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Week 3

PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

2.2 Interaction of one electron atoms with static electric and magnetic fields

Useful for: Probing, trapping, and controlling atoms

Probing fields

2.2.1 The Stark e↵ect: (Electric fields)

Hamiltonian for electron in both electric field of core and external field:

Ĥ =

Ĥ
oz }| {

� ~2
2m

r2 � Ze2

4⇡✏
o

r
+

Ĥ
0

z }| {
eE · r . (2.44)

• Let us assume E = E
o

k̂ (along z-axis) and constant across atom.

• Hamiltonian (2.44) assumes E-field strong enough for fine-structure to be negligible.

• TISE Eq. (1.7) can still be fully solved analytically without perturbation theory, exploiting
the cylindrical symmetry around the direction of E and using parabolic coordinates. see BJ
book.

• Here, we use the approach of perturbation theory, splitting the Hamiltonian into Ĥ
o

+ Ĥ
0
.

Linear Stark e↵ect:

First order energy shift of a state |nlmi from Eq. (1.50)

�E = eE · h�nlm|r |�nlmi = 0 8 nlm. (2.45)
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• You derived this in assignment 1. The simplest way to show it, is by remembering the
symmetry of spherical harmonics under a parity operation: Ylm(r) = (�1)lYlm(�r), thus
they are either symmetric or anti-symmetric. Then

eE · h�nlm|r |�nlmi = eE ·
Z

d3r |Rnl(r)|2|Ylm(r)|2r

r̃=�r
= eE ·

Z
d3r̃ |Rnl(�r̃)|2|Ylm(�r̃)|2(�r̃)

= eE ·
Z

d3r̃ |Rnl(r̃)|2|(�1)lYlm(r̃)|2(�r̃)

rename r̃!r
= � eE · h�nlm|r |�nlmi. (2.46)

The only way for this to be true is if the integral vanishes.

• Caution: We cannot apply Eq. (1.50) if states are degenerate. So the result that the first
order shift �E = 0 is valid for |100i only.

• For other state we need to think again, using Eq. (1.52) for degenerate perturbation theory.

So fix n = n
o

and write h�n
o

lm|eE · r |�n
o

l0m0 i ! H
0
as a matrix.

e.g. for n
o

= 2, Eq. (1.52) becomes

0

BB@

0 0 H
0
00 0

0 0 0 0
H

0
00 0 0 0
0 0 0 0

1
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0

BB@

C200

C21�1
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C211

1

CCA = E(1)
n=2

0

BB@

C200

C21�1

C210

C211

1

CCA . (2.47)

(see also later chapter-3, dipole selection rules)

• We can use (2.46) to quickly eliminate all diagonal entries, but have to look now at non-
diagonal matrix-elements:

eE · h�n0lm|r |�n0l0m0i = eE0h�n0lm|r cos ✓ |�n0l0m0i

= eE0Ñ
Z 1

0
r2Rn0l(r)rRn0l0(r)

Z ⇡

0
d✓ sin [✓]Pm

l (cos[✓])Pm0
l0 (cos[✓])

| {z }
⇠�

l(l0±1)

Z 2⇡

0
d'ei(m

0�m)'

| {z }
⇠�

mm

0

,

(2.48)

where N is just the collection of all normalisation factors from (1.36)-(1.37).

• We now see eEoh�n
o

lm|rcos✓ |�n
o

l0m0 i ⇠ �l l0±1�mm0 . (obtained by explicit integration or

realizing that Ĥ
0
is odd under parity, and [Ĥ

0
, L̂z] = 0)

• The only non-zero matrix element is thus H
0
00 = eE

o

h�200|rcos✓ |�210i = �3ea
o

E
o

. (do this
explicitly as an exercise, like for assignment 1)
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Linear Stark e↵ect: After diagonalisation, we obtain the following picture

(2.49)

• Note that the energy shift |E(1)| cam about in first order PT and is ⇠ E0, hence there in fact
is a first order (linear) energy shift for degenerate states. Note: This is an example where the
invalid application of degenerate PT clearly gives the wrong result.

Non-linear Stark e↵ect: For non-degenerate states (in Hydrogen only |100i), we have to
go to second order perturbation theory to get a non-vanishing Stark e↵ect

�E(2)
100 =

X

n 6=1,l,m

|h�nlm|eE
o

z |100i|2
E100 � Enlm

. (2.50)

• Technically |�nlmi includes continuum (unbound states), let’s ignore these for now.

• As in Eq. (2.47), all matrix elements |h�n10|eEo

z |100i|2 will be non-zero. Also E100�En10 < 0
for all n.

We then deduce �E(2)
100 < 0 and ⇠ (eE

o

)2 =) quadratic stark e↵ect.

Interpretation of both variants of the Stark e↵ect: Non-degenerate states do not possess any
permanent dipole moment (see assignment-1). However, the external field can induce one ⇠ E,
which then in turn interacts with the field ⇠ E2. In contrast, out of degenerate states you can form
superpositions (that are also energy eigenstates), which do have a non-vanishing dipole moment,
such as | i = (|ns0 i+ |np0 i)/

p
2, for which you did this in assignment 1. That’s why we get a

first order shift here.
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2.2.2 The Zeeman e↵ect (Magnetic fields)

Hamiltonian for electron in electric field of core and external magnetic field:

Ĥ =

see electro-dynamicsz }| {
1

2m

�
p+ eA

�2 � Ze2

4⇡✏
o

r
+

added a in section 2.1.1z }| {
gsµB

~ B · S+ ⇣(r)L · S . (2.51)

• For interaction of e� spin Ŝ with field, see Eq. (2.8).

Classical vector potential:

A =
1

2

�
B⇥ r

�
for a constant B-field. (2.52)

Insert A, p and lots of vector calculus (see book)

Ĥ =

Ĥ
az }| {

� ~2
2m

r2�

Ĥ
bz }| {

Ze2

4⇡✏
o

r
+

Ĥ
cz }| {

⇣(r)L · S+

Ĥ
dz }| {

µB

~
�
L+ 2S

�
B+

Ĥ
ez }| {

e2

8m

�
B⇥ r

�2
. (2.53)

For Ĥc and Ĥd, see Eq. (2.5) and Eq. (2.8) respectively.

Let B = Bok̂ (along z-axis).
Now analyze Eq. (2.53) with perturbation theory depending on relative importance of terms a� e,
which depends on the state to be perturbed |�nlmi and the magnetic field strength |B|.

Linear Zeeman e↵ect: (strong B-field)

• Energy due to magnetic field is large compared to fine-structure.

First neglect Ĥc and Ĥe. Then, Ĥo

= Ĥa + Ĥb + Ĥd.

The first two just constitute the usual Hydrogen Hamiltonian Eq. (1.28) and the last part

Ĥd =
µB

~ B0

�
L̂z + 2Ŝz

�

can be expressed in terms of angular momentum z-components (and thus commutes with L̂2, Ŝz,
Ŝ2, Ŝz. So, |�nlm

l

i ⌦ |smsi of Eq. (1.35) are already eigenfunctions of Ĥ in Eq. (2.53), solving

Ĥ
o

|�nlm
l

sm
s

i = Enm
l

m
s

|�nlm
l

sm
s

i.

to obtain
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Zeeman-shifted energies

Enm
l

m
s

=

see Eq. (1.43)
z}|{
En + µBB0(ml + 2ms), ms = ±1

2
. (2.54)

Interpretation: L and S decouple in B-field and align to it separately.

Paschen-Back e↵ect: (medium B-field)

We now add spin-orbit coupling Ĥ
0
= Ĥc = ⇣(r)L · S as a perturbation.

• This is for slightly lower fields.

Can use non-degenerate perturbation theory Eq.(1.26) (see book for subtle reasons) to find

�E = h�nlm
l

sm
s

|Ĥ 0 |�nlm
l

sm
s

i (2.55)

= h�nlm
l

sm
s

|⇣(r)(L̂xŜx + L̂yŜy + L̂zŜz) |�nlm
l

sm
s

i. (2.56)

Use

Raising and lowering operators (BJ book 2.185)

L̂± = L̂x ± iL̂y =) L̂x = (L̂+ + L̂�)/2

L̂y = �i(L̂+ � L̂�)/2 (2.57)

L̂±|lmi = ~[l(l + 1)�m(m± 1)1/2] |l(m± 1)i

to see that the first two terms in Eq. (2.56) vanish and thus

�E = h�nlm
l

sm
s

|⇣(r) L̂zŜz| {z }
=~2m

l

m
s

|�nlm
l

sm
s

i = �nlmlms (2.58)

with �nl = ~2
1R

0

drr2[Rnl(r)]2⇣(r) = �↵2Z2

n
E

n

[l(l+ 1
2
)(l+1)]

; l 6= 0.

• Now shift dependent on l (unlike Eq. (2.54)).

Anomalous Zeeman e↵ect: (weak B-field, most common case)

• The name ”anomalous” is historical.

• We now consider

29



Ĥ
o

= Ĥa + Ĥb + Ĥc with Ĥ
0
= Ĥd (still neglect Ĥe)

Eigenstates of Ĥ
o

are the same as for fine-structure (section 2.1.1). Can expand total angular
momentum states in terms of orbital angular momentum and spin states as section 1.2.2.

|j, l, s,mji =
X

m
l

,m
s

hl, s,ml,ms|j, l,mji| {z }
⌘C

l,s;m
l

,m

s

j,m

j

|l, s,ml,msi,

where C
l,s;m

l

,m

s

j,m
j

are Clebsch-Gordan coe�cients (cgc), see section 1.2.2.

Using the coupled j basis as for fine-structure, let us first evaluate the easy part:

�E = h�njlm
j

| µB

~ (Ĵz + Ŝz)Bo

|�njlm
j

i

= µBmjBo

+
µBBo

~ h�njlm
j

| Ŝz |�njlm
j

i. (2.59)

Now we need some cgc, but we only look at s = 1
2 , so j = l ± 1

2 . Then

�����

⇣
j = l +

1

2

⌘
, l, s,mj

+
=

r
l +mj + 1/2

2l + 1

�����l, s,ml = mj �
1

2
,ms =

1

2

+

+

r
l �mj + 1/2

2l + 1

�����l, s,ml = mj +
1

2
,ms =

�1

2

+
(2.60)

and
�����

⇣
j = l � 1

2

⌘
, l, s,mj

+
= �

r
l �mj + 1/2

2l + 1

�����l, s,ml = mj �
1

2
,ms =

1

2

+

+

r
l +mj + 1/2

2l + 1

�����l, s,ml = mj +
1

2
,ms =

�1

2

+
. (2.61)

We now use these two expressions in Eq. (2.59) and simplify to get

Anomalous Zeeman shift
�E = gsµBmjBo

, (2.62)

with Landé g-factor

g = 1 +
j(j + 1) + s(s+ 2)� l(l + 1)

2j(j + 1)
.

So the number of split energy levels is now given by the number of di↵erent values for mj .

• Even stronger fields than for Eq. (2.54) =) Treat Ĥe, even neglect Ĥb (Landau levels).

• Even weaker fields than for Eq. (2.62) =) Consider hyperfine-structure (Breit-Rabi equa-
tion).

30



Example-(1) for section section 2.2: Magnetic trapping

Consider double anti-Helmholtz coil (quadrupole trap) with current I.

This is designed to have a local minimum of the magnetic field strength |B(x)| at the origin
Assume a single atom is in mj =

1
2 . According to Eq. (2.62) its energy is

�E = gsµBmj |B(x)| (2.63)

This energy shift increases everywhere from origin =) atom can be trapped at origin.

Q: Can one magnetically trap mj < 0 states?
Caution: Typical magnetic traps have so weak fields that we need to look at the Zeeman
e↵ect of hyperfine-structure, roughly similar to Eq. (2.62) with mj ! mF .

Example-(2) for section section 2.2: (see online code ”zeeman e↵ect of finestructure.m”
From strong to weak fields: The energy shifts in Eq. (2.54) and Eq. (2.62), valid for di↵erent
regimes of magnetic field strengths, depend on di↵erent quantum numbers. How does the
transitions happen for intermediate magnetic fields?

Let us consider hydrogen |2pi, with spin we have 2p 1
2
, p 3

2
.

Use coupled basis A =
�
|2p 3

2
,mj =

3
2i, |

3
2 ,

1
2i, |

3
2 ,�

1
2i, |

3
2 ,�

3
2i, |2p 1

2
,mj =

1
2i, |

1
2 ,�

1
2i
 
.

In matrix form

ĤFS (Fine�Structure) =

0

BBBBBB@

E3/2 0 0 0 0 0
0 E3/2 0 0 0 0
0 0 E3/2 0 0 0
0 0 0 E3/2 0 0
0 0 0 0 E1/2 0
0 0 0 0 0 E1/2

1

CCCCCCA

Basis�A

The energy terms on the diagonal follow from Eq. (2.25).
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Example-(2) contd.: The e↵ect of the magnetic field is easier to capture in the uncou-
pled basis B =

�
|2p1,ml =

1
2i, |0,

1
2i, | � 1, 12i, |1,�

1
2i, |0,�

1
2i, | � 1,�1

2i
 
, using part d of

Hamiltonian Eq. (2.53), which gives

Ĥd =
µBBo

~

0

BBBBBB@

~
�
1 + 2 · 1

2

�
0 0 0 0 0

0 ~ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ~ 0
0 0 0 0 0 2~

1

CCCCCCA

Basis�B

.

Here the energy terms on the diagonal follow from Eq. (2.53), part d.

To write it all into one matrix we perform a basis transform on the latter part, thus Now,

Ĥtot = Ĥfs + Û †ĤdÛ ,

where Û is the unitary matrix converting from A to B.

Eigenvalues of Ĥtot, from numerical diagonalisation as a function of magnetic field strength:
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