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These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

4.6 Molecular ro-vibronic states

We now know how to calculate/ construct the molecular electronic energies/Born- Oppenheimer (BO) surfaces
E4(R) from Eq. (4.2). Insertion into (4.6) then gives us the motional eigen states of the nuclei.

In BO-approximation (where we take only a single surface s in (4.6) ) we have:

hQ
- ﬂvR + Es(R)| Fs(R) = EFs(R). (4.22)
For a di-atomic molecule electronic energies can only depend on the distance between nuclei
|R|, not on the orientation of the inter-nuclear axis (direction of R), hence Es(R) = E4(|R|) —
mathematically (4.22) is a spherically symmetric Schrodinger equation (like e.g., Hydrogen).

Thus as for Hydrogen we can write the solution as a product of an angular part and a radial part
(compare Eq. (1.35)), where the angles are defined in the sketch below.
fS
Fy(R) = =25 Hicm (0, 0)- (4.23)

o avbitrar Co-ordinate rystr
20 o R We know due to spherical symmetry that

7 lak fised the angular part is given by spherical
harmonics:

Spherical harmonics

—_——
%Km;((evcp) = YKmK(07 90)

Now we insert ((4.23)) into ((4.22)) and use the 3D Laplacian, following all the same steps as for
Hydrogen. We obtain again a Radial Schrédinger equation:

[_ h?( d?  K(K+1)

2u\dR?2 _ R?
————
*

) C(BR) — Bax )|Fik(®) =o. (4.24)

=F earlier
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e The electronic energies F4(R) take the role of the “potential energy” for the nuclei.

179
e If K > 0, the molecule is rotating about the center-point & a. x represents the centrifugal
force due to this.

e The detailed shape of F4(R) is calculated as discussed in section 4.3.
Let us consider the rough potential energy shape found in section 4.3:

The binding BO-surfaces usually have one well-
,]\ defined local minimum.

We can Taylor expand Eg(R) around this

minimum R(()s), the expansion gives the red
dashed line.

S 1 S
Es(R) = ES(R(() )) + ikS(R - Ré ))2

b d?Es(R)
* dR? |p=r’

(From now, write R((]s) = Ry.)

e Since usually it turns out that also |F5,(R)|? is non-zero only close to this minimum, we can

2 K(EK+1 2 K(K+1) .
£ <R2+>_>37L <Rg+>mEq. (4.24).

write +

We call this quantity the

Rotational energy

2 h2
—K(K+1)=—=K(K+1), 4.25
s KU+ 1) = KK+ ) (425)

Erot = 97

where I = pR% is the moment of inertia.

We can now rewrite Eq. (4.24) as harmonic oscillator TISE

—h—zd—2+1k(R—R)2—E F5(R)=0 (4.26)
2'LLdR2 2 S 0 14 1 - 9 .

where, we used the definitions
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Total energy The total energy of the molecular state £ , ;, can be decomposed into several
contribution:
electronic energy  vibrational energy rotational energy
—N =~ —
ES,V,K = E (RO) + E, + Erot,K . (427)

Here s : electronic state label
v : vibrational quantum number
K : rotational quantum number

Ry : equilibrium position.

Vibrational energy as usual

1
E, :h/,u0<1/+2> v=20,1,2,.. (4.28)

where, wy = /ks/p.

e There can be deviations from Eq. (4.28) due to an anharmonicity of F4(R) at larger vibrational
quantum numbers v, see sketch above.

Fi}(%R) Hemy (0, ) is called a ro-vibronic state.

e Di-atomic molecules can also rotate around the inter nuclear axis ¢—#<?: This is represented
within the electronic wavefunction ®(R,ry,ra,...) as non-zero A (see section 4.4).

e Rotations usually weakly couple to vibrations: Fast rotation increases centrifugal potential
~ K(K+1)/R? and can thus cause vibrations. This effect drops out if we can replace R — Ry
in Eq. (4.24). If we include it, we have to keep the centrifugal term in Eq. (4.26) and thus
also the vibrational part of the wave functions continues to depend on the rotational quantum
number K: F;(R) = Fi(R).
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Example for section 4.6: Energy-levels of diatomic molecules:

M

- i

1.- n)

~ =0 . Y-:O'?
Al Clafion G-
—C R
;_; — Kal [TI:!]
” >0

Now we know all the quantum numbers that should be allocated for molecular states (mainly
focussing on di-atomic molecules for simplicity). Just as with atoms, it is frequently convenient to
group all quantum numbers into one collective index label a = {s,v, K, mg}. This thus includes
the electronic state label s (see section 4.3), the vibrational quantum number v, the rotational
quantum number K and the z-component of rotational angular momentum (in the lab frame) mg.
Written as a wave function, the label a represents

(R
Complete molecular state: e.g., ¥, = ®,(R,ry,ro,...,TN) ]:V](%)%Km;( 0,9).
=Fs(R)

4.7 Molecular spectra

e Now we can describe all molecular states, we again ask how transitions between such states can
occur through interactions with electromagnetic radiation, and thus which shape molecular
spectra will take.

e For the same arguments as used in section 3 for the case of atoms, transitions between different
molecular states (a = {s,v, K, mg}) are governed by the
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Mbolecular dipole-moment operator:

D= e( Z ZiRi — Z rj) (4.29)

where, R, : positions of nuclei

r; : positions of electrons.

Unlike the case for atoms, where always (¢, |(—er)|¢,) = 0, molecules can have a

permanent electric dipole-moment

Doy = (thaDltha) # 0. (4.30)

Example: Water molecule, HO:

£ N 4 .
o CPRM ™

UCecs
n ‘/ [+ et CL“" t |D| =1.8D (D = Debye)
(emw@%pt l‘\‘ ; !
)

Dipole-moment of water:

1 Debye ~ 0.2eA

It will also be useful to consider the dipole-moment in electronic state s for a specific fixed nuclear
configuration® R:

D.(R) = (®,|D|®,) = /d?’Nri *(R,ry,19,..)DO,(R,1r1,10,...) . (4.31)

still depends on R

For the same reasons as in atoms, transitions between molecular states due to absorption or
emission of elm-radiation (which give rise to spectra) are governed by transition matrix elements:

Dy (R) = (15 D[ta). (4.32)

However, a major difference to atoms, is that for molecules we can differentiate a large number of
different types of internal transitions.

5In contrast, Eq. (4.30) contains an average over all possible nuclear configurations.
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4.7.1 Rotational transitions

Consider a transition without change of electronic or vibrational state, i.e. from a state with label
a={s,v, K,mg} to a state with label b = {s, v, K/,m,K}. Assume v = 0, i.e., vibrational ground
state.

For simplicity assume di-atomic molecule, but not necessarily a homonuclear one, e.g. CO
(this has a permanent dipole moment of 0.122 D). Also move to a ket notation for the total state

Fi(R
7/J(R» ry, ro, ...,I‘N) = q)S(R, ry,ro, ,I‘N)é)ijmK(e’so)
]
[Ve) = |[svKmg) = |s) ®|vKmg).
lect ] lei

‘We now see
Dy, = (4Dlva) = WK 'mi|  (sD|s)  [vKmg)
N——
=D,(R)
using Eq. (4.31)

- / dQ %E’m; (0, ) < /0 h dR|f50(R)\2Ds(R)> Hcmy (0, ). (4.33)

~ D;(Ry) dipole moment

at equilibrium configuration

The approximation in the last line is actually exact if the vibrational wave-packet |F3_,(R)|? =
0(R — Ryp). If, instead, the vibrational wave-packet is just a very narrow Gaussian, it still is a very
good approximation.

Now we directly see the

Rule for purely rotational transitions: = only molecules with permanent dipole mo-
ment at Ry can have purely rotational transition.

The remaining integration in Eq. (4.33) over df) gives (as for Hydrogen atom)

( 3

Rotational selection rules:

(for A = 0 states) AK =K' - K =+1 Amg = ml —mg = 0,+1. (4.34)

e Photo absorption implies angular momentum change by +1 through angular momentum
conservation.
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From Eq. (4.25), we find that photon energies matching a rotational transition are

h? h?
K
MR2 (K+1)= 21

di-atomic case more generally valid

AFE = Ert (K + 1) — Byt (K) = —(K+1) . (4.35)

Example: Microwave-Oven:
These operate typically at a frequency ~ vy = 2.4GHz — A = 12cm

Consider a water-molecule: As seen in the preceding example, it has |Dg,| # 0 and can thus
undergo purely rotational transitions.

H I~2x10*kg m? and AE = Ui (K +1) = hv. This
O a\104.45° \2{4

H Fo
1& givesuz%:420GHz or)\:%‘;:Oj mm.

Since rotations are the lowest energy excitations, the micro-wave frequency vy, is closest to
some rotational resonances and the oven hence excites rotations.
Q: Why is the oven not designed to operate precisely on the rotation resonance?

4.7.2 Ro-vibrational transitions

Next consider the slightly more general transition
a:{s,g,K,mK}—>b:{s,g/,K/,m/K}, V;él//, (4.36)
where in addition to the rotational state also the vibrational state is allowed to change.
As before we can write
Dy, = (3[Dva) = (V'K m[Ds(R)|vKmp).
Let us expand the dipole-moment around the equilibrium position
D,(R) = Ds(Ry) + VDs(Rp) - (R—Ryg) + ..., (4.37)

where VD (R) denotes the Jacobian matrix of the vector field Dg(R), defined via [V D,(Ro)]i; =
IDs,i/ORj|R=R,-

Insertion into Eq. (4.33) (however with allowing V' # v in the ket) gives

- / QA </ AR F5 (R [ D, (Ro) + VD(Ro) - (R - Ro) }f‘f (R)) om0
K ———
=4, since If Dy constant,

F,/»Fu are orthonormal (independent of R) this

(= 0 here), since we want v 7 v/ and all h.o.t. vanish.

(4.38)
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From the two statements below (4.38) we can infer the

Rule for rotational-vibrational transitions: = only molecules where the dipole-moment
changes as a function of R (= as “a function of vibrations”) can have purely ro-vibrational
transitions (without electronic state change, which means: s = s/).

If %Ds (R) is non-zero, integration over R and angles gives

r

Ro-vibrational selection rules (valid for harmonic vibrations only)

(For A = 0 states) Av=1v —v=41 AK = +1 Amg =0,£1.  (4.39)

o To see the rule Av = £1, use oscillator states for F, (R) and the recursion relation

20H,(x) =2vH,_1(x) + Hy41(x) for Hermite polynomials H, (). (4.40)

e We still need a change of rotational state AK = 41 for angular momentum conservation
(vibration does not directly affect angular momentum).

e Deviations from the rules (4.39) happen due to

— higher than linear terms of (R — Rp) in Eq. (4.38).

— anharmonicity (deviations from an oscillator potential) of E(R), see comment below
Eq. (4.28).

These deviations then weakly allow Av = £2, Av = 3, etc.

All up, photon energies matching ro-vibrational transitions are:

ﬁZ
(K +1 AK=+1 R-b h
AL — oo n +§£( +1) + ranc
~~~ 7ﬁK AK = -1 P-branch
see Eq. (4.28)
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Example: Greenhouse effect:
Earth likes to shed excess energy through IR radiation around A ~ 4 — 100 um.

Atmosphere is mostly Og, No. For No: A = ¢/1p = 6um, O2: A = ¢/vy = 3um. (dangerously
close)

These would scatter IR radiation and thus retain heat, but cannot, since D4(R) = 0 for a
homonuclear molecule due to symmetry, regardless of nuclear separation R.

However: CO2 or CHy can have VD4(Ryg) # 0 (even though also for them Ds(Rg) = 0).
— these are green house gases that scatter IR radiation.

C kotch df Fﬁ ¢ u 7’ é / COQ\ j:‘o 1' _i'*‘ 3

"
(No net dipole in equilibrium, but becomes non-zero under vibration.)
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