
Week 4
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

2.3 Two Electron Atoms

These include , e.g., H�
|{z}
Z=1

, He|{z}
Z=2

, Li+|{z}
Z=3

Important because they are the simplest atoms where we see the Pauli Exclusion Principle at work
(see Eq. (1.62)) and can introduce essential approximation techniques. We cannot solve any two
e� problems exactly analytically.

2.3.1 The Schrödinger Equation for two-electron atoms

We need co-ordinates for both electrons now, see diagram below.

r12 = |r1 � r2| (2.64)

r1 = |r1| (2.65)

In terms of these we write the

33



TISE (see Eq. (1.7)) for the Helium problem
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⌘Ĥ

hel

 (r1, r2)

= E (r1, r2) (2.66)

• µ = m
e

M
m

e

+M is reduced mass of the electron, me electron mass, M nuclear mass. (We used
µ = me for M ! 1 in section 1.2.3)

• Mass polarisation term rr1 · rr2 comes from separation of centre of mass coordinate. It
vanishes for M ! 1.

From now on, use atomic units:

~ = 1
1

4⇡✏0
= 1 e = 1 m|{z}

electron mass

= 1 (2.67)

(then hydrogen energy Enlm = � 1
2n2 (see Eq. (1.43)) and a0 = 1)

• The Hamiltonian is symmetric with respect to particle position interchange operator

P12 : r1|r2 �! r2|r1 (2.68)

) Also eigen-functions must have this symmetry [=be eigenfunction of P12]

)  (r1, r2) = ± (r2, r1) (2.69)

• Note, this is not the same as the complete particle exchange operation used in writing Bose/Fermi
symmetries Eq. (1.62), where we have to swap all properties, not just position.

There are two types of two electron states
Para States, wave functions spatially symmetric:

 + (r1, r2) =  + (r2, r1) (2.70)

Ortho States, wave functions spatially anti-symmetric:

 � (r1, r2) =  � (r2, r1) (2.71)
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2.3.2 Spin Wave functions and Pauli Exclusion Principle

• Now we add electron spin into the picture, it becomes essential now, not jut a small pertur-
bation as for Hydrogen.

• e� are fermions, total state must be anti-symmetric under 1,2

• Possible spin states for two electrons are: | ""i, | "#i, | #"i, | ##i, see section 1.2.2.

• Useful to move to coupled spin basis, where Ŝ = ŝ1 + ŝ2, see also section 1.2.2.

We find

Spin pair states

|S = 0,mS = 0i = 1p
2
(| "#i � | #"i)

Anti-symmetric

spin singlet (2.72)

|S = 1,mS = �1i = | ##i Symmetric (2.73)

|S = 1,mS = 0i = 1p
2
(| "#i+ | #"i) spin triplet (2.74)

|S = 1,mS = 1i = | ""i (2.75)

Solutions to the helium problem have to satisfy Eq. (2.70)-(2.71) (spatial symmetry) and Eq. (1.62)
(total fermionic symmetry). Thus all allowed solutions can be written as

 (q1, q2) =  + (r1, r2)
1p
2
(| "#i � | #"i) (Para) (2.76)

 (q1, q2) =  � (r1, r2)

8
><

>:

| ##i
1p
2
(| "#i+ | #"i)

| ""i
(Ortho) (2.77)

• Despite not actually appearing explicitly in the Hamiltonian of (2.66), the total spin dictates
which spatial symmetry the solution must have!

2.3.3 Approximate methods for 2 electron groundstate wavefunction

So far we only classified solutions according to spin and spatial symmetry, we yet have to actually
determine the symmetric and anti-symmetric eigen functions  ± (r1, r2)
Lets split Ĥhel = Ĥ0 + Ĥ 0 again, where (in atomic units, abbreviated a.u.)

Ĥ0 = �
r2

r1

2
�

r2
r2

2
� Z

r1
� Z

r2
Ĥ 0 =

1

r12
(2.78)
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Note: Atomic units save a lot of writing!
We see that the unperturbed eigen-problem Ĥ0 (0) (r1, r2) = E(0) (0) (r1, r2) is solved by the
product Ansatz:

 (0) (r1, r2) = �nlm (r1)�n0l0m0 (r2) , (2.79)

E(0) = Enlm + En0l0m0 , (2.80)

with �nlm and Enlm given by Hydrogen solutions ((1.35) and (1.43)).

• Note, that for every energy E(0), the wavefunctions with swapped indices: �n0l0m0 (r1)�nlm (r2)
are an equally valid solution. This is called ) exchange degeneracy.

• This allows us now to construct solutions satisfying Eq. (2.70)-(2.71), namely

Zero’th order approximation for Helium wavefunctions
This is also called independent particle model

 (0)
± (r1, r2) =

1p
2
[�nlm (r1)�n0l0m0 (r2)± �n0l0m0 (r1)�nlm (r2)] (2.81)

Where + =Para, and� =Ortho. Only for Para states {n0, l0,m0} = {n, l,m} is possible,
then  (0)

+ (r1, r2) = �nlm (r1)�nlm (r2).

• Gives ground-state energy of Helium| {z }
(Para only)

: E(0)
100,100 = �Z2

2

�
1
12

+ 1
12

�
= �Z2 He

= �4

So far we have completely ignored electron-electron interactions in Ĥ 0, let’s rectify this now:
PerturbationTheory

Take into account Ĥ 0 as in Eq. (1.50), focussing on the ground-state only for now:

E(1) = h (0)
± |Ĥ 0| (0)

± i (2.82)

Ground
=

state

Z
d3r1

Z
d3r2 |�100 (r1) |2| {z }

Charge density at r1

1

|r1 � r2|
|�100 (r2) |2| {z }

Charge density at r2

(2.83)

See
=

Book
......+

5

8
Z in a.u. (2.84)

In the second line above we recognize the electro-static interaction energy of the charge densities
due to electron 1 and 2.

• Now we have E(0) + E(1) = �Z2 + 5
8Z = �2.75| {z }

getting better

(”exact” -2.904)
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Variational Method
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left: Sketch of helium electron wave-functions with (yellow) and
without screening (green).
Look at

 (0)
+ (r1, r2) = �100 (r1)�100 (r2) , (2.85)

�100 (r1)
a.u.
=

Eq. (1.35)

r
Z3

⇡
exp[�Zr1] (2.86)

Now try to improve on this by introducing a screened (or e↵ective) charge Z ! Ze↵. Let us take
the trial state

 (0)
trial (r1, r2) = �trial(r1)�trial(r2)

�trial(r) =

s
Z3
e↵

⇡
exp[�Ze↵r], (2.87)

as guess for the two-electron wave function. We have to find the ”best” value of Ze↵ from variational
principle

Variational Principle

• Energy functional

E [�] =
h�|Ĥ|�i
h�|�i (2.88)

is extremal at an eigenstate  n of Ĥ, that means

�E [ n] = 0. (2.89)

• The groundstate energy E0  E [�] for any trial state �. Thus the minimal energy
we can reach by changing the parameters in our trial state, will be closest to the true
ground-state energy.
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Variational derivatives:

• �E is a variation of the energy functional: Multiply Eq. (2.88) by h�|�i and take the
total derivative wrt. the state

�Eh�|�i+ Eh��|�i+ Eh�|��i = h�|Ĥ|��i+ h��|Ĥ|�i (2.90)

(”How does the energy E[�] change for a small variation �+ �� around �?”)

• Related to functional derivative �E
��(x) (see books)

• A special variation is �E = @E
@Ze↵

�Ze↵
!
= 0

To find @E
@Ze↵

, we insert Eq. (2.87) into the energy functional Eq. (2.88):

E
h
 (0)

trial

i
= h (0)

trial| T̂1 + T̂2 �
Z

r1
� Z

r2| {z }
see QM1/ standard methods

+
1

r12
| (0)

triali = Z2
e↵ � 2ZZe↵ +

5

8
Ze↵. (2.91)

• The term involving 1/r12 gives rise to the same integral as in the perturbation theory segment
one page above.

• In the expression above, factors Z stem from the Hamiltonian, but factors of Ze↵ from the
trial function.

•
@E

@Ze↵
= 0 , Ze↵ = Z � 5

16
e↵ective charge reduced, as expected (2.92)

• Now ground state energy of Helium E [�trial] = �
�
Z � 5

16

�2
a.u.= -2.848 a.u. (even closer to

”exact” -2.904)

Screening in the Central Field approximation
Going back to independent particle model/ 0’th order P.T, we can rewrite Hamiltonians as indicated
by the vertical arrow below:

Ĥ0 Ĥ 0

�
r2

r1

2
�

r2
r2

2
� Z

r1
� Z

r2

1

r12
+

�
r2

r1

2
�

r2
r2

2
+ V (r1) + V (r2)

1

r12
� V (r1)� V (r2)�

Z

r1
� Z

r2
(2.93)

This just constitutes a re-allocation of what we call Ĥ0 and what we call Ĥ 0.
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See that if we choose the central field below for our potential energy,

V (r) = �Z � S

r
= �Ze↵

r
(2.94)

with Ze↵ = Z � 5
16 we obtain variational solution as eigenstates in 0’th order PT.2

The re-writing has e↵ectively made Ĥ 0 ”smaller”. S is the screening factor. (S = 5
16 = 0.31 for He)

• This central field concept will be even more useful for N > 2 electrons.

2.3.4 Excited States of Two electron atoms

Much of section 2.3.3 can be generalised to excited states.
Let us consider perturbation theory of:

 (0)
± (r1, r2) =

1p
2
[�100 (r1)�nlm (r2)± �nlm (r1)�100 (r2)] (2.95)

The unperturbed energy is E(0) = Enlm + E100. For the perturbed results we find:

First Order excited state with interaction energy

E(1)
± = J ±K + =para, � =ortho, (ortho not possible for ground state) (2.96)

J =

Z
d3r1d

3r2 |�100(r1)|2
1

r12
|�nlm(r2)|2 Coulomb (direct) integral (2.97)

K =

Z
d3r1d

3r2 �
⇤
100(r1)�

⇤
nlm(r2)

1

r12
�100(r2)�nlm(r1) Exchange integral (2.98)

• Using Ŝ1 · Ŝ2 = 1
2 Ŝ

2 � 3
4 , we can express the energies as

E(1)
± = J � 1

2

⇣
1 + 4Ŝ1 · Ŝ2

⌘
K ) spin dependence of energy. Note that the energy became

spin dependent because of the required allocation (2.76)-(2.77) of spatial symmetry to total
electron spin.

• When evaluating integrals we find that J > 0 (see BJ book). It also turns out that J,K
depend on n, l, hence (J ! Jnl, K ! Knl).

• Usually also K > 0 ) Thus the ortho state (S = 1) has a lower energy.

All that we have learnt so far (and some more) enters the energy level diagram of helium on the
next page:

2
Finding eigenstates of the newly arranged

ˆH0 in (2.93) proceeds as we did for finding Eq. (2.81), except in the

solution we have to replace everywhere Z ! Ze↵. Thus we obtain the solution (2.87).
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