2.5) in order to find the amplitude for transition
from state a to another state b: |ϕa ⟩ → |ϕb ⟩.

c
(1)
b (t) = (iℏ)−1

∫ t

0
H ′

ba(t
′) exp(iωbat

′)dt′ where, (3.8)

ωba =
(Eb − Ea)

ℏ
(3.9)

We thus need the matrix-element

H ′
ba(t

′) = ⟨ϕb|H ′(t)|ϕa⟩ (3.10)

= −iℏ e
m

∫ ∞

0
dωA0(ω)ϵ · ⟨ϕb|

1

2
(eik·r−iωt+iδω + e−ik·r+iωt−iδω)∇|ϕa⟩ (3.11)

Insert Eq. (3.11) into Eq. (3.8):

c
(1)
b (t) = − e

2m

∫ ∞

0
dωA0(ω)

[
eiδw⟨ϕb|eik·rϵ · ∇|ϕa⟩

∫ t

0
dt′ei(ωba−ω)t′ (3.12)

+e−iδw⟨ϕb|e−ik·rϵ · ∇|ϕa⟩
∫ t

0
dt′ei(ωba+ω)t′

]

We can explicitly solve the time-integrals,

I ≡
∫ t

0
dt′ei(ωba±ω)t′ =

ei(

≡∆ω︷ ︸︸ ︷
ωba ± ω)t − 1

i(ωba ± ω)
(3.13)
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We see,

|I|2 =

∣∣∣∣∣ei(∆ωt′) − 1

i∆ω

∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣e
i(∆ωt′)

2

(
e

i(∆ωt′)
2 − e−

i(∆ωt′)
2

)
i∆ω

∣∣∣∣∣∣∣∣
2

= 4
sin2

(
∆ωt
2

)
∆ω2

= 2F (∆ω), (3.14)

where the function F was defined in section 1.2.5.
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left: Plot of F (∆ω)

We see that the r.h.s. of 3.12 is only significant for ∆ω = ωba ± ω = 0 ⇒ ω = −ωba or ω = +ωba

Now our electromagnetic wave-packet (3.4) contains many different frequencies ω.
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left: For simplicity we as-
sume a wavepacket as on the
left, i.e. with σω ≪ |ωba| and
ω0 > 0.

We can then have two cases:

• Eb > Ea =⇒ ωba > 0 =⇒ ωba − ω term in Eq. (3.12) will contribute

• Eb < Ea =⇒ ωba < 0 =⇒ ωba + ω term in Eq. (3.12) will contribute

These two cases give rise to:

Absorption Eb > Ea:
Neglect second term in Eq. (3.12) and write,

|c(1)b (t)|2 = 1

4

( e
m

)2 ∣∣∣∣∣
∫ ∞

0
dωA0(ω)Mba

[
ei(ωba−ω)t − 1

i(ωba − ω)

]
eiδω

∣∣∣∣∣
2

(3.15)

with,

Matrix Element
Mba(ω) = ⟨ϕb| exp(ik · r)ϵ · ∇|ϕa⟩. (3.16)
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• Note, some other definitions might include the electric charge e into the matrix element.

• We write Mba(ω) since the ME depends on ω through ω = kc.

• To obtain |c(1)b (t)| we have to evaluate
∣∣∫∞

0 dωz(ω)
∣∣2 =

∫∞
0 dω

∫∞
0 dω′z∗(ω)z(ω′) , in which

z∗(ω)z(ω′) contains a term e−i(δw−δw′ ).

• Since we assume random δw, δw′ for (incoherent light) this part is on average zero unless
ω = ω′.

• Using this we can simplify:

∣∣∣c(1)b (t)
∣∣∣2 = 1

4

( e
m

)2 ∫ ∞

0
dω |A0(ω)|2︸ ︷︷ ︸

approx |A0(ω)|2 = |A0(ωba)|2

|Mba(ω)|2
∣∣∣∣∣ei(ωba−ω)t − 1

i(ωba − ω)

∣∣∣∣∣
2

︸ ︷︷ ︸
=2F (t,ω−ωba)sharply peaked around ω = ωba

(3.17)∣∣∣c(1)b (t)
∣∣∣2 = 1

2

( e
m

)2
A2

0(ωba) |Mba(ωba)|2
∫ ∞

−∞︸︷︷︸∫∞
0 ⇒

∫∞
−∞

F (t,∆ω)dω

︸ ︷︷ ︸
=πt

(3.18)

So Probability Pb =
∣∣∣c(1)b (t)

∣∣∣2 to be in state b increases linearly in time, Pb =Wbat, with

Transition rate for absorption (integrated over ω)

Wba =
π

2

e2

m
A2

0(ωba) |Mba(ωba)|2 (3.19)

=
4π2

m2c2
e2

(4πϵ0)

I(ωba)

ω2
ba

|Mba(ωba)|2

• second line uses intensity at ω

I(ω) =
1

2
ϵ0c ω

2A2
0(ω) (3.20)

• so, most importantly, the rate is proportional to light intensity and matrix element |Mba(ωba)|2

• We can remove the intensity dependence of the absorption process by defining the
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left:

Absorption cross section:

σab = ℏωWba/I(ωba) (3.21)

The intensity is I = ℏωNphotonsc

Stimulated Emission Ea > Eb:
Through the same steps as above, we obtain the same expression for the transition rate (see
book).

• If we have a thermal distribution of atoms at temperature T , the number of atoms in state a

or b is given by Na,b ∼ exp
(
−Ea,b

kbT

)
respectively, so there are more atoms in the lower energy

state and it is thus more likely to absorb light (despite the same rates for absorption and
emission)

• The principle of a Laser relies on population inversion, which means Nb > Na even though
Eb > Ea. In that case stimulated emission can become more likely than absorption.

Spontaneous Emission:
In QED, the vector potential for absorption (emission) of a single photon from an N photon state,
has the form:

A = ϵ

[
2[N(ω)+1]ℏ

V ϵ0ω

] 1
2 1

2
exp[i(k · r− ωt+ δω)]. (3.22)

• Importantly the +1 is only there for emission, not for absorption. V is the quantisation
volume.

• One can see that absorption gives the same result as (3.19) [N and V go into the factor I(ω)
].

• However emission would be the same only if we replace N(ω) + 1 −→ N(ω).

• The piece +1 is related to spontaneous emission, it takes place even without any external
field (light), due to vaccuum fluctuations of the electro-magnetic field.

3.2 Selection Rules

Rates depend most critically on matrix-element

Mba(ω) = ⟨ϕb| exp(ik · r)ϵ ·∇|ϕa⟩ where, (3.23)

exp(ik · r) = 1 + (ik · r) + 1

2!
(ik · r)2 + ... (3.24)
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For wavelength much larger than atomic size (r0), we have that |k · r| ≲ 2π r0
λ ≪ 1 at all locations

r with non-vanishing electron density, i.e. ϕa/b(r) ̸= 0. Thus we can replace the exp by 1. This is
called the dipole approximation. Then we define the

Matrix-element in the dipole approximation

MD
ba = ϵ · ⟨ϕb|∇|ϕa⟩ (3.25)
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To see more clearly why we use the name “dipole-approximation”, let us utilize:

p̂ = m
m

ℏ
[
Ĥ0, r̂

]
,with p̂ = −iℏ∇ and ∇ = −m

ℏ2
[
Ĥ0, r

]
(3.26)

⇓

MD
ba = ϵ · −m

ℏ2
⟨ϕb|(Ĥ0r̂− r̂Ĥ0)|ϕa⟩

= −ωbam

ℏ
ϵ · ⟨ϕb|r|ϕa⟩

To reach this we had to also remember Ĥ0 = p̂/2m+V (r̂) and
[
r̂i, p̂j

]
= iℏδij . We call the result

Matrix-Element in length form

MD
ba =

mωba

ℏe
ϵ ·Dba where Dba = ⟨ϕb|(−er̂)|ϕa⟩ (3.27)

with transition dipole moment vector operator Dba.

“Dipole-approximation” thus implies that only the dipole-moment of the electronic charge distri-
bution is taken into account for interactions with the light.

If Dba does not vanish between two states |ϕa ⟩ and |ϕb ⟩, the transition between these states is
called electric dipole allowed (E1). Even if Dba vanishes, Mba might not vanish due to higher order
terms in exp(ik · r), e.g. i(k·r) which gives rise to magnetic dipole (M1) and electric quadrupole(E2)
transitions. These Mba are however much smaller than non-vanishing Dba.

Let us thus now consider whenMba can be nonzero, which depends on the transition dipole moment
Dba and the polarisation vector ϵ. Let us first look at Dba in detail:
Elementary symmetry considerations:

|ϕa ⟩ = |ϕnalama ⟩ =⇒ Rnala(r)Ylama(θ, φ) (3.28)

From Eq. (1.35) we can obtain the transformation law of the wavefunction for r → r′ = −r. In
polar co-ordinates (r, θ, φ→ r, θ → π − θ, φ→ φ+ π ), hence we deduce ϕ(r) → (−1)laϕ(r) where
the

Factor under space inversion (−1)la is called parity of the state |ϕa ⟩.

Thus Dba = −e
∫
d3rϕ∗b(r)rϕa(r) transforms like

Dba → Dba(−1)la+lb+1. (3.29)

where we have used
∫
d3r =

∫
d3(−r). =⇒ We need la+ lb+1 = even, otherwise Dba has to vanish.

=⇒ dipole ME connects only states of opposite parity, independent of ϵ.
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Full Calculation
We can write ϵ ·Dba = (−e)⟨ϕb|ϵ · r|ϕa⟩ and,

ϵ · r =

ϵxϵy
ϵz

r sin θ cosϕr sin θ sinϕ
r cos θ

 = − 1√
2
(ϵx + iϵy)︸ ︷︷ ︸

ϵ1

[
−r sin θe

iφ

√
2

]
︸ ︷︷ ︸

≡r1

+
1√
2
(ϵx − iϵy)︸ ︷︷ ︸

ϵ−1

[
r sin θe−iφ

√
2

]
︸ ︷︷ ︸

≡r−1

+ ϵz︸︷︷︸
ϵ0

r cos θ]︸ ︷︷ ︸
r0

,

(3.30)

where we have used so called “spherical components” rq q ∈ {1, 0,−1} of the vector r.

Then an explicit integration gives:

⟨ϕb|r1|ϕa⟩ ≠ 0 if lb = la ± 1 mb = ma + 1 (3.31)

⟨ϕb|r−1|ϕa⟩ ≠ 0 lb = la ± 1 mb = ma − 1 (3.32)

⟨ϕb|r0|ϕa⟩ ≠ 0 lb = la ± 1 mb = ma (3.33)

Now if only some polarisation components ϵ−1,0,1 are non zero, we can select specific cases, and
obtain:

Dipole Selection rules for absoption: Assuming light propagates along the k̂ direction
(quantisation axis).

linearly polarized light (π transition) lb = la ± 1

only ϵ0 ̸= 0 mb = ma (3.34)

left handed circularly polarized light (σ+ transition), lb = la ± 1

only ϵ1 ̸= 0 mb = ma + 1 (3.35)

right handed circularly polarized light (σ− transition), lb = la ± 1

only ϵ−1 ̸= 0 mb = ma − 1 (3.36)

unpolarized or any other polarization direction lb = la ± 1

random mixture of ϵ or all ϵk ̸= 0 mb = ma,ma ± 1 (3.37)

• σ+ means photon spin || quantisation axis, σ− opposite.

• Rules for emission have swapped signs for mb = ma ± 1.

• If the light is propagating in the −k̂ direction, the allocation between σ± and left- /
right- is swapped.
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3.2.1 More on Spontaneous Emission

Using the QED vector potential A (3.22) we can derive a rate ,

WS
ba =

4π2

m2

(
e2

4πϵ0

)
ℏ

V ωba
|Mba|2 δ(ω − ωba) (3.38)

for the emission of a given photon with energy ω. To find the total spontaneous emission rate, we
integrate over all possible photon states (momenta/ wave-vectors k )

Total spontaneous emission rate

WS,TOT
ba =

4α

3c2
ω3
ba |⟨ϕb|r|ϕa⟩|

2 (3.39)

• we have used the dipole-approximation

• Important is the ω3
ba dependence: decay will always be dominantly to the state of the

lowest energy that is accessible via dipole selection rules.

• The same selection rules apply for absorption, emission, and stimulated emission. =⇒ states
that cannot decay via dipole-allowed transitions have comparatively longer lifetimes. These
are called metastable.

Hydrogen transitions in a magnetic field:
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left: Hydrogen level diagram

• Dipole radiation does not couple to spin,
⇒ all selection rules can be translated to
j-basis (e.g. ∆m = 0 ⇒ ∆mj = 0). It
is a bit more tricky for the j quantum
number (Even though ∆l is not possible,
∆j = 0 is possible, since e.g. (l = 1, s =
1
2 and l = 2, s = 1

2 both have j = 3
2).

• Hydrogen | 2s ⟩ state metastable.

• Transition | 1s ⟩ → | 3s ⟩ can only happen
via E2,M1 or via a two-step process such
as | 1s ⟩ → | 2p ⟩ → | 3s ⟩ (e.g. using two
lasers).

65



Week 7
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

3.3 Rabi-Oscillations

• Consider again the Hamiltonian (3.7) Ĥ(t) = Ĥo + Ĥ
′
(t), neglecting the A2 term. For this

section we choose a simpler vector potential

A(r, t) = A0ϵ cos(k · r− ω0t) (3.40)

In terms of the more complicated expression (3.5), this could be monochromatic/narrow
band laser which thus has δω ≡ 0 and A0(ω) sharply peaked around ω = ω0.

From (3.1), we have
E(r, t) = ω0A0ϵ︸ ︷︷ ︸

E0

sin(k · r− ω0t) (3.41)

for the Electric field.

left: Two level atom with laser coupling
For simplicity consider only two atomic states |ϕa⟩, |ϕb⟩ with ωba ≈ ω0, and introduce the

Detuning ∆ = ω0 − ωba, the difference between laser and atomic transition frequency.

We want to determine the full time evolution of the atom, which we can write as

|ψ(t)⟩ = ca(t)e
− i

ℏEat|ϕa⟩+ cb(t)e
− i

ℏEbt|ϕb⟩, (3.42)

thanks to our restriction to just two atomic states. For writing the TDSE (1.45) we nextly require
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all possible matrix elements of Ĥ with states |ϕa/b ⟩. These are:

⟨ϕa|Ĥ0|ϕa⟩ = Ea, ⟨ϕb|Ĥ0|ϕb⟩ = Eb, (3.43)

⟨ϕb|Ĥ
′
(t)|ϕa⟩

Eq. (3.7)
== −iℏA0e

m
⟨ϕb|ϵ cos(k · r− ω0t) ·∇|ϕa⟩ (3.44)

= −iℏA0e

2m
⟨ϕb|ϵ

(
eik·r︸︷︷︸
≈ 1

e−iω0t + e−ik·r︸ ︷︷ ︸
≈ 1

eiω0t
)
·∇|ϕa⟩ (dipole approximation)

= −iℏA0e

2m

(
e−iω0t + eiω0t

)
ϵ · ⟨ϕb|∇|ϕa⟩

Eq. (3.27)
== −iA0ωba

2

(
e−iω0t + eiω0t

)
ϵ · ⟨ϕb|(−er̂)|ϕa⟩

≈ − i

2

(
e−iω0t + eiω0t

)
E0 · ⟨ϕb|(−er̂)|ϕa⟩︸ ︷︷ ︸

atomic

transition dipole

. (3.45)

Now rewrite TDSE (1.45) as matrix equation

iℏ
(
ċa(t)
ċb(t)

)
=

(
o H̃ab

H̃∗
ab 0

)(
ca(t)
cb(t)

)
(3.46)

where,

H̃ab =
i

2

(
e−iω0t + eiω0t

)
E0 · ⟨ϕb|(−er̂)|ϕa⟩e

i
ℏ (Ea−Eb)t, (3.47)

which we further re-write with two steps:

• We see complex exponentials such as e−i

≈ 2ω0, large︷ ︸︸ ︷
(ω0 + ωba) t and also ei

= ∆, small︷ ︸︸ ︷
(ω0 − ωba) t. We neglec the

fast oscillating exponential, assuming the complex number averages to zero. This is called
the rotating wave approximation.

• We define the

Rabi-frequency as
ℏΩ = ⟨ϕb|d ·E0|ϕa⟩ (3.48)

where, d = −er̂. This describes the strength with which atoms undergo a transition
from |ϕa ⟩ to |ϕb ⟩ and is not to be confused with the laser frequency ω0 or transition
frequency ωab.

We can then re-write our matrix equation:

iℏ
(
ċa(t)
ċb(t)

)
=

(
o iℏΩ2 e

−i∆t

−iℏΩ2 e
i∆t 0

)(
ca(t)
cb(t)

)
, (3.49)

and finally redefine c̃b(t) = ie−i∆tcb(t) and c̃a(t) = ca(t), to reach
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Effective SE and Hamiltonian for two-level atom in dipole and rotating-wave approxi-
mation

i

(
˙̃ca(t)
˙̃cb(t)

)
=

(
0 Ω

2
Ω
2 −∆

)
︸ ︷︷ ︸

Ĥeff

(
c̃a(t)
c̃b(t)

)
. (3.50)

Can solve with standard methods [exercise], using eigensystem of Ĥeff . For the initial condition
c̃a(0) = 1, c̃b(0) = 0, i.e. an atom in state a, we find

c̃a(t) = ei
∆t
2

{
cos

(
tΩeff

2

)
− i

∆

Ωeff
sin

(
tΩeff

2

)}
.

c̃b(t) = −i Ω

Ωeff
ei

∆t
2 sin

(
tΩeff

2

)
. (3.51)

with Ωeff =
√
Ω2 +∆2.

These are the ubiquitous

Rabi-oscillations:

nb(t) = |c̃b(t)|2 =
Ω2

Ω2
eff

sin2
(
Ωeff

2
t

)
(3.52)

where, Ωeff =
√
∆2 +Ω2.

On resonance, ∆ = 0, the atom undergoes oscillations between states |ϕa ⟩ and |ϕb ⟩ with
the Rabi frequency.

• For large detuning ∆ ≫ Ω, the probability to reach the state |ϕb ⟩ remains small: nb(t)
∣∣
max

=
Ω2/Ω2

eff ≈ (Ω/∆)2 ≪ 1. This often in retrospect justifies our initial approximation to consider
only two atomic states, see diagram below.
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left: Rubidium level diagram with laser light at
frequency ω0 that is near-resonant with |1s⟩ →
|2p⟩. This means however that it is far-off reso-
nant with any other transition (e.g. |2s⟩ → |2p⟩).
According to the arguments above other states
than | 2p ⟩ will thus not become populated.

• The system of two laser coupled electronic states in an atom realizes a coherent two-level system
as long as we ignore spontaneous decay. To discuss manipulations of this system, we use

Nomenclature for Rabi pulses: Suppose we apply the laser coupling only for a duration
T . The indicated effects are for resonant pulses with ∆ = 0.

π/2 pulse ⇔ T =
π

2

1

Ω
|Ψ(t = 0) ⟩ = |ϕa ⟩ →

1√
2
(|ϕa ⟩ − i| ϕ̃ ⟩),

π pulse ⇔ T = π
1

Ω
|ϕa ⟩ → −i| ϕ̃b ⟩,

2π pulse ⇔ T = 2π
1

Ω
|ϕa ⟩ → −|ϕa ⟩. (3.53)

Bloch-sphere representation: The most general two-state superposition has the form
|Ψ ⟩ = cos [θ/2]|ϕa ⟩ + eiφ sin [θ/2]|ϕb ⟩ where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π are simply some
parametrisation of the superposition(∗). However we can now also view θ and φ as the usual
angles in spherical polar coordinates. This allows us to visualize any such superposition as
a point on the surface of the Bloch sphere shown below.
From Eq. (3.51) we can also understand the simplest types of time evolution: For a resonant
pulse starting in |ϕa ⟩ with ∆ = 0 we identify θ = tΩ (green arrow). For uncoupled states
Ω = 0 with different energies ∆E ̸= 0, we see φ = ∆E t/2 (red arrow). More generally
evolution due to any unitary operator Û in the space |ϕa/b ⟩ corresponds to a specific rotation
on the Bloch sphere.

left: Visualisation of states and dy-
namics on Bloch sphere.
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Bloch-sphere representation contd.:
The visualisation can be extended to include spontaneous decay (optical Bloch equations).

(∗)Originally |Ψ ⟩ = c1|ϕa ⟩+ c2|ϕb ⟩ with c1, c2 ∈ C contained 4 real numbers. Due to the constraint

1 = |c1|2 + |c2|2 we reduce one of those, one more can be removed since the overall phase of the state

is irrelevant.

3.4 Spectral Lines

3.4.1 Thermal gas of atoms

left: Consider a box with atomic vapor and pho-
tons in equilibrium at temperature T

• Again let’s consider two atomic levels |ϕa/b ⟩ only, with Eb > Ea. In thermal equilibrium
atoms are found in both states with some probablility, let the number of atoms in a be
Na. Photons can thus take part in a statistical mix of stimulated emission, absorption and
spontaneous emission.

• The number of atoms making the transition a→ b per unit time is3

Ṅba =BbaNaρ(ωba), (3.54)

where Bba is the Einstein coefficient for absorption and ρ(ωba) is the energy density in the
radiation field (of the photons) at frequency ωba.

• For the reverse transition

Ṅab =AabNb +BabNbρ(ωba), (3.55)

where Aab is the Einstein coefficient for spontaneous emission
and Bab the Einstein coefficient for stimulated emission.

• In thermal equilibrium we must have Ṅab = Ṅba and also

Na

Nb
=exp [−(Ea − Eb)/(kBT )] = exp [ℏωba/(kBT )]. (3.56)

3It is logical that Ṅba must be ∼ Na. We know from Eq. (3.19) that it must be ∼ ρ(ωba). Finally we just give the
remaining proportionality constant the name Bba.
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We can use these relations to get an expression for the radiation density

ρ(ωba) =
Aab

Bba exp [ℏωba/(kBT )]−Bab
(3.57)

By requiring that (3.57) is identical with Planck’s law from thermodynamics, we can deduce
that

Bba = Bab, (3.58)

Aab =

(
ℏω3

ba

πc3

)
Bab. (3.59)

This argument, due to Einstein, gives some link between stimulated and spontaneous emission
without even solving the atomic physics problem. The result is consistent with the detailed
calculations in section 3.1.2. There, from Eq. (3.19) we can write Bba = Wba/[I(ωba)/c] ∼
|Mba|2, where the factor in square brackets is the energy density.

From Eq. (3.57) we also infer that there are photons in the box at equilibrium, at all frequencies
belonging to any transition between two states a, b. This would look like:

top: From the picture of a gas in the box in thermal equilibrium above, we would also expect
that in the radiation spectrum, all transitions frequencies for allowed transitions betwen atomic
levels are present. Their amplitude (“brightness”) will be determined by |Mba|2. For a tabulation
of experimental data on allowed transition frequencies and their strength (matrix elements), see
www.nist.gov/pml/atomic-spectra-database .

• The remaining question regarding a spectrum such as above is, what sets the width and shape
of the spectral lines?

3.4.2 Line shapes

left: As discussed in section 3.1.2 atomic excited
states decay via spontaneous emission
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A calculation of the corresponding decay rate, based on Eq. (3.22) and (3.39) gives for example a

spontaneous decay rate Γ2p→1s =
(
2
3

)8 mα5Z4c2

ℏ = 6.27108Z4s−1. Does the emission really only go
into the mode with the resonance frequency ω = ωab?

A rigorous QED approach: would be to calculate the amplitude for the pro-
cess | b,no photons ⟩ → | a, one photon with frequency ω, polarisation ϵ and momentum p ⟩,
then integrate over all possible ϵ, p to reach the rate as a function of ω.

We follow a simpler, semi-classical approach. Assume a single atom in an excited state |ϕb ⟩ starts
emitting light at time t, while returning to the ground-state |ϕa ⟩ with a rate Γ. Ignoring the vector
character of the light, the emitted field strength for t ≥ 0 will look like:

E(t) = E0

(
e[−Γt/2]eiωbat + c.c

)
, (3.60)

while E(t) = 0 for t < 0. We took into account that the field intensity must be proportional to the
probability of the atom actually remaining in |ϕb ⟩, which drops as e[−Γt].

Now we do the Fourier transform of Eq. (3.60) to find the frequency spectrum via

E(t) =
1√
2π

∫ ∞

−∞
c(ω)eiωtdω, (3.61)

c(ω) =
1√
2π

∫ ∞

−∞
E(t)e−iωtdt, (3.62)

and reach

c(ω) = − E0√
2π

(
1

i(ωba − ω)− Γ/2
+

1

i(−ωba − ω)− Γ/2

)
. (3.63)

The second term is typically much smaller and can hence be neglected. The overall frequency
spectrum of spontaneously emitted light thus follows the

Natural line profile, also called Lorentzian frequency spectrum:

|c(ω)|2 = E2
0

2π

1

(ωba − ω)2 + (Γ/2)2
. (3.64)

top: Sketch of natural line profile Eq. (3.64). We also define the
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Life-time of the upper state:

τ = 1/Γ. (3.65)

• Note, for quite highly excited states a large number of spontaneous decay channels k are often
possible, each with rate Γk. In that case define the total decay rate as Γ =

∑
k Γk, then use

Eq. (3.65).

• An intuitive picture for the origin of the frequency width is that the energy of a decaying
state is uncertain by ∆E according to the energy time uncertainty relation ∆E τ ∼ ℏ.

Measured line-profiles are frequently much broader and differently shaped than Eq. (3.64) due to
the following effects:

• Pressure broadening: Also atomic collisions can cause a transition b → a. If the collision
rate exceeds the spontaneous decay rate, this can significantly shorten the life-time to → τcoll.
In this case the spectral line remains of Lorentzian shape, but with a width Γ ∼ 1/τcoll. This
effect becomes stronger with increasing gas pressure.

• Doppler broadening: Atoms of mass M move relative to the lab frame with some random
velocity v. The associated Doppler shift ω′ = ω−v ·k is then also randomly distributed. The
distribution of velocities follows the Maxwell-Boltzmann form ∼ exp [−Mv2/(2kBT )], which
is a Gaussian in |v|. The Doppler effect can thus broaden spectral lines from a gas and turn
their shape into a Gaussian for high temperatures.

In the general case we have a mixture of Lorentzian and Gaussian shapes, called a Voigt profile.

3.4.3 Oscillator strength and sum rules

A useful concept to do with a spectral line due to a transition from a to k is their

Oscillator strength

fka =
2mωka

3ℏ
|⟨ϕb |r̂|ϕa ⟩|2 (3.66)

• These fulfill
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Thomas-Reiche-Kuhn Sum rule ∑
k

fka = 1, (3.67)

where the sum extends over all other states than a, including the continuum (see next
section).

• The rule is useful to assess the importance of a certain transition. Knowing the matrix element
for one transition we can infer fka. If this is close to one, we know from Eq. (3.67) that there
are not going to be a lot of other important (strong) transitions.

• For proof see BJ book.

3.5 The photo-electric effect, photo ionization

Our treatment of atoms and atom light interaction so far only dealt with atomic bound states |ϕa ⟩,
Eb < 0. We can also find solutions of the Hydrogen TISE (1.30) with Eb > 0. These are called

Atomic continuum states, and fulfill(
− ℏ2

2m
∇2

r −
Ze2

4πϵ0

1

|r|

)
Ψb(kf , r) =

ℏ2k2
f

2m︸ ︷︷ ︸
=Ef>0

Ψb(kf , r). (3.68)

• Continuum states Ψb(kf , r) represent an electron that is not bound to the nucleus, so far
away from the nucleus the solution behaves like a plane-wave ∼ exp [ikf · r]. Close to the
nucleus, the plane-wave is modified since it feels the nuclear Coulomb potential.

• Ionisation by absorption of a photon can now be viewed as a transition between a bound and
a continuum state.

• For Ef ≫ |Ea| we can even approximate Ψb(kf , r) ∼ exp [ikf · r] near the nucleus, and use
our earlier result

σ =
4π2αℏ2

m

∫
d3kf

1

ωka
|Mka(kf , ωfa)|2δ(ω − ωka). (3.69)

• This is just Eq. (3.21) and Eq. (3.19) for the absorption cross section with slight re-arrangements
of constants, adding δ(ω − ωka), which was implicitly assumed in Eq. (3.19) and integrating
over all ejected electron momenta kf to get a total cross section.

• Note the matrix element

Mka =
1

(2π)3/2

∫
d3r exp [−ikfr]︸ ︷︷ ︸

from Ψb

exp [ikr]︸ ︷︷ ︸
from light

ϵ ·∇Ψa(r) (3.70)

depends on kf , including its direction.
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• We can re-write (3.69) using integration by parts to reach

Mka =
1

(2π)3/2
(−iϵ · (k− kf ))

∫
d3r exp [−i(k− kf )r]Ψa(r). (3.71)

We now recognize that it is proportional to the 3D Fourier-Transform Ψ̃a(k− kf ) of Ψa(r).

top: Specific geometry for calculation of differential photo-ionization
cross-section. The x-axis is chosen along the light polarisation.

• Detailed calculation see BJ, using the geometry in the figure, one finds:

Differential cross-section for photo-ionization:

dσ

dΩ
= 32α

ℏ
m

k3f
ω

Z5a30 cos
2 [γ]

(Z2 + κ2a20)
4
, (3.72)

where Ω = {θ, φ} now corresponds to the ejection direction of the electron, κ = |κ|,
κ = k− kf

• κ depends on θ.

• We see that electron ejection is most likely for γ = 0, π, where γ is the angle between the
ejection direction and the incoming light linear polarisation axis. Hence the electron is ejected
preferentially along the direction of E-field polarisation.

•

left: From Eq. (3.71) we can see that laser wavelength has
to match size /oscillation scales of the wavefunction a. The
fourier-transform of the example wavefunction shown on the
left Ψ̃a(k), will have its main contributions at k = 2π/λ.

aFor this argument assume |k− kf | ≈ O(|k|), other cases are sup-
pressed since γ ≈ 0, π/2

• For this reason, X-rays are most likely to photo-ionize tightly bound electrons from the inner
shells of heavy atom (their wavefunction has smallest “λ”, matching X-ray wavelengths).
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3.6 Scattering of radiation by atoms

• So far we looked at processes where an atom makes a transition (b to a) and a photon is
created, or the reverse using first order perturbation theory.

• Combining these in 2nd order perturbation theory yields the physics of light scattering.

We can distinguish two different possibilities:

Elastic Scattering (Rayleigh Scattering)

• Both processes can occur in a resonant or non-resonant version, depending on wether ω = ωna

for two states a, n. They happen regardless of whether this is the case.

76



3.6.1 Rayleigh Scattering

The initial step (1), is a quantum mechanical amplitude for the atom to make the | a ⟩ → |n ⟩
transition. Afterwards/ during the process he atom will generically be in a superposition state

|ψ ⟩ = ca| a ⟩+ cn|n ⟩

Such a superposition state in general corresponds to an oscillating dipole. Self-test: Why is the
dipole oscillating?.

top: Sketch of oscillating charge distribution in atomic superposition states

• In turn, the oscillating dipole excited by the initial absorption of the incoming photon now
emits radiation → step 2, re-emission = scattering of the photon.

• This intuitive picture motivates a

Classical Treatment:

Electron as driven oscillator
ẍ+ γẋ+ ω2

0x = − e

m
E(t), (3.73)

where E(t) = E0 exp−iωt is the oscillating electric field of the incoming light, acting on the
electron.

To retain connection with our quantum state picture above, we set ω0 = ωna and γ = Γ (decay
rate, see Eq. (3.64)). The steady solution without initial transients is:

x(t) =
−e/m

ω2
0 − iγω − ω2

E0e
−iωt (3.74)

The resulting oscillating dipole moment of the electron is p(t) = −e x(t). From electrodynamics,
we know the power radiated by an oscillating dipole into a certain spherical angle dΩ is

left:
dP

dΩ
=

c

8π
k4|p0|2 sin2 θ, (3.75)

77



when the dipole moment is p(t) = p0 exp [−iωt], ω = ck and θ is the angle to the dipole axis, see
sketch.

Combining Eq. (3.74) and Eq. (3.75) we reach the

Rayleigh Scattering formula

dP

dΩ
∼
(
e

m

)2 ω4

(ω2 − ω2
0)

2 + γ2ω2
sin2 θ (3.76)

• For ω0 >> ω this is ∼
(

ω
ω0

)4
• This explains blue sky and red sunset via Rayleigh scattering off photons from atoms/-
molecules in the atmosphere: optical wavelengths λ ∼ 400− 800nm here ω0 >> ω is true for
N2, O2

Blue 450nm Red 650nm =⇒ Blue scattered 4.3 times more effectively

• Dipole direction p0 wil be given by incoming polarisation vector ϵ =⇒ θ is with respect to
polarization of incoming light.

Sketch of quantum treatment:

Second order time-dependent perturbation theory version of Eq. (1.57) (see QM textbook) is:

c
(2)
b (t) = − 1

ℏ2
∑
n

∫ t

0
dt′
∫ t′

0
dt′′eiωbnt

′
eωnat′′ H ′

bn(t
′)H ′

na(t
′′)︸ ︷︷ ︸

see Eq. (3.11)

(3.77)

Note, time-ordering 0 < t
′′
< t

′
< t

We can follow similar steps (but using QED) as for absorption cross-section (3.19) to find

Differential cross-section for photon scattering into (θ, ϕ)

dσ

dΩ
= r0ωω

′3

(
m2

ℏ2e4

) ∣∣∣∣∣∑
n

(ϵ
′ ·Dbn)(ϵ ·Dna)

ωna − ω
+

(ϵ ·Dbn)(ϵ
′ ·Dna)

ωna + ω′

∣∣∣∣∣
2

. (3.78)

• This describes both, Raman and Rayleigh scattering.

• Angular dependence of scattering is hidden in ϵ ·Dna.

• ϵ is the polarisation of the incoming photon, ϵ
′
of the outgoing one.
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To check this with our earlier classical result on Rayleigh scattering, we assume that the only
contributing intermediate state |n ⟩ is some p-state as in the picture above. We can set ϵ̂ ∥ k̂ along
the z-axis as usual. Then one finds D̂na ∥ k̂ for the reasons graphically shown in the picture. Let
also ω = ω

′
and assume ωna >> ω as before.

left: We finally know ϵ′ · Dna ∼ sin(θ) from the diagram
involving incoming and outgoing polarisation vectors.

With all these assumptions the cross-section (3.78) scales like

dσ

dΩ
∼
(
ω

ωna

)4

sin2 θ (3.79)

which reproduces the main features of the classical result.

We will take a closer look on Raman scattering later, in the context of molecules.

3.7 Interaction of many-electron atoms with radiation

All our discussion so far in chapter 3 generalizes from hydrogenic atoms to N -electron atoms if we
replace the earlier matrix elements, e.g. MD

bd instead by

Dipole Matrix element for many electrons

MD
ba =

mωba

ℏe
ϵ ·

N∑
k=1

⟨ϕb |(−erk)|ϕa ⟩ (3.80)

where rk is the coordinate of electron number k.

• To compare with Eq. (3.27).

• Since electrons are indistinguishable, we can instead also write

MD
ba =

Nmωba

ℏe
ϵ · ⟨ϕb |(−er1)|ϕa ⟩ (3.81)

It turns out that also the selection rules generalize quite straightforwardly:

Selection rules for many electron atoms:

∆J = 0,±1 (No J = 0 → J
′
= 0), ∆MJ = 0,±1 (3.82)

where J now pertains to the total angular momentum of all electrons.
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4 Molecules

4.1 General Molecular Structure

• heavy atoms = one nucleus, many electrons

• molecule = at least two nuclei, many electrons

Complication: All e− in an atom behave a bit ”hydrogenic”. No longer true in molecules.

From uncertainty relation, electronic energies Eelec ∼ ℏ2
ma20

∼ eV as in atoms 4. We shall see

Vibrational energy Evib ∼
(m
M

) 1
2
Eelec Rotational energy Erot ∼

(m
M

)
Eelec

where, m = electron mass and M = nuclear mass (see Assignment 4, 2017).

Since m
M ≪ 1, we obtain the energy scale hierarchy Eelec ≫ Evib ≫ Erot. The fact that m

M ≪ 1 also
leads to the most essential approximation technique in molecular physics, see next section.

4Into ∆x∆p = ℏ insert ∆x ≈ a0 (Bohr radius), then use Eelec ≈ ∆p2/(2m)
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4.2 Born-Oppenheimer separation

We discuss di-atomic molecules to save notation, larger molecules can be treated the same. Con-
sider N electrons

e.g., N=4

left: Sketch of co-ordinate
system for generic di-atomic
molecule. We choose the ori-
gin as the centre of mass of
the nuclei A, B and employ
the separation vector R =
RB −RA.

Molecular Schrödinger equation:

[T̂n + T̂e + V̂ ]ψ(R; r1, r2, ..., rN ) = Eψ(R; r1, r2, ..., rN ) (4.1)

Nuclear Kinetic energy T̂n = − ℏ2

2µ
∇2

R, where µ =
MAMB

MA +MB

Electron Kinetic energy T̂e =

N∑
i=1

(
− ℏ2

2m
∇2

ri

)
Potential Energy

V̂ = −
N∑
i=1

ZAe
2

(4πϵ0)|ri −RA|
−

N∑
i=1

ZBe
2

(4πϵ0)|ri −RB|
+

N∑
i,j=1
i<j

e2

(4πϵ0)|ri − rj |
+

ZAZBe
2

(4πϵ0)|R|

• Nuclei are ∼ O(105) heavier than electrons. They move much slower. Hence, let’s first
consider an equation for electrons only.
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Electronic Wave Equation / Schrödinger equation for the electrons only :

[T̂e + V̂ (R)]︸ ︷︷ ︸
Ĥel

ϕq(R; r1, r2, ..., rN ) = Eq(R)ϕq(R; r1, r2, ..., rN ) (4.2)

• Here, R is just viewed as a parameter in the Hamiltonian, since there are no derivatives with
respect to it. Thus Eq. (4.2) is not a PDE in terms of R.

• Since Ĥel depends parametrically on R, so do its eigenfunctions and energies.

• These electronic wave functions are a complete orthonormal basis for each choice of R ⇒

can write total wavefunction as

Ψ(R; r1, r2, ..., rN ) =
∑
q

Fq(R)ϕq(R; r1, r2, ..., rN ). (4.3)

The Fq(R) are called the nuclear wave function. Read them as: ”|Fq(R)|2d3R” is the probability
to find the nuclei at R when electrons are in the state q. Now, insert (4.3) into (4.1). We find
(using (4.2)):∑
q

{
T̂n[Fq(R)ϕq(R; r1, r2, ..., rN )] + Eq(R)Fq(R)ϕq(R; r1, r2, ..., rN )− EFq(R)ϕq(R; r1, r2, ..., rN )

}
= 0.

(4.4)

In the first term (kinetic energy) ∇2
R acts on both Fq(R) and Φq(R) so we need the product rule:

T̂n(FqΦq) = − ℏ2

2µ
[(∇2

RFq)ϕq + 2(∇RFq ·∇Rϕq) + Fq(∇2
RΦq)] (4.5)

Finally we project (4.4) onto ϕs by performing the integration∫
dr1dr2dr3...drNϕ

∗
s(R; r1, r2, ..., rN )...

on both sides of Eq. (4.4) ⇒

Molecular Schrödinger equation in Born-Oppenheimer separation[
− ℏ2

2µ
∇2

R + ES(R)

]
FS(R) +

∑
q

Dsq(R)Fq(R) = E Fs(R) (4.6)

where we use the non-adiabatic coupling operator,

Dsq(R) = − ℏ2

2µ
(⟨ϕs |∇2

R|ϕq ⟩+ 2⟨ϕs |∇R|ϕq ⟩ ·∇R...) (4.7)
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• Eq. (4.6) is am exact rewriting of Eq. (4.1). As such it is equally hard to solve.

• However, we can frequently neglect allDsq. This is called the Born-Oppenheimer approximation.
This allows a separate treatment of the electrons and the nuclei and often the use of a single
index ”q”.

• ES(R) is called a Born-Oppenheimer (potential energy) surface.

• BO approximation is often good since electrons are much lighter than nuclei me << µ. It fails
however, whenever Es1(R) = Es2(R) regardless of masses, which does happen in quite a lot of molecules.

Example for section 4.2: Molecular Born-Oppenheimer surfaces

Lines are the potentials for nuclei only, which are created by the electrons.

The next questions are now:

• Which nuclear energy surfaces Es(R) do we obtain from Eq. (4.2)?
↪→ Electronic structure of molecules, see section 4.3.

• What dynamics can nuclei undergo on the surfaces Es(R)?
↪→ Molecular Rotations and vibrations, see section 4.6.
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4.3 Electronic Structure of Molecules

We begin with the simplest molecule which is H+
2 (Hydrogen molecular ion).

Diagram

At A, B we have the two pro-
tons (nuclei), with separation
vector R = RB − RA as be-
fore.

H+
2 Hamiltonian in atomic units: (to be used in the electronic SE (4.2))

Ĥel = −1

2
∇2

r −
1

rA
− 1

rB
+

1

R
rA = r+

R

2
(4.8)

rB = r− R

2

We can first try to find eigen-states using Linear Combination of Atomic Orbitals (LCAO). Con-
sider R→ ∞. Physically an electron near one of the nuclei should be in a hydrogen state, unper-
turbed by the far away other proton. Using the Hydrogen states from ϕnlm from Eq. (1.35) we can
write this e.g. as

ϕ(R; r)
see Eq. (4.2)

= ϕnlm(rA)
e.g. nlm → 100

. (4.9)

The wave function (4.9) represents the electron attached to nucleus A only, unperturbed by the
presence of far-away B. ⇒ However, recall our discussion of symmetries in the Helium Hamiltonian,
section 2.3: There the wave-function had to be symmetric or antisymmetric under swap of the two
electrons, because the Hamiltonian was symmetric under this swap.
Now, (4.8) is symmetric under RA ↔ RB ⇒ rA ↔ rB. So reasonable ground state wave-functions
have to again by symmetric or anti-symmetric under the swap RA ↔ RB.
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gerade (even) wavefunction (molecular orbital)

ϕg(R; r) =
1√
2
(ϕ1s(rA) + ϕ1s(rB)) (4.10)

ungerade (odd) wavefunction

ϕu(R; r) =
1√
2
(ϕ1s(rA)− ϕ1s(rB))

The reasoning above is strictly true for R→ ∞ only, but we can now use Eq. (4.10) as trial function
for the variational principle (2.89). We can use that to get an upper bound on the ground-state
energy of the molecule

E0 ≤ Eg,u[R] where Eg,u(R) =
⟨ϕg,u|Ĥse|ϕg,v⟩
⟨ϕg,u|ϕg,u⟩

(4.11)

Can evaluate the energy functional Eg,v(R)(see text book), in particular now also taking into ac-
count the electron-electron repulsion in Eq. (4.8), which has been ignored in setting up the Ansatz
(4.10). We get:

• ϕg is bonding

• ϕu is anti-bonding (re-
pulsive)

• These are the lowest 2
molecular states, many
more exist, based on
ϕ2s, ϕ2p1 ...etc

We can understand these two cases graphically, by drawing the states (their electron charge density):
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It is apparent that in the bonding (gerade) state, electrons have an increased likelihood to be found
exactly in between the nuclei. Their negative charge can then “glue“ the two positive charges of
the nuclei together.
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4.3.1 Hund-Mulliken Molecular Orbital (MO) Method

The next simplest molecule is H2.
First let us define the co-ordinates now used:

We can then proceed by combining two molecular orbitals as in Eq. (4.10). As in Eq. (2.72), we
again have spin wavefunctions:

|χS,mS
⟩ =



1√
2
(| ↑↓⟩ − | ↓↑⟩) S = 0, mS = 0

| ↑↑⟩ mS = 1
1√
2
(| ↑↓⟩+ | ↓↑⟩) S = 1, mS = 0

| ↓↓⟩ mS = -1

We need to combine this with spatial wavefunctions as in (4.10) such that the total wavefunction
is anti-symmetric under 1↔2

We shall use shorthand the ϕg (1) = ϕg (R; r1)
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Two-electron states for H2 (molecular electronic states) Out of the gerade and
ungerade orbitals (4.10), we can form four combinations for two-electron states:

1Σ+
g ΦA (r1, r2) = ϕg (1)ϕg (2) |χ00⟩ (4.12)

1Σ+
g ΦB (r1, r2) = ϕu (1)ϕu (2) |χ00⟩ (4.13)

1Σ+
u ΦC (r1, r2) =

1√
2
[ϕg (1)ϕu (2) + ϕg (2)ϕu (1)] |χ00⟩ (4.14)

3Σ+
u ΦD (r1, r2) =

1√
2
[ϕg (1)ϕu (2)− ϕg (2)ϕu (1)] |χ1mS ⟩ with ms = 0,±1 (4.15)

• Note: We are considering the lowest molecular electronic states only [(4.10) based on electronic
ground states ϕ1s of each separate atom].

• All states are totally antisymmetric under exchange of positions r1 ↔ r2 and have fixed
symmetry (g or u) under RA ↔ RB, which is shown as subscript in the green spectroscopic
label on the left (the rest of the label is defined only in section 4.4).

• Based on the example insection 4.2, the electronic state ΦA will have lowest energy

• We can again calculate E(R) as in section 4.2 to get BO-surfaces

Let’s look in more detail at ΦA in (4.15) and insert the details of single electron orbitals from (4.10)
We obtain

ΦA = Φcov
A +Φion

A , (4.16)

where the first part represents covalent bonding

Φcov
A =

1

2
[ϕ1S (rA1)ϕ1S (rB2) + ϕ1S (rB1)ϕ1S (rA2)] |χ00⟩. (4.17)

We see that this essentially involves the sharing of electrons. The second part,

Φion
A =

1

2
[ϕ1S (rA1)ϕ1S (rA2) + ϕ1S (rB1)ϕ1S (rB2)] |χ00⟩, (4.18)

is responsible for ionic bonding to do with an unequal division of charge, see sketch below.

88



• As in our initial discussion of Helium, the lowest order wave functions discussed here neglect
e− − e− interactions.

They can be improved via variational principle, e.g. using the Ansatz

Φtrial = ΦA + λΦB → use variational principle to find best value of λ (4.19)

If this calculation is performed, the fraction of ionic binding in H2 turns out as only 0.2
(compared to 0.5 in (4.16)).

• Instead of first assembling molecular orbitals (MOs) (4.10) out of atomic orbitals and then
from MOs create molecular electronic states (4.15), we can also skip (4.10) and directly write
a guess or variational Ansatz for molecular electronic states in terms of the original atomic
orbitals.
↪→ This is called Heitler - London / Valence Bond Method.

• Some even more sophisticated methods for the calculation of molecular electronic states are
the Hartree-Fock and DFT methods that we already discussed for atoms in section 2.4.4.

4.4 Symmetries in homo-nuclear di-atomic molecules

We are anyway focussing on this type of molecule. Here we list all symmetries and resulting
classifications of electronic states.
Diagram:

• – Earlier around an atomic nucleus we had a spherical symmetry and could classify states
via the operators Ĥ, L̂2, L̂z

– Here, we can only use the cylindrical symmetry around the z axis, indicated by the green
circular arrow above. We thus classify states via Ĥ and L̂z only.

– Thus all electronic states of a di-atomic molecule satisfy L̂z|ϕs ⟩ = ℏML|ϕs ⟩ = ±ℏΛ|ϕs ⟩, where we define Λ =
|ML| = 0, 1, 2, ...... According to this, molecular states are then given the code letters
shown in green, and a single electron in a molecular orbital the ones in red

Code Letters: Λ = 0, 1, 2, 3
Σ Π ∆ Φ

(= Greek Capital for S P D F...)
(For single e− in MO σ π δ ϕ)
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• – The system is also symmetric under reflection off x, z plane, shown as green shade above:
This swaps ML → −ML for fixed Λ ⇒ each quantum number Λ is two-fold degenarate.
This is called (Λ-doubling)

– For a molecular state with label Σ we thus write Σ+, (Σ−) for symmetric (antisymmetric)
states under the swap y → −y.

• Finally the system is also symmetric under reflection through the origin shown as • (point-reflection).
For this symmetry the feature homo-nuclear is crucial. ⇒ The wavefunction will also be sym-
metric or anti-symmetric under this operation ⇒ This gives rise to the g(gerade), u(ungerade)
labels, as before in section 4.3.

All this information is summarized in

Molecular State Label:

Examples of these labels were found in (4.15) before. (4.20)

Example for section 4.4: Li2 Molecule:

• Li Z=3 ⇒ We have total of 6 electrons to distribute

For atoms we were following: ▶ Construct atomic states similar to Hydrogen
▶ Understand Differences to Hydrogen
▶ Fill from low to high energy, respecting the Pauli principle.

For Molecules: ▶ Construct Molecular states based on atoms (4.15)
▶ Understand differences compared to atoms (Eg <Eu)
▶ Fill from low to high energy, respecting the Pauli principle
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:

• We can write an electron configuration of molecules, similar to what we did for atoms

Li2 :
1Σ+

g = (1sσg)
2 (1sσu)

2 (2sσg)
2 (4.21)

4.5 More General overview of chemical bonds

• Mathematically all bonds arise the same manner: We solve Eq. (4.2) (the electronic Schrödinger
equation) as a function of static nuclear nuclear co-ordinates R. If some resulting Born-
Oppenheimer surface Eq(R) has a local minimum, there may be a bond, depending on its
depth.

• However the physical interpretation for the reason of the bond may vary, depending on the
underlying electronic quantum state ϕq(R; r1, . . . , rn).

Chemical bonds:

Covalent:

left: Nuclei share electrons: → larger negative charge density
in the spatial area between the nuclei. As in the sketch this is
typically important when R < ra + rb, where R is the inter-
nuclear distance and ra/b would be the size of the individual
unbound atoms. In that case the electron clouds of individual
atoms strongly overlapp.
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Ionic:

left: Nuclei transfer electrons from one to another→ this causes
excess positive charge ⊕ on one of them, and excess negative
charge ⊖ on the other. Overall we obtain the usual Coulomb at-
traction with V ∼ 1/R. This becomes more important at slightly
larger separations than for covalent bonding, when R ≥ ra+ rb.

Van-der Waals:

left: Essentially individual atoms can polarise each other, the
resulting dipole moments (their fluctuations) then attract, which
gives rise to a potential V ∼ 1/R6. This will be dominant at
even larger distances R≫ ra + rb, but can also lead to binding.

Some more peculiar bond types:

• left: Hydrogen bonding [≈ charge reverse of a covalent
bond], e.g. DNA strands bind like this

•

left: s-p hybrid molecular orbital = |s⟩ + |p⟩. As
first sketched in section 3.6.1, in such a superposition the
electron on one atom is shifted into a specific direction.
Many such orbitals can be nicely formed in Carbon:
(1s)2 (2s)2 (2p)2 → (1s)2 (2sp)4.

left: Carbon can thus shift its four valence electron into
four specific directions, for example in Methane
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4.6 Molecular ro-vibronic states

We now know how to calculate/ construct the molecular electronic energies/Born- Oppenheimer (BO) surfaces
Eq(R) from Eq. (4.2). Insertion into (4.6) then gives us the motional eigen states of the nuclei.

In BO-approximation (where we take only a single surface s in (4.6) ) we have:[
− ℏ2

2µ
∇R + Es(R)

]
Fs(R) = EFs(R). (4.22)

For a di-atomic molecule electronic energies can only depend on the distance between nuclei
|R|, not on the orientation of the inter-nuclear axis (direction of R), hence Es(R) = Es(|R|) →
mathematically (4.22) is a spherically symmetric Schrödinger equation (like e.g., Hydrogen).

Thus as for Hydrogen we can write the solution as a product of an angular part and a radial part
(compare Eq. (1.35)), where the angles are defined in the sketch below.

Fs(R) =
Fs
νK

R
HKmK

(θ, φ). (4.23)

We know due to spherical symmetry that
the angular part is given by spherical
harmonics:

HKmK
(θ, φ) =

Spherical harmonics︷ ︸︸ ︷
YKmK

(θ, φ).

Now we insert ((4.23)) into ((4.22)) and use the 3D Laplacian, following all the same steps as for
Hydrogen. We obtain again a Radial Schrödinger equation:[

− ℏ2

2µ

(
d2

dR2
− K(K + 1)

R2︸ ︷︷ ︸
∗

)
+
(
Es(R)− Es,ν,K︸ ︷︷ ︸

=E earlier

)]
Fs
νK(R) = 0. (4.24)

• The electronic energies Es(R) take the role of the “potential energy” for the nuclei.
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• If K > 0, the molecule is rotating about the center-point . ∗ represents the centrifugal
force due to this.

• The detailed shape of Es(R) is calculated as discussed in section 4.3.

Let us consider the rough potential energy shape found in section 4.3:

The binding BO-surfaces usually have one well-
defined local minimum.

We can Taylor expand Es(R) around this

minimum R
(s)
0 , the expansion gives the red

dashed line.

Es(R) = Es(R
(s)
0 ) +

1

2
ks(R−R

(s)
0 )2

where,

ks =
d2Es(R)

dR2

∣∣∣
R=R

(s)
0

.

(From now, write R
(s)
0 = R0.)

• Since usually it turns out that also |Fs
νk(R)|2 is non-zero only close to this minimum, we can

write + ℏ2
2µ

K(K+1)
R2 → ℏ2

2µ
K(K+1)

R2
0

in Eq. (4.24).

We call this quantity the

Rotational energy

Erot =
ℏ2

2µR2
0

K(K + 1) =
ℏ2

2I
K(K + 1), (4.25)

where I = µR2
0 is the moment of inertia.

We can now rewrite Eq. (4.24) as harmonic oscillator TISE[
− ℏ2

2µ

d2

dR2
+

1

2
ks(R−R0)

2 − Eν

]
Fs
ν (R) = 0, (4.26)

where, we used the definitions
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Total energy The total energy of the molecular state Es,ν,k can be decomposed into several
contribution:

Es,ν,K =

electronic energy︷ ︸︸ ︷
Es(R0) +

vibrational energy︷︸︸︷
Eν +

rotational energy︷ ︸︸ ︷
Erot,K . (4.27)

Here s : electronic state label

ν : vibrational quantum number

K : rotational quantum number

R0 : equilibrium position.

Vibrational energy as usual

Eν = ℏω0

(
ν +

1

2

)
ν = 0, 1, 2, ... (4.28)

where, ω0 =
√
ks/µ.

• There can be deviations from Eq. (4.28) due to an anharmonicity of Es(R) at larger vibrational
quantum numbers ν, see sketch above.

• Fs
ν (R)
R HKmK

(θ, φ) is called a ro-vibronic state.

• Di-atomic molecules can also rotate around the inter nuclear axis : This is represented
within the electronic wavefunction Φ(R, r1, r2, ...) as non-zero Λ (see section 4.4).

• Rotations usually weakly couple to vibrations: Fast rotation increases centrifugal potential
∼ K(K+1)/R2 and can thus cause vibrations. This effect drops out if we can replace R→ R0

in Eq. (4.24). If we include it, we have to keep the centrifugal term in Eq. (4.26) and thus
also the vibrational part of the wave functions continues to depend on the rotational quantum
number K: Fs

ν (R) → Fs
νK(R).
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Example for section 4.6: Energy-levels of diatomic molecules:

Now we know all the quantum numbers that should be allocated for molecular states (mainly
focussing on di-atomic molecules for simplicity). Just as with atoms, it is frequently convenient to
group all quantum numbers into one collective index label a = {s, ν,K,mK}. This thus includes
the electronic state label s (see section 4.3), the vibrational quantum number ν, the rotational
quantum number K and the z-component of rotational angular momentum (in the lab frame) mK .
Written as a wave function, the label a represents

Complete molecular state: e.g., Ψa = Φs(R, r1, r2, ..., rN )
Fs
ν (R)

R
HKmK

(θ, φ)︸ ︷︷ ︸
=Fs(R)

.

4.7 Molecular spectra

• Now we can describe all molecular states, we again ask how transitions between such states can
occur through interactions with electromagnetic radiation, and thus which shape molecular
spectra will take.

• For the same arguments as used in section 3 for the case of atoms, transitions between different
molecular states (a = {s, ν,K,mK}) are governed by the
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Molecular dipole-moment operator:

D̂ = e
(∑

i

ZiRi −
∑
j

rj

)
(4.29)

where, Ri : positions of nuclei

ri : positions of electrons.

Unlike the case for atoms, where always ⟨ϕn|(−er)|ϕn⟩ = 0, molecules can have a

permanent electric dipole-moment

Daa = ⟨ψa|D̂|ψa⟩ ≠ 0. (4.30)

Example: Water molecule, H2O:

Dipole-moment of water:

|D| = 1.85D (D = Debye)
1 Debye ≈ 0.2eÅ

It will also be useful to consider the dipole-moment in electronic state s for a specific fixed nuclear
configuration5 R:

D̂s(R) = ⟨Φs|D̂|Φs⟩ =
∫
d3Nri Φ

∗
s(R, r1, r2, ...)D̂Φs(R, r1, r2, ...)︸ ︷︷ ︸
still depends on R

. (4.31)

For the same reasons as in atoms, transitions between molecular states due to absorption or
emission of elm-radiation (which give rise to spectra) are governed by transition matrix elements:

Dba(R) = ⟨ψb|D̂|ψa⟩. (4.32)

However, a major difference to atoms, is that for molecules we can differentiate a large number of
different types of internal transitions.

4.7.1 Rotational transitions

Consider a transition without change of electronic or vibrational state, i.e. from a state with label
a = {s, ν,K,mK} to a state with label b = {s, ν,K ′

,m
′
K}. Assume ν = 0, i.e., vibrational ground

state.
5In contrast, Eq. (4.30) contains an average over all possible nuclear configurations.
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For simplicity assume di-atomic molecule, but not necessarily a homonuclear one, e.g. CO
(this has a permanent dipole moment of 0.122D). Also move to a ket notation for the total state

ψ(R, r1, r2, ..., rN ) = Φs(R, r1, r2, ..., rN )
Fs
ν (R)

R
HKmK

(θ, φ)

↓

|ψa⟩ = |sνKmK⟩ = | s ⟩︸︷︷︸
electrons

⊗ |νKmK⟩︸ ︷︷ ︸
nuclei

.

We now see

Dba = ⟨ψb|D̂|ψa⟩ = ⟨νK ′
m

′
K | ⟨ s |D̂| s ⟩︸ ︷︷ ︸

= Ds(R)

using Eq. (4.31)

|νKmK⟩

=

∫
dΩH ∗

K′m
′
K

(θ, φ)

(∫ ∞

0
dR |Fs

ν=0(R)|2Ds(R)

)
︸ ︷︷ ︸
≈ Ds(R0) dipole moment

at equilibrium configuration

HKmK
(θ, φ). (4.33)

The approximation in the last line is actually exact if the vibrational wave-packet |Fs
ν=0(R)|2 =

δ(R−R0). If, instead, the vibrational wave-packet is just a very narrow Gaussian, it still is a very
good approximation.

Now we directly see the

Rule for purely rotational transitions: ⇒ only molecules with permanent dipole mo-
ment at R0 can have purely rotational transition.

The remaining integration in Eq. (4.33) over dΩ gives (as for Hydrogen atom)

Rotational selection rules:

(for Λ = 0 states) ∆K = K ′ −K = ±1 ∆mK = m′
K −mK = 0,±1. (4.34)

• Photo absorption implies angular momentum change by ±1 through angular momentum
conservation.

From Eq. (4.25), we find that photon energies matching a rotational transition are

∆E = Erot(K + 1)− Erot(K) =
ℏ2

µR2
0

(K + 1)︸ ︷︷ ︸
di-atomic case

=
ℏ2

I
(K + 1)︸ ︷︷ ︸

more generally valid

. (4.35)
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Example: Microwave-Oven:

These operate typically at a frequency ∼ νM = 2.4GHz → λ = 12cm

Consider a water-molecule: As seen in the preceding example, it has |Daa| ≠ 0 and can thus
undergo purely rotational transitions.

I ≈ 2× 10−47kg m2 and ∆E =
ℏ2

2I︸︷︷︸
E0

(K + 1)
!
= hν. This

gives ν = E0
ℏ = 420GHz or λ = ℏc

E0
= 0.7 mm.

Since rotations are the lowest energy excitations, the micro-wave frequency νM is closest to
some rotational resonances and the oven hence excites rotations.
Q: Why is the oven not designed to operate precisely on the rotation resonance?

4.7.2 Ro-vibrational transitions

Next consider the slightly more general transition

a = {s, ν,K,mK} → b = {s, ν ′
,K

′
,m

′
K}, ν ̸= ν

′
, (4.36)

where in addition to the rotational state also the vibrational state is allowed to change.

As before we can write

Dba = ⟨ψb|D|ψa⟩ = ⟨ν ′
K

′
m

′
K |Ds(R)|νKmK⟩.

Let us expand the dipole-moment around the equilibrium position

Ds(R) ≈ Ds(R0) +∇Ds(R0) · (R−R0) + ..., (4.37)

where ∇Ds(R) denotes the Jacobian matrix of the vector field Ds(R), defined via [∇Ds(R0)]ij =

∂Ds,i/∂Rj |R=R0 .

Insertion into Eq. (4.33) (however with allowing ν
′ ̸= ν in the ket) gives

Dba =

∫
dΩH ∗

K′m
′
K

(θ, φ)

(∫ ∞

0
dRFs∗

ν′
(R)

[
Ds(R0)︸ ︷︷ ︸

= δν′ν since

Fν′ ,Fν are orthonormal

(= 0 here), since we want ν ̸= ν ′

+ ∇Ds(R0) · (R−R0)︸ ︷︷ ︸
If Ds constant,

(independent of R) this

and all h.o.t. vanish.

]
Fs
ν (R)

)
HKmK

(θ, φ).

(4.38)
From the two statements below (4.38) we can infer the
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Rule for rotational-vibrational transitions: ⇒ only molecules where the dipole-moment
changes as a function of R (= as “a function of vibrations”) can have purely ro-vibrational
transitions (without electronic state change, which means: s = s

′
).

If ∂
∂RDs(R) is non-zero, integration over R and angles gives

Ro-vibrational selection rules (valid for harmonic vibrations only)

(For Λ = 0 states) ∆ν = ν ′ − ν = ±1 ∆K = ±1 ∆mK = 0,±1. (4.39)

• To see the rule ∆ν = ±1, use oscillator states for Fν(R) and the recursion relation

2xHν(x) = 2νHν−1(x) +Hν+1(x) for Hermite polynomials Hν(x). (4.40)

• We still need a change of rotational state ∆K = ±1 for angular momentum conservation
(vibration does not directly affect angular momentum).

• Deviations from the rules (4.39) happen due to

– higher than linear terms of (R−R0) in Eq. (4.38).

– anharmonicity (deviations from an oscillator potential) of Es(R), see comment below
Eq. (4.28).

These deviations then weakly allow ∆ν = ±2, ∆ν = 3, etc.

All up, photon energies matching ro-vibrational transitions are:

∆E = ℏω0︸︷︷︸
see Eq. (4.28)

+

{
+ℏ2

I (K + 1) ∆K = +1 R-branch

−ℏ2
I K ∆K = −1 P-branch
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Example: Greenhouse effect:

Earth likes to shed excess energy through IR radiation around λ ≃ 4− 100µm.

Atmosphere is mostly O2, N2. For N2: λ = c/ν0 = 6µm, O2: λ = c/ν0 = 3µm. (dangerously
close)

These would scatter IR radiation and thus retain heat, but cannot, since Dss(R) = 0 for a
homonuclear molecule due to symmetry, regardless of nuclear separation R.

However: CO2 or CH4 can have ∇Ds(R0) ̸= 0 (even though also for them Ds(R0) = 0).

=⇒ these are green house gases that scatter IR radiation.

(No net dipole in equilibrium, but becomes non-zero under vibration.)

101



Week 12
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018
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4.7.3 Molecular electronic transitions

Finally, we move to the completely general transition

a = (s, ν,K,mK) → b = (s′, ν ′,K ′,m′
K), (4.41)

involving different electronic states with s ̸= s′.

The matrix element is

Dba = ⟨ψb |D̂|ψa ⟩ = ⟨ ν ′K ′m′
K | ⟨ s′ |D| s ⟩︸ ︷︷ ︸

≡D̂s′s(R)

| ν ′K ′m′
K ⟩ (4.42)

Where we have used the

electronic transition matrix element for nuclear position R

D̂s′s(R) =

∫
d3r1d

3r2...Φ
∗
s′(R, r1, r2, ...)

(
e

(∑
i

ZiRi −
∑
j

rj

))
Φs(R, r1, r2, ...) (4.43)

Note that this is still an operator in the space of nuclear wave functions. As with permanent dipole
moments before, we can expand the transition dipole moment around the nuclear equilibrium
position

D̂s′s(R) = D̂s′s(R0) +∇Ds′s

∣∣∣∣
R0

(R − R0) (4.44)

For simplicity let us now take the first term only (even though this is often not quite accurate
enough). We then define
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Franck-Condon factors and molecular transition dipole matrix elements

Dba =

(∫ ∞

0
F ∗s′
ν′ (R)F s

ν (R)dR

)
︸ ︷︷ ︸

(∫
H ∗

K′mK′ (θ, ϕ) D̂s′s(R0)︸ ︷︷ ︸
electronic matrix-element

HKmK
(θ, ϕ)dΩ

)
︸ ︷︷ ︸

(4.45)
= FCF s′s

ν′ν︸ ︷︷ ︸ angular factor, angular momentum

Franck-Condon factor

• We only could take out the Franck-Condon factor as a pre-factor because we had approximated
D̂s′s(R) in Eq. (4.43) as a constant in R.

• Electronic transitions are typically accompanied by vibrational and rotational transitions.

• Rotations obey the usual selection rules, discussed in section 4.7.1 and section 4.7.2, due to
the second term.

• Vibrations are governed by the Franck-Condon factor. Note the FCF is non-zero since s ̸= s′,
and hence F s′

r′ and F s
r are not (necessarily) orthogonal even if ν ′ ̸= ν.

• D̂s′s(R0) gives rise to additional electronic selection rules in terms of g/u,Λ,+/− etc. [see
books]

Excitation of vibrations due to electronic excitation:

These are described by the Franck-Condon factor, and best understood graphically:

left: Sketch illustrating FCF

• BO surfaces s, s′ are in general
shifted, with different equilibrium

position R
(s)
0 and R

(s′)
0 .

• FCF measure overlap between ini-
tial and final vibrational states.

• electronic excitation is instantaneous =⇒ The nuclear wave-function F (R) remains unchanged
during the transition (the nuclei are static) but later they can slowly start to vibrate.
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• The FCF can be thought of as re-expressing the (unchanged) initial vibrational state ν for
electronic state s in the new vibrational basis for electronic state s′.

• For electronic transitions we now no longer have ∆ν = 1. Instead the most likely ∆ν is the
one that has the largest overlapp between the initial and final vibrational wave functions. In
the “Sketch illustrating FCF”, for an initial ν = 0, the most likely final state would be ν ′ = 5,
because that places the large outer lobe of the ν ′ = 5 oscillator state on the upper surface
into the same space like the ground state on the lower surface.

• This combination of electronic and vibrational state change is called vibronic transition.

Electronic Spectra:

• Since Es′ −Es ∼ O(eV ) as in atoms, photon energies for molecular electronic transitions are
in the visible/UV part of the electromagnetic spectrum.

• Photon frequencies are ν =
(Es′+Eν′+EK′ )−(Es+Eν+EK)

h , from Eq. (4.27). hence

• ν = νs′s︸︷︷︸
large

+ νν′ν + νK′K︸ ︷︷ ︸
small

with e.g. νs′s =
Es′−Es

ℏ etc.

• Spectrum has appearance of bands and band systems (many bands) for each electronic tran-
sition, see next example.

4.7.4 Raman Scattering / Raman spectra

Our discussion of light scattering by atoms in section 3.6 largely applies to molecules as well. Due to
the large number and close energy spacing of rotational and vibrational energy levels in molecules,
it is much more common to have an in-elastic scattering process than in atoms:

γ
::::▶
ω,k , | a ⟩ → | b ⟩,

γ′
::::▶
ω′ ̸= ω,k′ (4.46)

Molecules also naturally are already in rotationally excited states at room temperature, so that the
final state can frequently even have a lower energy than the initial one.
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left: Sketch illustrating a Raman transition, governed by

Raman-selection rule

∆K = ±2, 0. (4.47)

Since we have two subsequent transitions and the rule
∆K = ±1 for each of those, see Eq. (4.34).

Erot =
ℏ2

2I︸︷︷︸
=B

K(K + 1) (4.48)

∆K = −2 in the example, hence ∆E = 6B.

Let us assume we scatter light at frequency ν off a molecule, the scattered light has the following
spectrum:

Clarification of inset: All lines besides the central one correspond to a fixed change of angular
momentum by |∆K| = 2. We can calculate Erot(K + 2)− Erot(K) = B[4K + 6]. For K ∈ N0 this
gives the lines shown (with sign of frequency shift depending on whether the initial or final atomic
state is higher in energy. The many lines thus only exist as long as we have multiple choices for K
of the initial state (non-zero temperature).
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Molecular Raman spectrum: of N2 near the 3Πu → 3Πg elec-
tronic transition (taken from “Demtröder, Atoms, Molecules and Photons”).

We can zoom into the band system shown above, to see the details of a single band with
individually resolved rotational lines, seen below

left:

• asymmetric band spacing up vs. down ∆ν, due to the
not neccessarily equal ℏω0 on s and s′.

• rotational lines are not equally spaced, as expected
from Eq. (4.35), since I does actually depend on K.
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4.7.5 Coupling between rotations and vibrations

See book “Demtröder, Atoms, Molecules and Photons” for (too many) more details.

left: Sketch for rotation-vibration coupling:

• For large rotations K, we need to fully include the cen-
trifugal potential Ecf = ℏ2K(K + 1)/(2µR2) in Eq. (4.24).

• This causes an effective outwards shift of the basic BO
surface (blue) towards larger separations (red), with then

a larger equilibrium separation R
′(s)
0 > R

(s)
0 .

• This is called centrifugal distortion.

• The discussion so far in week 12 and week 11 allowed a completely independent treatment
of electronic energies, vibrations and rotations. This crucially hinges on the replacement
R→ R0 above Eq. (4.25) and the harmonic approximation used for Eq. (4.26).

• In reality an increase of angular momentum (rotation) causes a shift of the equilibrium po-

sition R
(s)
0 → R

′(s)
0 , see figure. This is due to the centrifugal force pulling the nuclei apart.

This has the following effects:

(i) For large K rotational energies deviate from Eq. (4.25) since the moment of inertia
changes due to the stretch.

(ii) A sudden increase in rotation K may in turn excite vibrations, since the equilibrium
position is shifted.

(iii) A sudden increase in vibration ν towards the anharmonic part may in turn change
the rotation state, since the mean separation of nuclei and hence moment of inertia is
changed.

4.7.6 Fluorescence and Phosphorescence

We can use the Franck-Condon principle illustrated earlier to also understand the phenomena:

Fluorescence: Molecule absorbs at λ but emits at λ
′
> λ (e.g. UV to visible, shirt glows

when exposed to UV).
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Phosphorescence: Same as fluorescence, but strongly delayed so that molecule (material)
continues to emit/glow a long time (seconds) after excitation light source is removed.

left: Fluorescence:

• Franck-Condon principle results in excita-
tion to higher vibrational state, e.g. ν =
0 → ν ′ = 5.

• Molecules then relaxes to lower vibrational
states (cools down) through collisions with
other molecules (green arrows).

• Franck-Condon principle final requires de-
excitation at a position with a much reduced
electronic energy gap as shown by the black
arrow and hence much larger wave length.
(In the example shown ν ′ = 0 → ν = 5)

left: Phosphorescence:

• If after excitation the molecule makes
a radiationless transition (e.g. via
non-adiabatic couplings in Eq. (4.6))
to another spin state, the de-excitation can
end up being dipole forbidden (since elm
radiation does not change the spin).

• This can lead to very long lifetime in the
excited state and hence much delayed spon-
taneous emission of the photon.
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5 Frontiers of Modern AMO physics

We can only cover a small section biased by my own interests.

5.1 Ultrafast

• To resolve e.g., vibrational molecular motion need ∼fs light pulses

• consider visible, e.g. 500nm =⇒ ν = 6× 1014Hz and a pulse duration of ∆T = 1fs. In that
case ∆T ν ∼ 0.6, thus an optical pulse of a few fs duration has only a few oscillation cycles:

• Such short pulses are challenging to generate, we cannot simply switch on and off the laser
that fast, since the required electronic processes are much slower, see (*) in time-scale figure
above. One solution is portrayed in the following.
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5.1.1 Frequency combs/ Femtosecond lasers

Laser resonators have multiple ”eigenmodes” numbered with n, such that the light fulfils the
boundary conditions at each end-mirror, thus λn = 2L/n.

• For a normal laser, we rather want ”single-mode” operation, where only a single λn is relevant.

• If we use a multi-mode, also called mode-locked, laser, the light field has the following Fourier
spectrum

Frequency spectrum of mode locked laser:

Ẽ(ω) =
∑
n︸︷︷︸

N−modes

cnδ(ω−ωn)

τ=round-trip time [∼ 2L/c]

resulting time-domain picture (cn= constant, N = 1, 2, 3, 30, ...)

I(t) ∼ ⟨|E(t)|2⟩

• Interpretation: Short pulse is bouncing back and forth in resonator and partially released out
each time is hits the right-hand side (exit) mirror. As a result, outside the resonator we see
a fs pulse train (large red line).
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• This crucially results on the mode locking, i.e. all cn = 1. If instead each cn was a different
random number, and we average over that, we get the small red line.

Pulse-waveform:

A single fs pulse is described by the waveform

E(t) = Ẽ(t)eiωct+φ (5.1)

where ωc is the carrier frequency and Ẽ(t) an envelope that changes only on slower time-scales than

T = 2π/ωc. φ is called carrier-envelope phase.

Example 5.1.1. Femtosecond pump-probe spectrosopy of Na2:
• After pump, vibra-
tional wave packets
evolves in excited
elec. state.

• Depending on nuclear
separation R(t), the
probe pulse can disso-
ciate Na2 or not.

signal

5.1.2 Strong fields, tunnel ionization

• Another consequence of the laser focussing all its energy into very short pulse: Very high
intensities.

• In terms of Eq. (3.7), Ĥ ′(t) may no longer be perturbative, E(t) may become comparable to
Coulomb-field of nucleus!
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Example:

• Electric field strength in hydrogen at a distance r = a0 from the nucleus is E(a0) =
Ze2me

(4πϵ0)2ℏ2 .

• Creating an equal field with a laser requires an intensity I = ϵ0|E(a0)|2c.

• Assume a continuously running laser that is tightly focussed to rfoc = 1µm. This then
requires a power P = I × πr2foc ∼ 2 GigaWatt. (This is a large nuclear power plant).

• However using pulsed operation as in a fs laser, with pulse length Tpulse and pulse

period τ , we only need P ′ = P
Tpulse

τ ∼ few 100W

• These extreme conditions an be used to study interesting electron dynamics, and also to
generate even shorter laser pulses than those in section 5.1.1.

Three-step model of HHG (high-harmonic generation)

Through steps (1) ⇔ (2), electron gains an energy corresponding to ....

Ponderomotive energy

Up =
e2E2

a

4mω2
0

(cycle averaged kinetic energy in field ∼ Ea cos(ω0t) (5.2)

Duration of emitted pulse ∼ time-scale of electron motion.

• Classical electron orbit z = 1 (outer shell) torb ≃ 150as

z = 20 (inner shell) torb = 7as
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⇒ Can in this way (HHG) generate attosecond laser pulses.

Example: 5.1.2: Real-time valence electron motion: (Nature 466 (2010) 739)

|Ψ(0) ⟩ ∼ | 1 ⟩+ | 2 ⟩

|Ψ(t) ⟩ ∼ e−iE1
t
ℏ | 1 ⟩+ e−iE2

t
ℏ | 2 ⟩∣∣∣⟨ 3 |d̂|Ψ(t) ⟩

∣∣∣2 = ∣∣∣⟨ 3 |d̂| 1 ⟩e−iE1
t
ℏ + ⟨ 3 |d̂| 1 ⟩ exp−iE2

t
ℏ

∣∣∣2
= ⟨ 3 |d̂| 1 ⟩∗⟨ 3 |d̂| 2 ⟩ei(E1−E2)

t
ℏ + c.c. +

∣∣∣⟨ 3 |d̂| 1 ⟩∣∣∣2 + ∣∣∣⟨ 3 |d̂| 2 ⟩∣∣∣2

5.2 Ultra Cold

We have discussed in section 3.2.3 how thermal motion of atoms Doppler broadens spectral lines.
Since manipulations (excitation, trapping) are more controlled for narrow lines, it is appealing to
cool atomic gases as much as possible.

5.2.1 Bose-Einstein Condensation

For indistinguishable quantum particles (see section 1.2.6) we need to change the way we count
the total number of accessible many-body states. Consider two particles (1,2) distributed over two
states (A,B):

This gives rise to quantum-statistics:
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Bose-Einstein (-)/ Fermi-Dirac (+) distribution function

ni =
1

e(Ei−µ)/kBT ± 1
for mean number ni of particles in a state with energy Ei. (5.3)

• µ is the chemical potential ( fixes N =
∑

i ni)

• In comparison the classical (Boltzmann) distribution does not have the ±1.

• BE- distribution diverges for groundstate (Eu − µ) = 0 ⇒ treat separately

• Find below a certain temperate, need macroscopic occupation of groundstate:

BEC transition temperature

kBTc ≃ (ℏω)N1/3 (5.4)

• N particles

• 3D harmonic trap V (x) = 1
2mω

2|x|2

e.g. N = 10000
ω = (2π)100Hz Tc = 97nK

Groundstate/Condensate fraction

N0(T )

N
=

[
1−

(
T

Tc

)3 ]
(5.5)
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5.2.2 Laser cooling and trapping

Typical ultra-cold atom apparatus

Doppler Shift
ω′ = ω − v · k

shifts only the fastest atoms into resonance. Photon absorption is most likely from against
the motion direction, re-emission into a random direction. The atom thus experiences net

cooling through photon recoil (momentum kicks).

• Can combine magnetic field shifts on | g ⟩, | e ⟩ to get spatially dependent optical force ⇒ MOT
(magneto− optical − trap)

• Laser-cooling can reach ≃ 100µK (Doppler limit)

• Improved laser cooling (Sisyphus cooling)

Recoil Limit

kBT =
(ℏklas)2

2M
≃ 0.1− 1µK (5.6)
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• To finally reach condensation temperature Tc :

Evaporative cooling:
• Magnetic trap:

E = ±gLµBmF |B|, (5.7)

see Eq. (2.63).

• Trapped atoms are in

• Drive microwave transition at frequency ωmw to anti-
trapped mF = −1 state. This will be only resonant
(likely) at large |x|, see diagram (x = 0 is in the cen-
tre).

• Hence only the most energetic atoms can make a mi-
crowave transition to the anti-trapped state and are
lost.

• This scheme looses the large majority of all atoms.

• However through collisions, the remaining ones re-
thermalize at a much lower temperature T ≃ nK.

5.2.3 Condensate mean-field

• Prior to condensation, we have to deal with a many-body wavefunction Ψ(R1, ...,RN ) for N
atoms. This is intractable for N≃ 10000

• After condensation, can describe this using a condensate wave-function/order-parameter/mean-field
ϕ(R) which obeys

Gross-Pitaevskii equation

iℏϕ̇(R) =

[
− ℏ2

2m
∇2 + V (x) + U0|ϕ(R|2

]
ϕ(R) (5.8)

• where V (x) is the trapping potential

• U0 =
4πℏ2as

m describes atomic collisions

• as = s-wave scattering length (see QM book, partial-wave treatment of scattering)

• n(R) = |ϕ(R)|2 is the atom-density, N =
∫
d3R|ϕ(R)|2 the atom number.

116



Example: BEC Phenomena:

5.3 Atomic clocks

Consider a 133Cs atom with nuclear spin I = 7
2 .

The current definition of SI-unit ”second” is as
the ”Duration of 9 192 631 770 periods of elec-
tromagnetic radiation resonant on the F = 3 to
F = 4 hyperfine transition in the ground-state of
that atom, see right.

Hyper-fine splitting
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Example: NIST-F1 Cesium fountain clock: www.nist.gov

5.4 Quantum-simulation

As we have seen when studying multi-electron atoms or molecules: Many-body quantum mechanics
is extrememly challenging.

Many-body Hilbert space dimension For N particles that can be in M states each,
the dimension of the many-body Hilbert space is

d ∼MN (5.9)

• As N , M increase, this becomes quickly too large to solve anything on classical computers

Idea by R. Feynman:

”Find another quantum-system with mathematically equivalent Hamiltonian where all parameters
are under experimental control”

↪→ (experimental) analogue quantum simulator

5.4.1 Bose-Hubbard model

Consider Bose-gas in optical lattice (= standing light wave), see e.g. Nature 415 39 (2002).
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Many-body hamiltonian/Bose-Hubbard model

Ĥ = −J
∑
k

(â†k+1âk + â†k−1âk) +
U

2

∑
k

n̂k(n̂k − 1) (5.10)

• âk, (â
†
k) destroys (creates) a Boson at site k.

• n̂k = â†kâk is the number operator on site k

• this setting provides.....

Quantum simulator for Hubbard model in condensed matter physics:
• electrons
in a metal
crystal (key
difference:
electrons are
fermionic)

• here d, J , U
cannot be changed
in a given ma-
terial.

• In cold atoms, J , λ, U can all be tuned.

5.4.2 Strongly interacting Rydberg systems

Consider Rydberg atoms, i.e. atoms in electronic states |nlm ⟩ with n≫ 20, see section 2.1.5. Two
Rydberg atoms interact via Van-der-Waals interactions, see section 4.5.

In the ground state typical in-
teraction ranges are ∼ 20a0 ∼
0.01µm

For Rydberg states their
range is ∼ 10µm
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Example: Rydberg C-NOT Gate

Sequence:
In the following | ab ⟩ denotes a two atom state where a ∈ {0, 1} is the state of the control
atom and b of the target atom. We list the resulting transition sequence for all four possible
initial quantum states.
(i) Rabi-π pulse on |1 >↔ |r >transition for control only

|00 > |01 > |10 > |11 >
↓
|00 > |01 > |r0 > |r1 >

(ii)Rabi-2π pulse on |1 >↔ |r >transition for target only

↓ ↓ ↓ ↓
|00 > −|01 >

(seeEq. (3.51))

|r0 > |r1 >

(iii)Rabi-π pulse on |1 >↔ |r >transition for control only

↓ ↓ ↓ ↓
|00 > − |01 > |10 > |11 >

Truth Table:

|00 > → |00 >
|01 > → −|01 >
|10 > → |10 >
|11 > → |11 >

Controlled Z-gate
↪→ can get C-NOT from here
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Other Examples:
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