Week (3)

PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wiister, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

2.2 Interaction of one electron atoms with static electric and magnetic fields

Useful for: Probing, trapping, and controlling atoms

Probing fields

2.2.1 The Stark effect: (Electric fields)

Hamiltonian for electron in both electric field of core and external field:

+eE-r. (2.44)

Let us assume E = Ek (along z-axis) and constant across atom.

Hamiltonian (2.44) assumes E-field strong enough for fine-structure to be negligible.

TISE Eq. (1.7) can still be fully solved analytically without perturbation theory, exploiting
the cylindrical symmetry around the direction of E and using parabolic coordinates. see BJ
book.

e Here, we use the approach of perturbation theory, splitting the Hamiltonian into H,+ H .

Linear Stark effect:

First order energy shift of a state |nlm) from Eq. (1.50)

AE = €E - (ppim|T |Pnim) =0 v nlm. (2.45)
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e You derived this in assignment 1. The simplest way to show it, is by remembering the
symmetry of spherical harmonics under a parity operation: Y, (r) = (—=1)"¥j,,(—r), thus
they are either symmetric or anti-symmetric. Then

eE - <¢nlm‘r ’¢nlm> =cE- /dsr ’Rnl(rﬂz‘Ylm(r)’Qr
TR / 0F | Ry (— ) 2| Vi ()2 (—F)
— B / 0 | Rt (B)2](~1) Vi (F) 2(—F)

renam;r%r _ eE . <¢nlm|r ’¢nlm> (246)

The only way for this to be true is if the integral vanishes.

e Caution: We cannot apply Eq. (1.50) if states are degenerate. So the result that the first
order shift AE = 0 is valid for [100) only.

e For other state we need to think again, using Eq. (1.52) for degenerate perturbation theory.

So fix n = ne and write (dnim|eE - r|d, /) — gl as a matrix.
e.g. for no =2, Eq. (1.52) becomes

~

0 0 H 0 0 Ca00 Cano

0 0 0 0] [fCau @ | Cor-1

/ =F 2.47
Hyy 0 0 0] | Cao =21 Cao (247)

0 0 0 O Conn Con

(see also later chapter-3, dipole selection rules)

e We can use (2.46) to quickly eliminate all diagonal entries, but have to look now at non-
diagonal matrix-elements:

ek - <¢nolm| r |¢nol/m’> = €E0<¢nolm|r cos |¢n0l’m’>

00 s 27
= eEoN/ 'rQRnOl(r)arol/(r)/ df sin [G]Bm(cos[e])ﬂ’;”,(cos[e])/ depe’ ™ =M%
0 0 0

~O(1 41y ~O !

(2.48)
where N is just the collection of all normalisation factors from (1.36)-(1.37).

e We now see eEo(dn,im|rcost |, 1) ~ &y 0mm. (obtained by explicit integration or
realizing that H' is odd under parity, and [fl g ﬁz] =0)

e The only non-zero matrix element is thus H(;O = eEqs{pa00|rcost|p210) = —3eaoFEs. (do this
explicitly as an exercise, like for assignment 1)
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Linear Stark effect: After diagonalisation, we obtain the following picture

,%,J-"(L-.r_go) {-(2.10>/)
e
— 131 I ?-17 i/ tgw.'u- Jlﬁﬂ'ﬂ{rﬁf{)

(2.49)

J

e Note that the energy shift [E())| cam about in first order PT and is ~ Ey, hence there in fact
is a first order (linear) energy shift for degenerate states. Note: This is an example where the
inwalid application of degenerate PT clearly gives the wrong result.

Non-linear Stark effect: For non-degenerate states (in Hydrogen only |100)), we have to
go to second order perturbation theory to get a non-vanishing Stark effect

E,2]100)|?
AEG = [(Dnim|eFo . 2.50
100 Ei00 — Enim (2.50)
n#llm

e Technically |¢y,) includes continuum (unbound states), let’s ignore these for now.

e Asin Eq. (2.47), all matrix elements |{¢,10|eEoz|100)|? will be non-zero. Also E190— FEn10 < 0
for all n.

We then deduce AE%E) <0 and ~ (eE,)? = quadratic stark effect.

Interpretation of both variants of the Stark effect: Non-degenerate states do not possess any

permanent dipole moment (see assignment-1). However, the external field can induce one ~ E,
which then in turn interacts with the field ~ E2. In contrast, out of degenerate states you can form
superpositions (that are also energy eigenstates), which do have a non-vanishing dipole moment,
such as | ¥) = (|ns0) + |np0))/v/2, for which you did this in assignment 1. That’s why we get a
first order shift here.
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2.2.2 The Zeeman effect (Magnetic fields)

Hamiltonian for electron in electric field of core and external magnetic field:

see electro-dynamics added a in section 2.1.1

Ze? s
© 4 BEBg gL (LS . (2.51)

4meor h

1 2

e For interaction of e~ spin S with field, see Eq. (2.8).

Classical vector potential:

A = —(B xr) for a constant B-field. (2.52)

N

Insert A, p and lots of vector calculus (see book)

Ha ﬁb . I:I He
) 762 ,_I/{Eﬁ —_—

H=_"y2_ 2 L-S+2(ML+28)B+ - (Bxr)? 2,
5V 4W€Or+<(r) + - (L +28) +8m( xr) (2.53)

For H, and Hy, see Eq. (2.5) and Eq. (2.8) respectively.

Let B = B,k (along z-axis).
Now analyze Eq. (2.53) with perturbation theory depending on relative importance of terms a — e,
which depends on the state to be perturbed |¢,,,,) and the magnetic field strength |B|.

Linear Zeeman effect: (strong B-field)

e Energy due to magnetic field is large compared to fine-structure.

First neglect ﬁc and er. Then, ro = f[a + f:fb + ﬁd.

The first two just constitute the usual Hydrogen Hamiltonian Eq. (1.28) and the last part

Hy = ‘%BBO (L. +25.)

can pe expressed in terms of angular momentum z-components (and t}}us commutes with ﬁz, gz,
S?, S.. So, |uim,) ® |sms) of Eq. (1.35) are already eigenfunctions of H in Eq. (2.53), solving

ﬁo|¢nlmlsms> = Enmlms |¢nlmlsms>~

to obtain
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Zeeman-shifted energies

see Eq. (1.43)
~~

1
E’nmlmS = n + ,UBBO(ml + 2m5), mg = :|:§

(2.54)

Interpretation: L and S decouple in B-field and align to it separately.

Paschen-Back effect: (medium B-field)

We now add spin-orbit coupling H =H, = ¢(r)L - S as a perturbation.

e This is for slightly lower fields.

Can use non-degenerate perturbation theory Eq.(1.26) (see book for subtle reasons) to find

AFE = <¢nlmlsms | I:[, ’(bnlmlsmS) 255)
= <¢nlmlsm5 | C(r)(LxSx + LySy + LzSz) |¢nlmlsm5>- 256)
Use
Raising and lowering operators (BJ book 2.185)
f/:t = [A/x :Eif/y — IA/J; = (I:+ +ﬁ_)/2
Ly,=—i(Ly —L_)/2 (2.57)
La|lm) = hli(l + 1) — m(m £+ 1)Y?]|I(m + 1))
to see that the first two terms in Eq. (2.56) vanish and thus
AFE = <¢nlmlsms‘€(r) f;zgz ‘anlmlsms) = Anl'rnl'rns (258)
=h?m;ms

. o Oé2 2
with A\, = ”? Ofdr'rQ[Rnl(r)]QC(T) =7 [l(l+§)7zl+1)]§ I #0.

e Now shift dependent on [ (unlike Eq. (2.54)).

Anomalous Zeeman effect: (weak B-field, most common case)

e The name ”anomalous” is historical.

o We now consider
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H, = H, + H, + H,. with H = Hy, (still neglect er)
Eigenstates of H, are the same as for fine-structure (section 2.1.1). Can expand total angular

momentum states in terms of orbital angular momentum and spin states as section 1.2.2.

|j7l>37mj> = Z <l787mlams|j7l>mj>‘lvsaml7m5>7

-

mp,ms _
:CZ,S;ml,ms
gm;

where Cj s, .m, are Clebsch-Gordan coefficients (cgc), see section 1.2.2.
jvmj

Using the coupled j basis as for fine-structure, let us first evaluate the easy part:

AE = ($njim; | "2 (. + 52) Bo|dnjim,)

h
upB A
= pupm;jBs + T°<¢njzmj | S| Prjim,)- (2.59)

Now we need some cgc, but we only look at s = %, soj=1+ % Then

. 1 _ Z+Mj+1/2
(7_l*'2>J’&"”>“V A+ 1

1 1
l,s,my =mj =5 Ms =5

l—m;+1/2 1 -1
QZJT l,s,ml:mj+2,m5:2> (260)
and
, 1 I—m;+1/2 1 1
<] =1- 2),l,s,mj> =— %JT l,s,my=m; — 5 Ms = 2>
[l+m;+1/2 1 -1
+ mji—l—l l,s,ml:mj+2,m5:2>. (261)
We now use these two expressions in Eq. (2.59) and simplify to get
Anomalous Zeeman shift
AFE = gsupm;Bo, (2.62)

with Landé g-factor
JU+1) +s(s+2)—1(1+1)

2j(G+1)

So the number of split energy levels is now given by the number of different values for m;.

g=1+

e Even stronger fields than for Eq. (2.54) = Treat H., even neglect H;, (Landau levels).

e Even weaker fields than for Eq. (2.62) = Consider hyperfine-structure (Breit-Rabi equa-
tion).
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Example-(1) for section section 2.2: Magnetic trapping

Consider double anti-Helmholtz coil (quadrupole trap) with current I.
or?'?

M 8=0

This is designed to have a local minimum of the magnetic field strength |B(x)| at the origin
Assume a single atom is in m; = % According to Eq. (2.62) its energy is

AE = gsppm;|B(x)] (2.63)

This energy shift increases everywhere from origin = atom can be trapped at origin.

Q: Can one magnetically trap m; < 0 states?
Caution: Typical magnetic traps have so weak fields that we need to look at the Zeeman
effect of hyperfine-structure, roughly similar to Eq. (2.62) with m; — mp.

Example-(2) for section section 2.2: (see online code ”zeeman_effect_of_finestructure.m”
From strong to weak fields: The energy shifts in Eq. (2.54) and Eq. (2.62), valid for different
regimes of magnetic field strengths, depend on different quantum numbers. How does the
transitions happen for intermediate magnetic fields?

Let us consider hydrogen |2p), with spin we have 2p1, ps.
2 2

Use coupled basis A = {|2p%7m] = %>a %7 %>a %a _%>7 |%7 _%>7 |2p%7m3 = %)7 |%a -

)}

D=

In matrix form

Egyy 0 0 0
0 By 0 0
0

Hrs (Fine—Structure) —

o O O O
o O O O

o O O O

0 3
0 0 0 Eyp 0
0 0 0 E1/2 Basis—A

The energy terms on the diagonal follow from Eq. (2.25).
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Example-(2) contd.: The effect of the magnetic field is easier to capture in the uncou-
pled basis B = {|2p1,ml = %), |0, %),| - 1,%), |1,—%>, |0,—%>,| - 1,—%)}, using part d of
Hamiltonian Eq. (2.53), which gives

OO O O O
OO O O o O
OO OO oo
OO O OO
o O O O O

2h Basis—B

Here the energy terms on the diagonal follow from Eq. (2.53), part d.

To write it all into one matrix we perform a basis transform on the latter part, thus Now,
Hip = Hfs + [Aﬂﬁdﬁ;

where U is the unitary matrix converting from A to B.

Eigenvalues of H,o, from numerical diagonalisation as a function of magnetic field strength:

Mg
%4

=\
»3
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