Week (4)
 PHY 402 Atomic and Molecular Physics
 Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correctness, please contact me if you spot a mistake.

2.3 Two Electron Atoms

These include , e.g., $\underbrace{H^{-}}_{Z=1}, \underbrace{H e}_{Z=2}, \underbrace{L i^{+}}_{Z=3}$

Important because they are the simplest atoms where we see the Pauli Exclusion Principle at work (see Eq. (1.62)) and can introduce essential approximation techniques. We cannot solve any two e^{-}problems exactly analytically.

2.3.1 The Schrödinger Equation for two-electron atoms

We need co-ordinates for both electrons now, see diagram below.

$$
\begin{align*}
r_{12} & =\left|\mathbf{r}_{\mathbf{1}}-\mathbf{r}_{\mathbf{2}}\right| \tag{2.64}\\
r_{1} & =\left|\mathbf{r}_{\mathbf{1}}\right| \tag{2.65}
\end{align*}
$$

In terms of these we write the

TISE (see Eq. (1.7)) for the Helium problem

$$
\begin{align*}
& \underbrace{\left[-\frac{\hbar^{2}}{2 \mu} \nabla_{r_{1}}^{2}-\frac{\hbar^{2}}{2 \mu} \boldsymbol{\nabla}_{r_{2}}^{2}-\frac{\hbar^{2}}{M} \boldsymbol{\nabla}_{r_{1}} \cdot \boldsymbol{\nabla}_{r_{2}}-\frac{Z e^{2}}{\left(4 \pi \epsilon_{0}\right) r_{1}}-\frac{Z e^{2}}{\left(4 \pi \epsilon_{0}\right) r_{2}}+\frac{e^{2}}{\left(4 \pi \epsilon_{0}\right) r_{12}}\right]}_{\equiv \hat{H}_{h e l}} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \\
& =E \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \tag{2.66}
\end{align*}
$$

- $\mu=\frac{m_{e} M}{m_{e}+M}$ is reduced mass of the electron, m_{e} electron mass, M nuclear mass. (We used $\mu=m_{e}$ for $M \rightarrow \infty$ in section 1.2.3)
- Mass polarisation term $\boldsymbol{\nabla}_{r_{1}} \cdot \boldsymbol{\nabla}_{r_{2}}$ comes from separation of centre of mass coordinate. It vanishes for $M \rightarrow \infty$.

From now on, use atomic units:

$$
\begin{equation*}
\hbar=1 \quad \frac{1}{4 \pi \epsilon_{0}}=1 \quad \underbrace{m}_{\text {electron mass }}=1 \tag{2.67}
\end{equation*}
$$

$\left(\right.$ then hydrogen energy $E_{n l m}=-\frac{1}{2 n^{2}}\left(\right.$ see Eq. (1.43)) and $\left.a_{0}=1\right)$

- The Hamiltonian is symmetric with respect to particle position interchange operator

$$
\begin{equation*}
P_{12}: \mathbf{r}_{\mathbf{1}}\left|\mathbf{r}_{\mathbf{2}} \longrightarrow \mathbf{r}_{\mathbf{2}}\right| \mathbf{r}_{\mathbf{1}} \tag{2.68}
\end{equation*}
$$

\Rightarrow Also eigen-functions must have this symmetry [$=$ be eigenfunction of P_{12}]

$$
\begin{equation*}
\Rightarrow \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)= \pm \psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right) \tag{2.69}
\end{equation*}
$$

- Note, this is not the same as the complete particle exchange operation used in writing Bose/Fermi symmetries Eq. (1.62), where we have to swap all properties, not just position.

There are two types of two electron states

Para States, wave functions spatially symmetric:

$$
\begin{equation*}
\psi_{+}\left(\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}\right)=\psi_{+}\left(\mathbf{r}_{\mathbf{2}}, \mathbf{r}_{\mathbf{1}}\right) \tag{2.70}
\end{equation*}
$$

Ortho States, wave functions spatially anti-symmetric:

$$
\begin{equation*}
\psi_{-}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi_{-}\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right) \tag{2.71}
\end{equation*}
$$

2.3.2 Spin Wave functions and Pauli Exclusion Principle

- Now we add electron spin into the picture, it becomes essential now, not jut a small perturbation as for Hydrogen.
- e^{-}are fermions, total state must be anti-symmetric under $1 \Leftrightarrow 2$
- Possible spin states for two electrons are: $|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$, see section 1.2.2.
- Useful to move to coupled spin basis, where $\hat{S}=\hat{s_{1}}+\hat{s_{2}}$, see also section 1.2.2.

We find

Spin pair states

$$
\begin{array}{rlr}
\left|S=0, m_{S}=0\right\rangle & =\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) & \frac{\text { Anti-symmetric }}{\text { spin singlet }} \\
\left|S=1, m_{S}=-1\right\rangle & =|\downarrow \downarrow\rangle & \underline{\text { Symmetric }} \\
\left|S=1, m_{S}=0\right\rangle & =\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) & \text { spin triplet } \\
\left|S=1, m_{S}=1\right\rangle & =|\uparrow \uparrow\rangle & \tag{2.75}
\end{array}
$$

Solutions to the helium problem have to satisfy Eq. (2.70)-(2.71) (spatial symmetry) and Eq. (1.62) (total fermionic symmetry). Thus all allowed solutions can be written as

$$
\begin{align*}
& \psi\left(q_{1}, q_{2}\right)=\psi_{+}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \tag{Para}\\
& \psi\left(q_{1}, q_{2}\right)=\psi_{-}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)\left\{\begin{array}{l}
|\downarrow \downarrow\rangle \\
\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \\
|\uparrow \uparrow\rangle
\end{array}\right. \tag{2.77}
\end{align*}
$$

- Despite not actually appearing explicitly in the Hamiltonian of (2.66), the total spin dictates which spatial symmetry the solution must have!

2.3.3 Approximate methods for 2 electron groundstate wavefunction

So far we only classified solutions according to spin and spatial symmetry, we yet have to actually determine the symmetric and anti-symmetric eigen functions $\psi_{ \pm}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$
Lets split $\hat{H}_{h e l}=\hat{H}_{0}+\hat{H}^{\prime}$ again, where (in atomic units, abbreviated a.u.)

$$
\begin{equation*}
\hat{H}_{0}=-\frac{\boldsymbol{\nabla}_{r_{1}}^{2}}{2}-\frac{\boldsymbol{\nabla}_{r_{2}}^{2}}{2}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}} \quad \hat{H}^{\prime}=\frac{1}{r_{12}} \tag{2.78}
\end{equation*}
$$

Note: Atomic units save a lot of writing!
We see that the unperturbed eigen-problem $\hat{H}_{0} \psi^{(0)}\left(\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}}\right)=E^{(0)} \psi^{(0)}\left(\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}}\right)$ is solved by the product Ansatz:

$$
\begin{align*}
\psi^{(0)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) & =\phi_{n l m}\left(\mathbf{r}_{1}\right) \phi_{n^{\prime} l^{\prime} m^{\prime}}\left(\mathbf{r}_{2}\right), \tag{2.79}\\
E^{(0)} & =E_{n l m}+E_{n^{\prime} l^{\prime} m^{\prime}} \tag{2.80}
\end{align*}
$$

with $\phi_{n l m}$ and $E_{n l m}$ given by Hydrogen solutions ((1.35) and (1.43)).

- Note, that for every energy $E^{(0)}$, the wavefunctions with swapped indices: $\phi_{n^{\prime} l^{\prime} m^{\prime}}\left(\mathbf{r}_{\mathbf{1}}\right) \phi_{n l m}\left(\mathbf{r}_{\mathbf{2}}\right)$ are an equally valid solution. This is called \Rightarrow exchange degeneracy.
- This allows us now to construct solutions satisfying Eq. (2.70)-(2.71), namely

Zero'th order approximation for Helium wavefunctions

This is also called independent particle model

$$
\begin{equation*}
\psi_{ \pm}^{(0)}\left(\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}}\right)=\frac{1}{\sqrt{2}}\left[\phi_{n l m}\left(\mathbf{r}_{\mathbf{1}}\right) \phi_{n^{\prime} l^{\prime} m^{\prime}}\left(\mathbf{r}_{\mathbf{2}}\right) \pm \phi_{n^{\prime} l^{\prime} m^{\prime}}\left(\mathbf{r}_{\mathbf{1}}\right) \phi_{n l m}\left(\mathbf{r}_{\mathbf{2}}\right)\right] \tag{2.81}
\end{equation*}
$$

 then $\psi_{+}^{(0)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\phi_{n l m}\left(\mathbf{r}_{1}\right) \phi_{n l m}\left(\mathbf{r}_{\mathbf{2}}\right)$.

- Gives ground-state energy of $\underbrace{\text { Helium }}_{\text {(Para only) }}: E_{100,100}^{(0)}=-\frac{Z^{2}}{2}\left(\frac{1}{1^{2}}+\frac{1}{1^{2}}\right)=-Z^{2} \stackrel{\text { He }}{=}-4$

So far we have completely ignored electron-electron interactions in \hat{H}^{\prime}, let's rectify this now: PerturbationTheory

Take into account \hat{H}^{\prime} as in Eq. (1.50), focussing on the ground-state only for now:

$$
\begin{align*}
& E^{(1)}=\left\langle\psi_{ \pm}^{(0)}\right| \hat{H}^{\prime}\left|\psi_{ \pm}^{(0)}\right\rangle \tag{2.82}\\
& \begin{array}{c}
\text { Ground } \\
\text { state }
\end{array} \int d^{3} r_{1} \int d^{3} r_{2} \underbrace{\left|\phi_{100}\left(r_{1}\right)\right|^{2}}_{\text {Charge density at } \mathbf{r}_{1}} \frac{1}{\left|r_{1}-r_{2}\right|} \underbrace{\left|\phi_{100}\left(r_{2}\right)\right|^{2}}_{\text {Charge density at } \mathbf{r}_{2}} \tag{2.83}\\
& \quad \begin{array}{ll}
\text { See } \\
\text { Book }
\end{array} \ldots . .+\frac{5}{8} Z \quad \text { in a.u. }
\end{align*}
$$

In the second line above we recognize the electro-static interaction energy of the charge densities due to electron 1 and 2.

- Now we have $E^{(0)}+E^{(1)}=-Z^{2}+\frac{5}{8} Z=\underbrace{-2.75}_{\text {getting better }}$ ("exact"-2.904)

left: Sketch of helium electron wave-functions with (yellow) and without screening (green).
Look at

$$
\begin{align*}
\psi_{+}^{(0)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) & =\phi_{100}\left(\mathbf{r}_{\mathbf{1}}\right) \phi_{100}\left(\mathbf{r}_{\mathbf{2}}\right) \tag{2.85}\\
\phi_{100}\left(\mathbf{r}_{1}\right) & \stackrel{\text { Eq. }}{\stackrel{\text { a.u. }}{=}} \sqrt{\frac{Z^{3}}{\pi}} \exp ^{\left[-Z r_{1}\right]} \tag{2.86}
\end{align*}
$$

Now try to improve on this by introducing a screened (or effective) charge $Z \rightarrow Z_{\text {eff }}$. Let us take the trial state

$$
\begin{align*}
\psi^{(0)}{ }_{\text {trial }}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) & =\phi_{\text {trial }}\left(\mathbf{r}_{1}\right) \phi_{\text {trial }}\left(\mathbf{r}_{2}\right) \\
\phi_{\text {trial }}(\mathbf{r}) & =\sqrt{\frac{Z_{\text {eff }}^{3}}{\pi}} \exp \left[-Z_{\text {eff }} r\right] \tag{2.87}
\end{align*}
$$

as guess for the two-electron wave function. We have to find the "best" value of $Z_{\text {eff }}$ from variational principle

Variational Principle

- Energy functional

$$
\begin{equation*}
E[\phi]=\frac{\langle\phi| \hat{H}|\phi\rangle}{\langle\phi \mid \phi\rangle} \tag{2.88}
\end{equation*}
$$

is extremal at an eigenstate ψ_{n} of \hat{H}, that means

$$
\begin{equation*}
\delta E\left[\psi_{n}\right]=0 \tag{2.89}
\end{equation*}
$$

- The groundstate energy $E_{0} \leq E[\phi]$ for any trial state ϕ. Thus the minimal energy we can reach by changing the parameters in our trial state, will be closest to the true ground-state energy.

Variational derivatives:

- δE is a variation of the energy functional: Multiply Eq. (2.88) by $\langle\phi \mid \phi\rangle$ and take the total derivative wrt. the state

$$
\begin{equation*}
\delta E\langle\phi \mid \phi\rangle+E\langle\delta \phi \mid \phi\rangle+E\langle\phi \mid \delta \phi\rangle=\langle\phi| \hat{H}|\delta \phi\rangle+\langle\delta \phi| \hat{H}|\phi\rangle \tag{2.90}
\end{equation*}
$$

("How does the energy $E[\phi]$ change for a small variation $\phi+\delta \phi$ around ϕ ?")

- Related to functional derivative $\frac{\delta E}{\delta \phi(x)}$ (see books)
- A $\underline{\text { special variation }}$ is $\delta E=\frac{\partial E}{\partial Z_{\text {eff }}} \delta Z_{\text {eff }} \stackrel{!}{=} 0$

To find $\frac{\partial E}{\partial Z_{\text {eff }}}$, we insert Eq. (2.87) into the energy functional Eq. (2.88):

$$
\begin{equation*}
E\left[\psi^{(0)}{ }_{\text {trial }}\right]=\left\langle\psi^{(0)}{ }_{\text {trial }}\right| \underbrace{\hat{T}_{1}+\hat{T}_{2}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}}_{\text {see QM1/ standard methods }}+\frac{1}{r_{12}}\left|\psi^{(0)}{ }_{\text {trial }}\right\rangle=Z_{\text {eff }}^{2}-2 Z Z_{\text {eff }}+\frac{5}{8} Z_{\text {eff }} \tag{2.91}
\end{equation*}
$$

- The term involving $1 / r_{12}$ gives rise to the same integral as in the perturbation theory segment one page above.
- In the expression above, factors Z stem from the Hamiltonian, but factors of $Z_{\text {eff }}$ from the trial function.

$$
\begin{equation*}
\frac{\partial E}{\partial Z_{\text {eff }}}=0 \Leftrightarrow Z_{\text {eff }}=Z-\frac{5}{16} \quad \text { effective charge reduced, as expected } \tag{2.92}
\end{equation*}
$$

- Now ground state energy of Helium $E\left[\phi_{\text {trial }}\right]=-\left(Z-\frac{5}{16}\right)^{2}$ a.u. $=-2.848$ a.u. (even closer to "exact" -2.904)

Screening in the Central Field approximation

Going back to independent particle model/ 0'th order P.T, we can rewrite Hamiltonians as indicated by the vertical arrow below:

$$
\begin{array}{lc}
\hat{H}_{0} & \hat{H}^{\prime} \\
-\frac{\nabla_{r_{1}}^{2}}{2}-\frac{\nabla_{r_{2}}^{2}}{2}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}} & \frac{1}{r_{12}} \\
-\frac{\nabla_{r_{1}}^{2}}{2}-\frac{\nabla_{r_{2}}^{2}}{2}+V\left(r_{1}\right)+V\left(r_{2}\right) & \frac{1}{r_{12}}-V\left(r_{1}\right)-V\left(r_{2}\right)-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}
\end{array}
$$

This just constitutes a re-allocation of what we call \hat{H}_{0} and what we call \hat{H}^{\prime}.

See that if we choose the central field below for our potential energy,

$$
\begin{equation*}
V(r)=-\frac{Z-S}{r}=-\frac{Z_{\mathrm{eff}}}{r} \tag{2.94}
\end{equation*}
$$

with $Z_{\text {eff }}=Z-\frac{5}{16}$ we obtain variational solution as eigenstates in 0 'th order PT. ${ }^{2}$
The re-writing has effectively made \hat{H}^{\prime} "smaller". S is the screening factor. $\left(S=\frac{5}{16}=0.31\right.$ for He)

- This central field concept will be even more useful for $N>2$ electrons.

2.3.4 Excited States of Two electron atoms

Much of section 2.3.3 can be generalised to excited states.
Let us consider perturbation theory of:

$$
\begin{equation*}
\psi_{ \pm}^{(0)}\left(\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}}\right)=\frac{1}{\sqrt{2}}\left[\phi_{100}\left(\mathbf{r}_{1}\right) \phi_{n l m}\left(\mathbf{r}_{\mathbf{2}}\right) \pm \phi_{n l m}\left(\mathbf{r}_{1}\right) \phi_{100}\left(\mathbf{r}_{\mathbf{2}}\right)\right] \tag{2.95}
\end{equation*}
$$

The unperturbed energy is $E^{(0)}=E_{n l m}+E_{100}$. For the perturbed results we find:

First Order excited state with interaction energy

$$
\begin{align*}
E_{ \pm}^{(1)} & =J \pm K \quad+=\text { para, }-=\text { ortho, (ortho not possible for ground state) } \tag{2.96}\\
J & =\int d^{3} \mathbf{r}_{1} d^{3} \mathbf{r}_{2}\left|\phi_{100}\left(\mathbf{r}_{1}\right)\right|^{2} \frac{1}{r_{12}}\left|\phi_{n l m}\left(\mathbf{r}_{2}\right)\right|^{2} \quad \underline{\text { Coulomb (direct) integral }} \tag{2.97}\\
K & =\int d^{3} \mathbf{r}_{1} d^{3} \mathbf{r}_{2} \phi_{100}^{*}\left(\mathbf{r}_{1}\right) \phi_{n l m}^{*}\left(\mathbf{r}_{2}\right) \frac{1}{r_{12}} \phi_{100}\left(\mathbf{r}_{2}\right) \phi_{n l m}\left(\mathbf{r}_{1}\right) \quad \underline{\text { Exchange integral }} \tag{2.98}
\end{align*}
$$

- Using $\hat{\boldsymbol{S}}_{\mathbf{1}} \cdot \hat{\boldsymbol{S}}_{\mathbf{2}}=\frac{1}{2} \hat{\boldsymbol{S}}^{\mathbf{2}}-\frac{3}{4}$, we can express the energies as $E_{ \pm}^{(1)}=J-\frac{1}{2}\left(1+4 \hat{\boldsymbol{S}_{1}} \cdot \hat{\boldsymbol{S}_{\mathbf{2}}}\right) K \Rightarrow \underline{\text { spin dependence of energy. Note that the energy became }}$ spin dependent because of the required allocation (2.76)-(2.77) of spatial symmetry to total electron spin.
- When evaluating integrals we find that $J>0$ (see $B J$ book). It also turns out that J, K depend on n, l, hence $\left(J \rightarrow J_{n l}, K \rightarrow K_{n l}\right)$.
- Usually also $K>0 \Rightarrow$ Thus the ortho state $(S=1)$ has a lower energy.

All that we have learnt so far (and some more) enters the energy level diagram of helium on the next page:

[^0]Example for section 2.3: Energy level spectiom of Helium

Auger effect
[important also for X-ray interaction] with atoms

[^0]: ${ }^{2}$ Finding eigenstates of the newly arranged \hat{H}_{0} in (2.93) proceeds as we did for finding Eq. (2.81), except in the solution we have to replace everywhere $Z \rightarrow Z_{\text {eff }}$. Thus we obtain the solution (2.87).

