
Week 6
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

3 Interaction of Atoms with Electromagnetic Radiation

So far we had looked at what is called atomic structure, i.e. their energy levels and electron states,
without any time dependence. Now we will begin to look at dynamics, in particular how to get
from one energy level to another.

3.1 Atomic Transitions

3.1.1 Electromagnetic fields and charged particles

Unlike section 2.2 on static fields, we now want to simultaneously consider time-dependent E and
B fields such as they occur within an electromagnetic wave.

It is often convenient to,

Express fields via potentials

E(r, t) = �r'(r, t)� @

@t
A(r, t) ' = Scalar Potential (3.1)

B(r, t) = r⇥A(r, t) A = Vector Potential

Warning: Make sure in the following not to confuse E with an energy or ' with a wave function,
it should be obvious from context what they are!

Potentials are not unique, they can be changed via a
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Gauge Transformation

A ! A+r�(r, t) '!! '� @

@t
�(r, t) (3.2)

where, �(r, t) 2 IR is any di↵erentiable function

We now use this freedom to choose the

Coulomb Gauge
r ·A = 0 and ' = 0. (3.3)

We can show from Maxwell’s equations the

Wave equation

r2A� 1

c2
@2A

@t2
= 0, (3.4)

with the following solution which represents an electro-magnetic wave-packet

A(r, t) =

Z 1

0
A0(!)✏ cos(k · r � !t+ �!)d!. (3.5)

here A0(!) is the spectral Amplitude, ✏ 2 C3 is the polarisation vector, ! = |k|c as usual
and �! is the phase of frequency component !.

• For a laser we would have �! = fixed 8!, e.g.=0

• For incoherent radiation: �! is random for all !.

• For a simple spectral distribution, imagine a narrow Gaussian cantered on a central frequency
!0 such as A0(!) = Ā exp [�(! � !0)2/�2!].

Hamiltonian for charged electron in radiation field

Ĥ =
1

2m
(p̂+ eA)2 � Ze2

(4⇡✏)r
(3.6)

Insert p̂ = �i~r and using r · (A · .....) = A · (r · ....) + (r · A)| {z }
=0

..... we get the
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Atom-Radiation Hamiltonian

Ĥ(t) = � ~2
2m

r2 � Ze2

(4⇡✏)r| {z }
=Ĥ0

� i~ e

m
A(r, t) ·r+

e2

2m
(A(r, t))2

| {z }
=Ĥ0(t)

(3.7)

• This is written in the form (1.53) for time dependent perturbation theory

• it seems to depend on the gauge, but gauges just change inconsequential spatial phase of
wavefunction, so any dependence cancels (see book)

• can neglect A2 term (and will do from now) except in very strong fields

3.1.2 Transition Rates

Assume we start in the specific atomic state |�a i = |�n
a

l
a

m
a

i. (a is thus a short-hand index for
all quantum numbers na, la, ma).
Solving the TDSE i~@| (t) i/@t = Ĥ(t)| (t) i for state vector | (t) i =

P
k ck(t)| k i is in general

too hard. Hence, we use TDPT (see section 1.2.5) in order to find the amplitude for transition
from state a to another state b: |�a i ! |�b i.

c(1)b (t) = (i~)�1

Z t

0
H 0

ba(t
0) exp(i!bat

0)dt0 where, (3.8)

!ba =
(Eb � Ea)

~ (3.9)

We thus need the matrix-element

H 0
ba(t

0) = h�b|H 0(t)|�ai (3.10)

= �i~ e

m

Z 1

0
d!A0(!)✏ · h�b|

1

2
(eik·r�i!t+i�

! + e�ik·r+i!t�i�
!)r|�ai (3.11)

Insert Eq. (3.11) into Eq. (3.8):

c(1)b (t) = � e

2m

Z 1

0
d!A0(!)


ei�wh�b|eik·r✏ ·r|�ai

Z t

0
dt0ei(!ba

�!)t0 (3.12)

+e�i�
wh�b|e�ik·r✏ ·r|�ai

Z t

0
dt0ei(!ba

+!)t0
�

We can explicitly solve the time-integrals,

I ⌘
Z t

0
dt0ei(!ba

±!)t0 =
ei(

⌘�!z }| {
!ba ± !)t � 1

i(!ba ± !)
(3.13)
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We see,

|I|2 =
�����
ei(�!t0) � 1

i�!

�����

2

=

��������
e

i(�!t

0)
2

✓
e

i(�!t

0)
2 � e�

i(�!t

0)
2

◆

i�!

��������

2

= 2
sin2

�
�!t
2

�

�!2
= F (�!), (3.14)

where the function F was defined in section 1.2.5.
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We see that the r.h.s. of 3.12 is only significant for �! = !ba ± ! = 0 ) ! = �!ba or ! = +!ba

Now our electromagnetic wave-packet (3.4) contains many di↵erent frequencies !.
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left: For simplicity we as-
sume a wavepacket as on the
left, i.e. with �! ⌧ |!ba| and
!0 > 0.

We can then have two cases:

• Eb > Ea =) !ba > 0 =) !ba � ! term in Eq. (3.12) will contribute

• Eb < Ea =) !ba < 0 =) !ba + ! term in Eq. (3.12) will contribute

These two cases give rise to:

Absorption Eb > Ea:
Neglect second term in Eq. (3.12) and write,

|c(1)b (t)| = 1

2

⇣ e

2m

⌘2
����
Z 1

0
d!A0(!)MbaF (t,! � !ba)e

i�!

����
2

(3.15)

with,

Matrix Element
Mba(!) = h�b| exp(ik · r)✏ ·r|�ai. (3.16)

• Note, some other definitions might include the electric charge e into the matrix element.
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• We write Mba(!) since the ME depends on ! through ! = kc.

• To obtain |c(1)b (t)| we have to evaluate
��R1

0 d!z(!)
��2 =

R1
0 d!

R1
0 d!0z⇤(!)z(!0) , in which

z⇤(!)z(!0) contains a term e�i(�
w

��
w

0 ).

• Since we assume random �w, �w0 for (incoherent light) this part is on average zero unless
! = !0.

• Using this we can simplify:
���c(1)b (t)

���
2
=

1

2

⇣ e

2m

⌘2
Z 1

0
d! |A0(!)|2| {z }

approx |A0(!)|2 = |A0(!
ba

)|2

|Mba(!)|2 F 2(t,! � !ba)| {z }
sharply peaked around ! = !

ba

(3.17)
���c(1)b (t)

���
2
=

1

2

⇣ e

2m

⌘2
A2

0(!ba) |Mba(!ba)|2
Z 1

�1|{z}R1
0 )

R1
�1

F (t,�!)d!

| {z }
=⇡t

(3.18)

So Probability Pb =
���c(1)b (t)

���
2
to be in state b increases linearly in time, Pb = Wbat, with

Transition rate for absorption (integrated over !)

Wba =
⇡

2

e2

m
A2

0(!ba) |Mba(!ba)|2 (3.19)

=
4⇡2

m2c2
e2

(4⇡✏0)

I(!ba)

!2
ba

|Mba(!ba)|2

• second line uses intensity at !

I(!) =
1

2
✏0c !

2A2
0(!) (3.20)

• so, most importantly, the rate is proportional to light intensity and matrix element |Mba(!ba)|2

• We can remove the intensity dependence of the absorption process by defining the

left:

Absorption cross section:

�ab = ~!Wba/I(!ba) (3.21)

The intensity is I = ~!Nphotonsc
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Stimulated Emission Ea > Eb:
Through the same steps as above, we obtain the same expression for the transition rate (see
book).

• If we have a thermal distribution of atoms at temperature T , the number of atoms in state a

or b is given by Na,b ⇠ exp
⇣
�E

a,b

k
b

T

⌘
respectively, so there are more atoms in the lower energy

state and it is thus more likely to absorb light (despite the same rates for absorption and
emission)

• The principle of a Laser relies on population inversion, which means Nb > Na even though
Eb > Ea. In that case stimulated emission can become more likely than absorption.

Spontaneous Emission:
In QED, the vector potential for absorption (emission) of a single photon from an N photon state,
has the form:

A = ✏


2[N(!)+1]~

V ✏0!

� 1
2 1

2
exp[i(k · r� !t+ �!)]. (3.22)

• Importantly the +1 is only there for emission, not for absorption. V is the quantisation
volume.

• One can see that absorption gives the same result as (3.19) [N and V go into the factor I(!)
].

• However emission would be the same only if we replace N(!) + 1 �! N(!).

• The piece +1 is related to spontaneous emission, it takes place even without any external
field (light), due to vaccuum fluctuations of the electro-magnetic field.

3.2 Selection Rules

Rates depend most critically on matrix-element

Mba(!) = h�b| exp(ik · r)✏ ·r|�ai where, (3.23)

exp(ik · r) = 1 + (ik · r) + 1

2!
(ik · r)2 + ... (3.24)

For wavelength much larger than atomic size (r0), we have that |k · r| . 2⇡ r0
� ⌧ 1 at all locations

r with non-vanishing electron density, i.e. �a/b(r) 6= 0. Thus we can replace the exp by 1. This is
called the dipole approximation. Then we define the

Matrix-element in the dipole approximation

MD
ba = ✏ · h�b|r|�ai (3.25)
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To see more clearly why we use the name “dipole-approximation”, let us utilize:

p̂ = m
m

~
⇥
Ĥ0, r̂

⇤
,with p̂ = �i~r and r = �m

~2
⇥
Ĥ0, r

⇤
(3.26)

+

MD
ba = ✏ · �m

~2 h�b|(Ĥ0r̂� r̂Ĥ0)|�ai

= �!bam

~ ✏ · h�b|r|�ai

To reach this we had to also remember Ĥ0 = p̂/2m+V (r̂) and
⇥
r̂i, p̂j

⇤
= i~�ij . We call the result

Matrix-Element in length form

MD
ba =

m!ba

~e ✏ ·Dba where Dba = h�b|(�er̂)|�ai (3.27)

with transition dipole moment vector operator Dba.

“Dipole-approximation” thus implies that only the dipole-moment of the electronic charge distri-
bution is taken into account for interactions with the light.

If Dba does not vanish between two states |�a i and |�b i, the transition between these states is
called electric dipole allowed (E1). Even if Dba vanishes, Mba might not vanish due to higher order
terms in exp(ik · r), e.g. i(k·r) which gives rise to magnetic dipole (M1) and electric quadrupole(E2)
transitions. These Mba are however much smaller than non-vanishing Dba.

Let us thus now consider when Mba can be nonzero, which depends on the transition dipole moment
Dba and the polarisation vector ✏. Let us first look at Dba in detail:
Elementary symmetry considerations:

|�a i = |�n
a

l
a

m
a

i =) Rn
a

l
a

(r)Yl
a

m
a

(✓,') (3.28)

From Eq. (1.35) we can obtain the transformation law of the wavefunction for r ! r0 = �r. In
polar co-ordinates (r, ✓,'! r, ✓ ! ⇡ � ✓,'! '+ ⇡ ), hence we deduce �(r) ! (�1)la�(r) where
the

Factor under space inversion (�1)la is called parity of the state |�a i.

Thus Dba = �e
R
d3r�⇤b(r)r�a(r) transforms like

Dba ! Dba(�1)la+l
b

+1. (3.29)

where we have used
R
d3r =

R
d3(�r). =) We need la+ lb+1 = even, otherwise Dba has to vanish.

=) dipole ME connects only states of opposite parity, independent of ✏.
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Full Calculation
We can write ✏ ·Dba = (�e)h�b|✏ · r|�ai and,

✏ · r =

0

@
✏x
✏y
✏z

1

A

0

@
r sin ✓ cos�
r sin ✓ sin�

r cos ✓

1

A = � 1p
2
(✏x + i✏y)| {z }

✏1


�r sin ✓ei'p

2

�

| {z }
⌘r1

+
1p
2
(✏x � i✏y)| {z }

✏�1


r sin ✓e�i'

p
2

�

| {z }
⌘r�1

+ ✏z|{z}
✏0

r cos ✓]| {z }
r0

,

(3.30)

where we have used so called “spherical components” rq q 2 {1, 0,�1} of the vector r.

Then an explicit integration gives:

h�b|r1|�ai 6= 0 if lb = la ± 1 mb = ma + 1 (3.31)

h�b|r�1|�ai 6= 0 lb = la ± 1 mb = ma � 1 (3.32)

h�b|r0|�ai 6= 0 lb = la ± 1 mb = ma (3.33)

Now if only some polarisation components ✏�1,0,1 are non zero, we can select specific cases, and
obtain:

Dipole Selection rules for absoption: Assuming light propagates along the k̂ direction
(quantisation axis).

linearly polarized light (⇡ transition) lb = la ± 1

only ✏0 6= 0 mb = ma (3.34)

left handed circularly polarized light (�+ transition), lb = la ± 1

only ✏1 6= 0 mb = ma + 1 (3.35)

right handed circularly polarized light (�� transition), lb = la ± 1

only ✏�1 6= 0 mb = ma � 1 (3.36)

unpolarized or any other polarization direction lb = la ± 1

random mixture of ✏ or all ✏k 6= 0 mb = ma,ma ± 1 (3.37)

• �+ means photon spin || quantisation axis, �� opposite.

• Rules for emission have swapped signs for mb = ma ± 1.

• If the light is propagating in the �k̂ direction, the allocation between �± and left- /
right- is swapped.
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3.2.1 More on Spontaneous Emission

Using the QED vector potential A (3.22) we can derive a rate ,

WS
ba =

4⇡2

m2

✓
e2

4⇡✏0

◆
~

V !ba
|Mba|2 �(! � !ba) (3.38)

for the emission of a given photon with energy !. To find the total spontaneous emission rate, we
integrate over all possible photon states (momenta/ wave-vectors k )

Total spontaneous emission rate

WS,TOT
ba =

4↵

3c2
!3
ba |h�b|r|�ai|2 (3.39)

• we have used the dipole-approximation

• Important is the !3
ba dependence: decay will always be dominantly to the state of the

lowest energy that is accessible via dipole selection rules.

• The same selection rules apply for absorption, emission, and stimulated emission. =) states
that cannot decay via dipole-allowed transitions have comparatively longer lifetimes. These
are called metastable.

Hydrogen transitions in a magnetic field:
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left: Hydrogen level diagram

• Dipole radiation does not couple to spin,
) all selection rules can be translated to
j-basis (e.g. �m = 0 ) �mj = 0). It
is a bit more tricky for the j quantum
number (Even though �l is not possible,
�j = 0 is possible, since e.g. (l = 1, s =
1
2 and l = 2, s = 1

2 both have j = 3
2).

• Hydrogen | 2s i state metastable.

• Transition | 1s i ! | 3s i can only happen
via E2, M1 or via a two-step process such
as | 1s i ! | 2p i ! | 3s i (e.g. using two
lasers).

61


