
Week 7

PHY 402 Atomic and Molecular Physics

Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

3.3 Rabi-Oscillations

• Consider again the Hamiltonian (3.7) Ĥ(t) = Ĥo + Ĥ
0
(t), neglecting the A2 term. For this

section we choose a simpler vector potential

A(r, t) = A0✏ cos(k · r� !0t) (3.40)

In terms of the more complicated expression (3.5), this could be monochromatic/narrow
band laser which thus has �! ⌘ 0 and A0(!) sharply peaked around ! = !0.

From (3.1), we have
E(r, t) = !0A0✏| {z }

E0

sin(k · r� !0t) (3.41)

for the Electric field.

left: Two level atom with laser coupling
For simplicity consider only two atomic states |�ai, |�bi with !ba ⇡ !0, and introduce the

Detuning � = !0 � !ba, the di↵erence between laser and atomic transition frequency.

We want to determine the full time evolution of the atom, which we can write as

| (t)i = ca(t)e
� i

~Eat|�ai+ cb(t)e
� i

~Ebt|�bi, (3.42)

thanks to our restriction to just two atomic states. For writing the TDSE (1.45) we nextly require
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all possible matrix elements of Ĥ with states |�a/b i. These are:

h�a|Ĥ0|�ai = Ea, h�b|Ĥ0|�bi = Eb, (3.43)

h�b|Ĥ
0
(t)|�ai

Eq. (3.7)
== �i~A0e

m
h�b|✏ cos(k · r� !0t) ·r|�ai (3.44)

= �i~A0e

2m
h�b|✏

�
eik·r|{z}
⇡ 1

e�i!0t + e�ik·r
| {z }
⇡ 1

ei!0t
�
·r|�ai (dipole approximation)

= �i~A0e

2m

�
e�i!0t + ei!0t

�
✏ · h�b|r|�ai

Eq. (3.27)
== �i

A0!ba

2

�
e�i!0t + ei!0t

�
✏ · h�b|(�er̂)|�ai

⇡ � i

2

�
e�i!0t + ei!0t

�
E0 · h�b|(�er̂)|�ai| {z }

atomic

transition dipole

. (3.45)

Now rewrite TDSE (1.45) as matrix equation

i~
✓
ċa(t)
ċb(t)

◆
=

✓
o H̃ab

H̃⇤
ab 0

◆✓
ca(t)
cb(t)

◆
(3.46)

where,

H̃ab =
i

2

�
e�i!0t + ei!0t

�
E0 · h�b|(�er̂)|�aie

i
~ (Ea�Eb)t, (3.47)

which we further re-write with two steps:

• We see complex exponentials such as e�i

⇡ 2!0, largez }| {
(!0 + !ba) t and also ei

= �, small
z }| {
(!0 � !ba) t. We neglec

the fast oscillating exponential, assuming the complex number averages to zero. This is called
the rotating wave approximation.

• We define the

Rabi-frequency as
~⌦ = h�b|d ·E0|�ai (3.48)

where, d = �er̂. This describes the strength with which atoms undergo a transition
from |�a i to |�b i and is not to be confused with the laser frequency !0 or transition
frequency !ab.

We can then re-write our matrix equation:

i~
✓
ċa(t)
ċb(t)

◆
=

✓
o i~⌦

2
e�i�t

�i~⌦
2
ei�t 0

◆✓
ca(t)
cb(t)

◆
, (3.49)

and finally redefine c̃b(t) = ie�i�tcb(t) and c̃a(t) = ca(t), to reach
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E↵ective SE and Hamiltonian for two-level atom in dipole and rotating-wave approxi-
mation

i

✓
˙̃ca(t)
˙̃cb(t)

◆
=

✓
0 ⌦

2
⌦

2
��

◆

| {z }
Ĥe↵

✓
c̃a(t)
c̃b(t)

◆
. (3.50)

Can solve with standard methods [exercise], using eigensystem of Ĥe↵ . For the initial condition
c̃a(0) = 1, c̃b(0) = 0, i.e. an atom in state a, we find

c̃a(t) = ei
�t
2

⇢
cos

✓
t⌦e↵

2

◆
� i

�

⌦e↵

sin

✓
t⌦e↵

2

◆�
.

c̃b(t) = �i
⌦

⌦e↵

ei
�t
2 sin

✓
t⌦e↵

2

◆
. (3.51)

with ⌦e↵ =
p
⌦2 +�2.

These are the ubiquitous

Rabi-oscillations:

nb(t) = |c̃b(t)|2 =
⌦2

⌦2

e↵

sin2
✓
⌦e↵

2
t

◆
(3.52)

where, ⌦e↵ =
p
�2 + ⌦2.

On resonance, � = 0, the atom undergoes oscillations between states |�a i and |�b i with
the Rabi frequency.

• For large detuning �� ⌦, the probability to reach the state |�b i remains small: nb(t)
��
max

=
⌦2/⌦2

e↵ ⇡ (⌦/�)2 ⌧ 1. This often in retrospect justifies our initial approximation to consider
only two atomic states, see diagram below.
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left: Rubidium level diagram with laser light at
frequency !0 that is near-resonant with |1si !
|2pi. This means however that it is far-o↵ reso-
nant with any other transition (e.g. |2si ! |2pi).
According to the arguments above other states
than | 2p i will thus not become populated.

• The system of two laser coupled electronic states in an atom realizes a coherent two-level system
as long as we ignore spontaneous decay. To discuss manipulations of this system, we use

Nomenclature for Rabi pulses: Suppose we apply the laser coupling only for a duration
T . The indicated e↵ects are for resonant pulses with � = 0.

⇡/2 pulse , T =
⇡

2

1

⌦
| (t = 0) i = |�a i !

1p
2
(|�a i � i| �̃ i),

⇡ pulse , T = ⇡
1

⌦
|�a i ! �i| �̃b i,

2⇡ pulse , T = 2⇡
1

⌦
|�a i ! �|�a i. (3.53)

Bloch-sphere representation: The most general two-state superposition has the form
| i = cos [✓/2]|�a i + ei' sin [✓/2]|�b i where 0  ✓  ⇡ and 0  '  2⇡ are simply some
parametrisation of the superposition(⇤). However we can now also view ✓ and ' as the usual
angles in spherical polar coordinates. This allows us to visualize any such superposition as
a point on the surface of the Bloch sphere shown below.
From Eq. (3.51) we can also understand the simplest types of time evolution: For a resonant
pulse starting in |�a i with � = 0 we identify ✓ = t⌦ (green arrow). For uncoupled states
⌦ = 0 with di↵erent energies �E 6= 0, we see ' = �E t/2 (red arrow). More generally
evolution due to any unitary operator Û in the space |�a/b i corresponds to a specific rotation
on the Bloch sphere.

left: Visualisation of states and dy-
namics on Bloch sphere.
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Bloch-sphere representation contd.:
The visualisation can be extended to include spontaneous decay (optical Bloch equations).

(⇤)Originally | i = c1|�a i+ c2|�b i with c1, c2 2 C contained 4 real numbers. Due to the constraint

1 = |c1|2 + |c2|2 we reduce one of those, one more can be removed since the overall phase of the state

is irrelevant.

3.4 Spectral Lines

3.4.1 Thermal gas of atoms

left: Consider a box with atomic vapor and pho-
tons in equilibrium at temperature T

• Again let’s consider two atomic levels |�a/b i only, with Eb > Ea. In thermal equilibrium
atoms are found in both states with some probablility, let the number of atoms in a be
Na. Photons can thus take part in a statistical mix of stimulated emission, absorption and
spontaneous emission.

• The number of atoms making the transition a ! b per unit time is3

Ṅba =BbaNa⇢(!ba), (3.54)

where Bba is the Einstein coe�cient for absorption and ⇢(!ba) is the energy density in the
radiation field (of the photons) at frequency !ba.

• For the reverse transition

Ṅab =AabNb +BabNb⇢(!ba), (3.55)

where Aab is the Einstein coe�cient for spontaneous emission
and Bab the Einstein coe�cient for stimulated emission.

• In thermal equilibrium we must have Ṅab = Ṅba and also

Na

Nb
=exp [�(Ea � Eb)/(kBT )] = exp [~!ba/(kBT )]. (3.56)

3It is logical that Ṅba must be ⇠ Na. We know from Eq. (3.19) that it must be ⇠ ⇢(!ba). Finally we just give the
remaining proportionality constant the name Bba.
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We can use these relations to get an expression for the radiation density

⇢(!ba) =
Aab

Bba exp [~!ba/(kBT )]�Bab
(3.57)

By requiring that (3.57) is identical with Planck’s law from thermodynamics, we can deduce
that

Bba = Bab, (3.58)

Aab =

✓
~!3

ba

⇡c3

◆
Bab. (3.59)

This argument, due to Einstein, gives some link between stimulated and spontaneous emission
without even solving the atomic physics problem. The result is consistent with the detailed
calculations in section 3.1.2. There, from Eq. (3.19) we can write Bba = Wba/[I(!ba)/c] ⇠
|Mba|2, where the factor in square brackets is the energy density.

From Eq. (3.57) we also infer that there are photons in the box at equilibrium, at all frequencies
belonging to any transition between two states a, b. This would look like:

top: From the picture of a gas in the box in thermal equilibrium above, we would also expect
that in the radiation spectrum, all transitions frequencies for allowed transitions betwen atomic
levels are present. Their amplitude (“brightness”) will be determined by |Mba|2. For a tabulation
of experimental data on allowed transition frequencies and their strength (matrix elements), see
www.nist.gov/pml/atomic-spectra-database .

• The remaining question regarding a spectrum such as above is, what sets the width and shape
of the spectral lines?

3.4.2 Line shapes

left: As discussed in section 3.1.2 atomic excited
states decay via spontaneous emission
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A calculation of the corresponding decay rate, based on Eq. (3.22) and (3.39) gives for example a

spontaneous decay rate �2p!1s =
�
2

3

�8 m↵5Z4c2

~ = 6.27108Z4s�1. Does the emission really only go
into the mode with the resonance frequency ! = !ab?

A rigorous QED approach: would be to calculate the amplitude for the pro-
cess | b, no photons i ! | a, one photon with frequency !, polarisation ✏ and momentum p i,
then integrate over all possible ✏, p to reach the rate as a function of !.

We follow a simpler, semi-classical approach. Assume a single atom in an excited state |�b i starts
emitting light at time t, while returning to the ground-state |�a i with a rate �. Ignoring the vector
character of the light, the emitted field strength for t � 0 will look like:

E(t) = E0

⇣
e[��t/2]ei!bat + c.c

⌘
, (3.60)

while E(t) = 0 for t < 0. We took into account that the field intensity must be proportional to the
probability of the atom actually remaining in |�b i, which drops as e[��t].

Now we do the Fourier transform of Eq. (3.60) to find the frequency spectrum via

E(t) =
1p
2⇡

Z 1

�1
c(!)ei!td!, (3.61)

c(!) =
1p
2⇡

Z 1

�1
E(t)e�i!tdt, (3.62)

and reach

c(!) = � E0p
2⇡

✓
1

i(!ba � !)� �/2 +
1

i(�!ba � !)� �/2

◆
. (3.63)

The second term is typically much smaller and can hence be neglected. The overall frequency
spectrum of spontaneously emitted light thus follows the

Natural line profile, also called Lorentzian frequency spectrum:

|c(!)|2 = E2

0

2⇡

1

(!ba � !)2 + (�/2)2
. (3.64)

top: Sketch of natural line profile Eq. (3.64). We also define the
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Life-time of the upper state:

⌧ = 1/�. (3.65)

• Note, for quite highly excited states a large number of spontaneous decay channels k are often
possible, each with rate �k. In that case define the total decay rate as � =

P
k �k, then use

Eq. (3.65).

• An intuitive picture for the origin of the frequency width is that the energy of a decaying
state is uncertain by �E according to the energy time uncertainty relation �E ⌧ ⇠ ~.

Measured line-profiles are frequently much broader and di↵erently shaped than Eq. (3.64) due to
the following e↵ects:

• Pressure broadening: Also atomic collisions can cause a transition b ! a. If the collision
rate exceeds the spontaneous decay rate, this can significantly shorten the life-time to ! ⌧coll.
In this case the spectral line remains of Lorentzian shape, but with a width � ⇠ 1/⌧coll. This
e↵ect becomes stronger with increasing gas pressure.

• Doppler broadening: Atoms of mass M move relative to the lab frame with some random
velocity v. The associated Doppler shift !0 = !�v ·k is then also randomly distributed. The
distribution of velocities follows the Maxwell-Boltzmann form ⇠ exp [�Mv2/(2kBT )], which
is a Gaussian in |v|. The Doppler e↵ect can thus broaden spectral lines from a gas and turn
their shape into a Gaussian for high temperatures.

In the general case we have a mixture of Lorentzian and Gaussian shapes, called a Voigt profile.

3.4.3 Oscillator strength and sum rules

A useful concept to do with a spectral line due to a transition from a to k is their

Oscillator strength

fka =
2m!ka

3~ |h�b |r̂|�a i|2 (3.66)

• These fulfill
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Thomas-Reiche-Kuhn Sum rule
X

k

fka = 1, (3.67)

where the sum extends over all other states than a, including the continuum (see next
section).

• The rule is useful to assess the importance of a certain transition. Knowing the matrix element
for one transition we can infer fka. If this is close to one, we know from Eq. (3.67) that there
are not going to be a lot of other important (strong) transitions.

• For proof see BJ book.

3.5 The photo-electric e↵ect, photo ionization

Our treatment of atoms and atom light interaction so far only dealt with atomic bound states |�a i,
Eb < 0. We can also find solutions of the Hydrogen TISE (1.30) with Eb > 0. These are called

Atomic continuum states, and fulfill

✓
� ~2
2m

r2

r �
Ze2

4⇡✏0

1

|r|

◆
 b(kf , r) =

~2k2

f

2m| {z }
=Ef>0

 b(kf , r). (3.68)

• Continuum states  b(kf , r) represent an electron that is not bound to the nucleus, so far
away from the nucleus the solution behaves like a plane-wave ⇠ exp [ikf · r]. Close to the
nucleus, the plane-wave is modified since it feels the nuclear Coulomb potential.

• Ionisation by absorption of a photon can now be viewed as a transition between a bound and
a continuum state.

• For Ef � |Ea| we can even approximate  b(kf , r) ⇠ exp [ikf · r] near the nucleus, and use
our earlier result

� =
4⇡2↵~2

m

Z
d3kf

1

!ka
|Mka(kf ,!fa)|2�(! � !ka). (3.69)

• This is just Eq. (3.21) and Eq. (3.19) for the absorption cross section with slight re-arrangements
of constants, adding �(! � !ka), which was implicitly assumed in Eq. (3.19) and integrating
over all ejected electron momenta kf to get a total cross section.

• Note the matrix element

Mka =
1

(2⇡)3/2

Z
d3r exp [�ikfr]| {z }

from  b

exp [ikr]| {z }
from light

✏ ·r a(r) (3.70)

depends on kf , including its direction.
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• We can re-write (3.69) using integration by parts to reach

Mka =
1

(2⇡)3/2
(�i✏ · (k� kf ))

Z
d3r exp [�i(k� kf )r] a(r). (3.71)

We now recognize that it is proportional to the 3D Fourier-Transform  ̃a(k� kf ) of  a(r).

top: Specific geometry for calculation of di↵erential photo-ionization
cross-section. The x-axis is chosen along the light polarisation.

• Detailed calculation see BJ, using the geometry in the figure, one finds:

Di↵erential cross-section for photo-ionization:

d�

d⌦
= 32↵

~
m

k3f
!

Z5a3
0
cos2 [�]

(Z2 + 2a2
0
)4
, (3.72)

where ⌦ = {✓,'} now corresponds to the ejection direction of the electron,  = ||,
 = k� kf

•  depends on ✓.

• We see that electron ejection is most likely for � = 0,⇡, where � is the angle between the
ejection direction and the incoming light linear polarisation axis. Hence the electron is ejected
preferentially along the direction of E-field polarisation.

•

left: From Eq. (3.71) we can see that laser wavelength has
to match size /oscillation scales of the wavefunction a. The
fourier-transform of the example wavefunction shown on the
left  ̃a(k), will have its main contributions at k = 2⇡/�.

aFor this argument assume |k� kf | ⇡ O(|k|), other cases are sup-
pressed since � ⇡ 0,⇡/2

• For this reason, X-rays are most likely to photo-ionize tightly bound electrons from the inner
shells of heavy atom (their wavefunction has smallest “�”, matching X-ray wavelengths).
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