Week (5)

PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correctness, please contact me if you spot a mistake.

2.4 Many-electron atoms

- Already cannot solve the two electron problem exactly. The variational approach also becomes too hard for large numbers of electrons. Now, the central field approximation will be very useful.

Many-electron (N) Schrödinger equation:

$$
\begin{gather*}
\hat{H} \psi\left(q_{1}, q_{2}, \ldots, q_{N}\right)=E \psi\left(q_{1}, q_{2}, \ldots, q_{N}\right) \\
q_{k}=\left\{m_{s k}, \mathbf{r}_{k}\right\} \text { (spin and position variables) } \\
\hat{H}=\sum_{i=1}^{N}\left(-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}-\frac{Z}{r_{i}}\right)+\sum_{i<j=1}^{N} \frac{1}{r_{i j}} \text { (in atomic units) } \tag{2.99}
\end{gather*}
$$

- Eq. (2.4) constitutes a PDE, for a wavefunction with $3 N$ spatial plus 2^{N} discrete co-ordinates \Longrightarrow very impossible to solve directly.
- This problem generically arises in quantum-many-body-physics.
- Unlike two electron case, $\hat{H}^{\prime}=\sum_{i<j=1}^{N} 1 / r_{i j}$ generally is not small due to many terms in the sum.

2.4.1 Central field approximation

Now the independent-particle model and central field approximation become indispensable:

Similar to our treatment of Helium, we write for this radial potential felt by electron number i

$$
\begin{equation*}
V\left(\mathbf{r}_{i}\right)=-\frac{Z}{\left|\mathbf{r}_{i}\right|}+S\left(\left|\mathbf{r}_{i}\right|\right) \quad \text { (Now screening is } r \text {-dependent } \text {) } \tag{2.100}
\end{equation*}
$$

We now re-write Eq.(2.99), ignoring spin for now

$$
\begin{align*}
\hat{H}_{c} & =\sum_{i=1}^{N}\left(-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}+V\left(\mathbf{r}_{i}\right)\right)=\sum_{i=1}^{N} \hat{h}_{i} \tag{2.101}\\
\hat{H}^{\prime} & =\sum_{i<j=1}^{N} \frac{1}{r_{i j}}-\sum_{i=1}^{N}\left(\frac{Z}{r_{i}}+V\left(\mathbf{r}_{i}\right)\right)=\sum_{i<j=1}^{N} \frac{1}{r_{i j}}-\sum_{i=1}^{N} S\left(\mathbf{r}_{i}\right) \tag{2.102}
\end{align*}
$$

such that $\hat{H}=\hat{H}_{c}+\hat{H}^{\prime}$ (just re-writing).

- \hat{H}_{c} is central field Hamiltonian.
- Expect eigenfunctions of \hat{H}_{c} to be better than those of $\hat{H}_{\circ}=\sum_{i=1}^{N}\left(-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}-Z / r_{i}\right)$.
- Challenge is to find out suitable $S\left(\mathbf{r}_{i}\right)$ or $V\left(\mathbf{r}_{i}\right)$.

Central field Schrödinger equation

$$
\begin{equation*}
\hat{H}_{c} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=E_{c} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right) \tag{2.103}
\end{equation*}
$$

can be solved using

$$
\begin{equation*}
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=u_{a_{1}}\left(\mathbf{r}_{1}\right) u_{a_{2}}\left(\mathbf{r}_{2}\right) \ldots u_{a_{N}}\left(\mathbf{r}_{N}\right) ; a_{i} \equiv\left\{n_{i} l_{i} m_{i}\right\} \tag{2.104}
\end{equation*}
$$

where,

$$
\begin{equation*}
\left(-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}+V\left(\mathbf{r}_{i}\right)\right) u_{a_{i}}\left(\mathbf{r}_{i}\right)=E_{i} u_{a_{i}}\left(\mathbf{r}_{i}\right), E_{c}=\sum_{i} E_{i} \tag{2.105}
\end{equation*}
$$

The functions $u_{n_{i} m_{i} l_{i}}\left(\mathbf{r}_{i}\right)$ are called central-field orbitals.

- Excercise: Show directly that (2.104) is a solution for (2.103).
- To actually find the central field orbitals, as for hydrogen states, we write $u_{n l m}(\mathbf{r})=R_{n l}(r) Y_{l m}(\theta, \phi)$ with $Y_{l m}$ exact same as for H (spherical harmonics), but $R_{n l}$ determined from the radial equation:

$$
\begin{equation*}
-\frac{1}{2}\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}\right) R_{n l}(r)+\underbrace{V(r)}_{\neq} R_{n l}(r)=E_{n l} R_{n l}(r) . \tag{2.106}
\end{equation*}
$$

- Now we can use the following iterative procedure:
(i) Solve (2.106) with some trial $V\left(\mathbf{r}_{i}\right)$ to determine the $u_{a_{i}}\left(\mathbf{r}_{i}\right)$.
(ii) Use the obtained $u_{a_{i}}\left(\mathbf{r}_{i}\right)$ to infer the electron charge distributions.
(iii) Use the charge distribution to infer the screened potential $V\left(\mathbf{r}_{i}\right)$ with usual electro-statics methods.
(iv) Loop back to step (i) using the updated screened potential $V\left(\mathbf{r}_{i}\right)$.
(v) Repeat iteration until nothing changes any more.
- We will see one method that formalises this later.
- However we can learn a lot without doing the actual iteration, from two known limits:

$$
\begin{equation*}
V(r) \rightarrow-\frac{Z}{r}(\text { for } r \mapsto 0), \tag{2.107}
\end{equation*}
$$

here the electron is closer to the nucleus than all others, so no screening can take place, and

$$
\begin{equation*}
V(r) \rightarrow-\frac{Z-(N-1)}{r}(\text { for } r \mapsto \infty), \tag{2.108}
\end{equation*}
$$

here all $N-1$ other electrons are closer to the nucleus and screen its charge as much as possible.

2.4.2 Spin and Pauli-exclusion principle

- Product states $\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=u_{a_{1}}\left(\mathbf{r}_{1}\right) \ldots u_{a_{N}}\left(\mathbf{r}_{N}\right)$ do not in general satisfy the anti-symmetry requirements of Eq. (1.62) for fermions, and we have not yet included spin ($\mathbf{r}_{N} \rightarrow q_{N}$, see Eq.(2.99)).

Introduce spin-orbitals:

$$
\begin{align*}
\underbrace{u_{n l m_{l} m_{s}}}_{\equiv \alpha}(q) & =u_{n l m_{l}}(\mathbf{r})|\chi\rangle_{m_{s}} \\
& =R_{n l}(r) Y(\theta, \phi)|\chi\rangle_{m_{s}} \tag{2.109}
\end{align*}
$$

with

$$
|\chi\rangle_{+\frac{1}{2}}=|\uparrow\rangle,|\chi\rangle_{-\frac{1}{2}}=|\downarrow\rangle .
$$

In terms of these, a valid fermionic N-electron total wavefunction is given by a Slater-determinant

$$
\psi_{c}\left(q_{1}, \ldots, q_{N}\right)=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
u_{\alpha}\left(q_{1}\right) & u_{\beta}\left(q_{1}\right) & \cdots & u_{\nu}\left(q_{1}\right) \tag{2.110}\\
u_{\alpha}\left(q_{2}\right) & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
u_{\alpha}\left(q_{N}\right) & \cdots & \cdots & u_{\nu}\left(q_{N}\right)
\end{array}\right|
$$

Reminder: For matrix $A=\left\{a_{i j}\right\}$, the determinant $\operatorname{det} A=|A|=$ $\underbrace{\sum_{\sigma \epsilon S_{N}}}_{\text {ermutations }} \operatorname{sgn}(\sigma) \prod_{i=1}^{N} a_{i \sigma_{i}}$.
Permutations

- We see that this enforces antisymmetry, since determinant changes sign when we exchange two rows (math course).
- Also, if for any indices $\alpha=\beta \Longrightarrow$ det $=0$. (Since, it also changes sign if we exchange two columns. This means there can never be two electrons in the same spin-orbital.)
- Set of electron quantum numbers $[\alpha, \beta, \ldots, \nu]$ in (2.110) is called electron-configuration.
- Let us define also

$$
\mathbf{J}_{t o t}=\sum_{i=1}^{N} \mathbf{J}_{i}
$$

the total orbital angular momentum of electrons

$$
\begin{equation*}
\mathbf{L}_{t o t}=\sum_{i=1}^{N} \mathbf{L}_{i} \tag{2.111}
\end{equation*}
$$

the total spin of electrons

$$
\mathbf{S}_{t o t}=\sum_{i=1}^{N} \mathbf{S}_{i}
$$

- Note that $\left[\hat{H}_{c}, \mathbf{L}_{t o t}\right]=0,\left[\hat{H}_{c}, \hat{S}_{t o t}\right]=0$ for the central field Hamiltonian \hat{H}_{c} in Eq.(2.101).
\Longrightarrow We can in principle write all many electron eigenstates also as eigenstates of $\hat{L}_{\text {tot }}, \hat{S}_{\text {tot }}$. However, note, the the Slater determinant (2.110) is not yet in general an eigenstate of $\hat{L}_{\text {tot }}$, $\hat{S}_{\text {tot }}$.

Atomic terms A state of multi-electron atoms with well defined quantum numbers for the total angular momenta J for $\mathbf{J}_{t o t}, L$ for $\mathbf{L}_{t o t}$ and S for $\mathbf{S}_{t o t}$ is called term, denoted with a term symbol

$$
\begin{equation*}
{ }^{2 S+1} L_{J}, \tag{2.112}
\end{equation*}
$$

c.f. Example p. 24.

2.4.3 Ground state energetic ordering and periodic table

- So far we have not really solved the many-electron-atom problem since we did not yet calculate $S(\mathbf{r})$. But, most essential properties of all atoms, incorporated into the periodic table, can be understood already now, based on some $V(\mathbf{r})$ with properties (2.107)-(2.108).

Angular momentum versus screening ($N=Z$ atoms):

Revisit Eq.(2.106):

$$
\begin{equation*}
-\frac{1}{2}\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}\right) R_{n l}(r)+\underline{V(r)} R_{n l}(r)=E_{n l} R_{n l}(r) \tag{2.113}
\end{equation*}
$$

We can again combine the underlined pieces into an effective potential $V_{\text {eff }}=V(r)+\frac{l(l+1)}{2 r^{2}}$ that includes the centrifugal barrier due to angular momentum (as in section 1.2.3).

- The centrifugal potential $l(l+1) / 2 r^{2}$ pushes the wavefunction further out (to larger r), the higher the value of l.
- All higher l-states thus feel the unscreened and stronger $-Z / r$ potential less than lower l states thus energy typically increases with l.
- Energy E_{i} in Eq.(2.105) depends on n, l of all electrons (but not their m_{l}, m_{s} while we ignore fine and hyperfine structure).
\Longrightarrow electrons with the same n, l are said to belong to the same sub-shell and are also called equivalent electrons.
- For a given selection of the two numbers (n, l), there are $2(2 l+1)$ equivalent electrons (size of shell).
- To build the periodic table, we fill shells starting from low energies.

See table 8.3, Fig 8.1 of the book BJ, also follow https://ptable.com/

- $4 s$ states fill before $3 d$ (because $3 d$ has so much centrifugal potential) \dagger.
- Filled sub-shells always have zero total spin and zero total angular momentum. This is because we have to fill all possible m_{l}, m_{s} and at the same time maintain fermionic total anti-symmetry.
- Still reminiscent of the situation in Hydrogen, the binding energy of the outer electron jumps up (becomes muss less negative) whenever $n \rightarrow n+1$, this gives periodic recurrence of chemical properties, mainly determined by outermost (valence) electron and how easily it is lost.
- The confusing middle part of the periodic table (transition metals) exists due to $3 d \leftrightarrow 4 s$ swap in the energy ordering (see \dagger above) (This happens again for higher energy states $4 d \leftrightarrow 5 s, 4 f \leftrightarrow 5 d)$.
- Note that all chemical variety in the world around us is due to the Pauli exclusion principle. Without it, any atom with varying nuclear charge Z would be just in a configuration $(1 s)^{Z}$, thus all atoms would behave chemically very similar.

2.4.4 Approximation methods for many-electron systems

Thomas-Fermi theory: Assume electrons are (i) degenerate Fermi gas, (ii) numerous, (iii) can be treated in WKB/semi-classical approximation \Longrightarrow Obtain electron charge density $\rho(\mathbf{r})$ and from that $V(\mathbf{r})$ (screened potential). Not very accurate, but interesting conceptually and useful in e.g. ultra-cold gases (also Bosons, see Chapter-V). Precursor to:

Density-functional theory: (Based on theorem by Hohenberg and Kohn)
For an N-electron system with ground-state wave function $\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$, the groundstate electron density is

$$
\begin{equation*}
\rho(\mathbf{r})=\int d^{3} \mathbf{r}_{2} \int d^{3} \mathbf{r}_{3} \cdots \int d^{3} \mathbf{r}_{N}\left|\psi\left(\mathbf{r}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)\right|^{2} \tag{2.114}
\end{equation*}
$$

Then,
(a) every observable is uniquely determined by $\rho(\mathbf{r})$.
(b) there exists a functional $I[\rho]$ such that for a given potential $U(\mathbf{r})$ (felt by all e^{-}), ground state energy is minimum of

$$
E_{\mathrm{o}}[\rho]=I[\rho]+\int d^{3} \mathbf{r} U(\mathbf{r}) \rho(\mathbf{r}), \text { for } \int d^{3} \mathbf{r} \rho(\mathbf{r})=N
$$

- Useless unless we know $I[\rho]$. By now many "good" choices for $I[\rho]$ are available.
- Very successful method for quantum-chemistry/ material science.

Hartree-Fock method and the self-consistent field:

Idea: (i) Calculate $u_{n l m}(\mathbf{r})$ as in (2.105) using trial $V(\mathbf{r})$.
(ii) Calculate electron charge density $\rho(\mathbf{r})=-e \sum\left|u_{n l m}(\mathbf{r})\right|^{2}$, this gives screening $V^{\prime}(\mathbf{r})$.
(iii) Re-calculate $u_{n l m}^{\prime}(\mathbf{r})$ with new $V^{\prime}(\mathbf{r})$, iterate until converged.
(iv) In practice, this is all embedded in a many-body variational method, so won't directly recognize ρ, V.

Now, a sketch of derivation:
Use natural splitting of Hamiltonian (2.99)

$$
\hat{H}_{1}=\sum_{i=1}^{N} \hat{h}_{i}, \quad \hat{h}_{i}=-\frac{\nabla_{\mathbf{r}_{i}}^{2}}{2}-\frac{Z}{r_{i}}, \quad \hat{H}_{2}=\sum_{i<j=1}^{N} \frac{1}{r_{i j}}, \quad \hat{H}=\hat{H}_{1}+\hat{H}_{2}
$$

from variational principle (2.89), the true ground-state energy E_{0} fulfills

$$
\begin{equation*}
E_{0} \leq E[\phi]=\langle\phi| \hat{H}|\phi\rangle, \tag{2.115}
\end{equation*}
$$

but now ϕ is a many-electron Slater-determinant as in (2.110). Let us re-write

$$
\begin{equation*}
\phi\left(q_{1}, \ldots, q_{N}\right)=\sqrt{N!} \mathscr{A} \phi_{H}\left(q_{1}, \ldots, q_{N}\right) \tag{2.116}
\end{equation*}
$$

with Hartree function:

$$
\begin{equation*}
\phi_{H}\left(q_{1}, \ldots, q_{N}\right)=u_{\alpha}\left(q_{1}\right) u_{\beta}\left(q_{2}\right) \ldots u_{\nu}\left(q_{N}\right) . \tag{2.117}
\end{equation*}
$$

$u_{\alpha}\left(q_{i}\right)$ etc. are again spin-orbitals, with form yet to be determined. We also used the anti-symmetrisation operator

$$
\begin{equation*}
\mathscr{A} \cdots=\frac{1}{N!} \sum_{\mathcal{P}}(-1)^{P} \mathcal{P}[\cdots] \tag{2.118}
\end{equation*}
$$

Here the sum runs over all possible permutations \mathcal{P} of the set of integers $1 \cdots N, P$ is the sign of the perturbation, and $\mathcal{P}[\cdots]$ tells us to permute coordinates that occur within the brackets according to \mathcal{P}, i.e. $u_{\alpha}\left(q_{1}\right) u_{\beta}\left(q_{2}\right) \rightarrow u_{\alpha}\left(q_{\mathcal{P}[1]}\right) u_{\beta}\left(q_{\mathcal{P}[2]}\right)$.

We now have to evaluate $E[\phi]=\langle\phi| \hat{H}_{1}|\phi\rangle+\langle\phi| \hat{H}_{2}|\phi\rangle$ for a Slater-determinant. We will use $\left[\hat{H}_{i}, \mathscr{A}\right]=0$ (both \hat{H}_{k} are symmetric under all particle label swaps) and $\mathscr{A}^{2}=\mathscr{A}(\mathscr{A}$ is a projector, if the expression in \cdots is already anti-symmetrised, anti-symmetrising it again does nothing).

Now:

$$
\begin{aligned}
\langle\phi| \hat{H}_{1}|\phi\rangle \quad & \stackrel{E q \cdot(\underline{(2.116)}}{\underline{(}} N!\left\langle\phi_{H}\right| \mathscr{A} \hat{H}_{1} \mathscr{A}\left|\phi_{H}\right\rangle \stackrel{\left[\hat{H}_{i}, \mathscr{A}\right]}{\underline{\underline{C}}}=0 \\
& N!\left\langle\phi_{H}\right| \hat{H}_{1} \mathscr{A}^{2}\left|\phi_{H}\right\rangle \\
& \stackrel{\mathscr{A} \text { is }}{\text { projector }} N!\left\langle\phi_{H}\right| \hat{H}_{1} \mathscr{A}\left|\phi_{H}\right\rangle \stackrel{E q \cdot(2.118)}{=} \sum_{i=1}^{N} \sum_{\mathcal{P}}(-1)^{P}\left\langle\phi_{H}\right| \hat{h}_{i} \mathcal{P}\left|\phi_{H}\right\rangle
\end{aligned}
$$

Now we can check that:

$$
\left\langle\phi_{H}\right| \hat{h}_{i} \mathcal{P}\left|\phi_{H}\right\rangle= \begin{cases}\left\langle\phi_{H}\right| \hat{h}_{i}\left|\phi_{H}\right\rangle & ; \text { if } \mathcal{P}=\text { identity } \tag{2.119}\\ 0 & ; \text { else }\end{cases}
$$

To see this explicitly expand the many-body scalar product as in the next step.

$$
\begin{aligned}
&\langle\phi| \hat{H}_{1}|\phi\rangle= \sum_{i=1}^{N}\left\langle\phi_{H}\right| \hat{h}_{i}\left|\phi_{H}\right\rangle \\
& \begin{array}{l}
E q \cdot(2.117) \\
\sum_{i=1}^{N} \int \\
N
\end{array} d q_{1} \int d q_{2} \underbrace{\ldots}_{\text {No } i} \int d q_{N}\left(u_{\alpha}^{*}\left(q_{1}\right) u_{\alpha}\left(q_{1}\right)\right)\left(u_{\kappa}^{*}\left(q_{i-1}\right) u_{\kappa}\left(q_{i-1}\right)\right)\left(u_{\eta}^{*}\left(q_{i+1}\right) u_{\eta}\left(q_{i+1}\right)\right) \\
& \quad\left(u_{\nu}^{*}\left(q_{N}\right) u_{\nu}\left(q_{N}\right)\right)\left[\int d q_{i}\left(u_{\lambda}^{*}\left(q_{i}\right) \hat{h}_{i} u_{\lambda}\left(q_{i}\right)\right]\right. \\
& \begin{array}{c}
\text { all orbitals } \\
\text { orthonormal }
\end{array} \sum_{i=1}^{N}\left\langle u_{\lambda_{i}}\left(q_{i}\right)\right| \hat{h}_{i}\left|u_{\lambda_{i}}\left(q_{i}\right)\right\rangle \equiv \sum_{i=1}^{N} I_{\lambda_{i}} ; \quad \text { using an index vector } \vec{\lambda}=[\alpha, \beta, \ldots, \nu] .
\end{aligned}
$$

The $I_{\lambda_{i}}$ can be thought of as non-interacting energy of electron number i being in the spin-orbital $u_{\lambda_{i}}\left(q_{i}\right)$.

Similarly:

$$
\begin{aligned}
& \langle\phi| \hat{H}_{2}|\phi\rangle=\sum_{i<j} \sum_{\mathcal{P}}(-1)^{P} \quad \underbrace{\left\langle\phi_{H}\right| \frac{1}{r_{i j}} \mathcal{P}\left|\phi_{H}\right\rangle} \\
& \text { whenever } \mathrm{P} \text { "touches" any index } \neq i, j \text { this is }=0 \\
& \underset{\text { permutation }}{\text { only allowed }} \sum_{i<j}\left\langle\phi_{H}\right| \frac{1}{r_{i j}}\left(1-\mathcal{P}_{i j}\right)\left|\phi_{H}\right\rangle \\
& \underset{\text { above }}{\stackrel{\text { as }}{(\text { Pairs })}} \underbrace{\left\langle u_{\lambda}\left(q_{i}\right) u_{\mu}\left(q_{j}\right)\right| \frac{1}{r_{i j}}\left|u_{\lambda}\left(q_{i}\right) u_{\mu}\left(q_{j}\right)\right\rangle}_{\equiv \mathcal{J}_{\lambda \mu}}-\underbrace{\left\langle u_{\lambda}\left(q_{i}\right) u_{\mu}\left(q_{j}\right)\right| \frac{1}{r_{i j}}\left|u_{\mu}\left(q_{i}\right) u_{\lambda}\left(q_{j}\right)\right\rangle}_{\equiv \mathcal{K}_{\lambda \mu}} \\
& \text { direct term, compare Eq. (2.97) exchange term, compare Eq. (2.98) }
\end{aligned}
$$

In the second line, the only allowed permutations that don't give zero in the scalar product, is the identity (giving the 1), and $\mathcal{P}_{i j}$ which flips $i \leftrightarrow j$.

- All together, we have now obtained a much simpler looking energy functional

$$
\begin{equation*}
E[\phi]=\sum_{\lambda} I_{\lambda}+\frac{1}{2} \sum_{\lambda \mu}\left[\mathcal{J}_{\lambda \mu}-\mathcal{K}_{\lambda \mu}\right] . \tag{2.120}
\end{equation*}
$$

That consists of single particle energies I_{λ} and interaction energies J and K. The $1 / 2$ just avoids double counting of pairs.

- Now, in a more complex variational principle than used for Helium, we vary all the $u_{\lambda}\left(q_{i}\right)$ themselves:

$$
\begin{gather*}
\delta E-\sum_{\substack{\lambda \\
\text { Lagrange-multiplier } \\
(\text { see math and book })}}^{E_{\lambda}} \delta\left\langle u_{\lambda} \mid u_{\lambda}\right\rangle=0 . \tag{2.121}
\end{gather*}
$$

The Lagrange multipliers implement the constraint $\left\langle u_{\lambda} \mid u_{\lambda}\right\rangle=\delta_{\lambda \mu}$.
From variation $\delta u_{\lambda}\left(q_{i}\right)$ we obtain (see books)

Hartree-Fock equations:

$$
\begin{align*}
{\left[-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}-\frac{Z}{r_{i}}\right] u_{\lambda}\left(q_{i}\right) } & +\left[\sum_{\mu} \int d q_{j} u_{\mu}^{*}\left(q_{j}\right) \frac{1}{r_{i j}} u_{\mu}\left(q_{j}\right)\right] u_{\lambda}\left(q_{i}\right) \\
& -\left[\sum_{\mu} \int d q_{j} u_{\mu}^{*}\left(q_{j}\right) \frac{1}{r_{i j}} u_{\lambda}\left(q_{j}\right)\right] u_{\mu}\left(q_{i}\right)=E_{\lambda} u_{\lambda}\left(q_{i}\right) . \tag{2.122}
\end{align*}
$$

- Set of integer-differential, coupled equations for N spin orbitals $u_{\lambda}\left(q_{i}\right)$.
- Lagrange-multipliers E_{λ} take role of energy eigenvalues.
- We can define a direct potential

$$
V^{(d)}\left(q_{i}\right)=\sum_{\mu} \int d q_{i} u_{\mu}^{*}\left(q_{i}\right) \frac{1}{r_{i j}} u_{\mu}\left(q_{i}\right)
$$

and exchange potential (operator)

$$
V^{(e x)}\left(q_{i}\right)[f]=\sum_{\mu}\left[\int d q_{i} u_{\mu}^{*}\left(q_{i}\right) \frac{1}{r_{i j}} f\left(q_{i}\right)\right] u_{\mu}\left(q_{i}\right)
$$

such that

$$
\begin{equation*}
[-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}-\underbrace{\frac{Z}{r_{i}}+V^{(d)}-V^{(e x)}}_{\equiv V\left(q_{i}\right)}] u_{\lambda}\left(q_{i}\right)=E_{\lambda} u_{\lambda}\left(q_{i}\right) . \tag{2.123}
\end{equation*}
$$

Comparison with Eq.(2.103), $V\left(q_{i}\right)$ takes the role of central field here.

- For atoms with filled subshells, can show that $V\left(q_{i}\right)$ is indeed spherically symmetric. Otherwise not, but derivations are small.
- Solve (2.122) by iteration: Start with some trial solution $u_{\lambda}^{(0)}\left(q_{i}\right)$ (e.g. the one for Hydrogen or guessed $\left.V\left(q_{i}\right)\right)$. Then find solution of

$$
\begin{align*}
{\left[-\frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2}-\frac{Z}{r_{i}}\right] u_{\lambda}^{(1)}\left(q_{i}\right) } & +\left[\sum_{\mu} \int d q_{j} u_{\mu}^{*(0)}\left(q_{j}\right) \frac{1}{r_{i j}} u_{\mu}^{(0)}\left(q_{j}\right)\right] u_{\lambda}^{(1)}\left(q_{i}\right) \\
& -\left[\sum_{\mu} \int d q_{j} u_{\mu}^{*(0)}\left(q_{j}\right) \frac{1}{r_{i j}} u_{\lambda}^{(0)}\left(q_{j}\right)\right] u_{\mu}^{(1)}\left(q_{i}\right)=E_{\lambda} u_{\lambda}^{(1)}\left(q_{i}\right) . \tag{2.124}
\end{align*}
$$

etc. until $u_{\lambda}^{(n)}\left(q_{i}\right)$ is converged.

Example-(1) for section 2.4: Radial electron density in Neon
Define radial electron density

$$
D(r)=r^{2} \int \underbrace{d \Omega}_{\text {angles }} \rho(r)=\sum_{n l} \underbrace{q_{n l}}_{\begin{array}{c}
\text { \# of equivalent electrons } \tag{2.125}\\
\text { in subshell }(n l)
\end{array}}\left|\rho_{n l}(r)\right|^{2}
$$

Neon configuration $(1 s)^{2}(2 s)^{2}(2 p)^{6}$, thus

$$
D(r)=2\left|P_{1 s}(r)\right|^{2}+2\left|P_{2 s}(r)\right|^{2}+6\left|P_{2 p}(r)\right|^{2}
$$

which can be obtained via Eq. (2.122). The result is

2.4.5 Corrections to the central field. L-S/J-J coupling

There are two important correction terms to the central field picture discussed so far:

$$
\begin{align*}
& \hat{H}_{1}=\sum_{i<j=1}^{N} \frac{1}{r_{i j}}-\sum_{i=1}^{N}\left(\frac{Z}{r_{i}}+V\left(\mathbf{r}_{i}\right)\right) \tag{2.126}\\
& \hat{H}_{2}=\sum_{i=1}^{N} \zeta_{i}(r) \hat{L}_{i} \cdot \hat{S}_{i} \tag{2.127}
\end{align*}
$$

First is non-central field part of Hamiltonian, which we had listed as \hat{H}^{\prime} in Eq. (2.102). Second spin-orbit coupling for each electron (c.f. Eq. (2.5)), the most important of relativistic corrections neglected in Eq. (2.99).

Which one is more important depends on Z.

L-S coupling (or Russell-Sanders coupling): : Warning: L-S coupling means sth. very different from the words "spin-orbit coupling"!!
L-S coupling is used for small or intermediate Z, in this case

$$
\left|\hat{H}_{1}\right| \gg\left|\hat{H}_{2}\right| \text { (nontrivial to link this to "small } Z " \text {). }
$$

- First consider only \hat{H}_{1}. \hat{H} commutes with $\mathbf{J}_{t o t}, \mathbf{L}_{t o t}, \mathbf{S}_{t o t}$, see section 2.4.2.
- Determining which quantum numbers J, L, S are possible for a given state is nontrivial due to Pauli-exclusion principle ${ }^{0}$. Energy level with given fixed values of L, S is called a term.

Hund's rules: For ground states:

- the term with the largest possible S for a given configuration has the lowest energy; energy then goes up as S goes down.
- for a given S, the term with maximum L has the lowest energy.
- So far we considered \hat{H}_{1} only. Now we can add \hat{H}_{2} as perturbation \rightarrow Fine-structure.
- Now each term with fixed L, S splits into separate J-components, which form a multiplett.
- Landé interval rule:

$$
\begin{equation*}
E(J)-E(J-1)=\bar{A} \times J, \text { within one multiplett, } \tag{2.128}
\end{equation*}
$$

where \bar{A} is a constant. One finds $\bar{A}>0$ for less than half filled shells, so that the groundstate has the lowest allowed J. However, $\bar{A}<0$ for more than half filled shells, so that the ground-state then has the hightest allowed J.

[^0]Example-(2) for section 2.5: L-S coupling and fine-structure for two electrons

J-J coupling: This takes place for large $Z(Z \approx 80)$, then we have $\left|\hat{H}_{2}\right| \gg\left|\hat{H}_{1}\right|$.

- First: $\hat{H}_{c}+\hat{H}_{2}=\sum_{i=1}^{N} \hat{h}_{i} \rightarrow$ for each electron separately couple spin and angular momentum to j_{k}, giving orbitals $u_{n l j m_{j}}$ (based on $\hat{J}_{i}=\hat{L}_{i}+\hat{S}_{i}$).
- Second: We only then consider $\hat{H}_{c}+\hat{H}_{2}+\hat{H}_{1}$ and have to label our many-electron state with $\hat{J}=\sum_{i=1}^{N} \hat{J}_{i}$, only labelled by J.

Example-(3) for section 2.5: $J-J$ coupling

[^0]: ${ }^{0}$ e.g. see section 4 , helium ground-state can be only $L=0$, not $L=1$

