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Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

4.6 Molecular ro-vibronic states

We now know how to calculate/ construct the molecular electronic energies/Born- Oppenheimer (BO) surfaces
Eq(R) from Eq. (4.2). Insertion into (4.6) then gives us the motional eigen states of the nuclei.

In BO-approximation (where we take only a single surface s in (4.6) ) we have:


� ~2

2µ
rR + Es(R)

�
Fs(R) = EFs(R). (4.22)

For a di-atomic molecule electronic energies can only depend on the distance between nuclei
|R|, not on the orientation of the inter-nuclear axis (direction of R), hence Es(R) = Es(|R|) !
mathematically (4.22) is a spherically symmetric Schrödinger equation (like e.g., Hydrogen).

Thus as for Hydrogen we can write the solution as a product of an angular part and a radial part
(compare Eq. (1.35)), where the angles are defined in the sketch below.

Fs(R) =
Fs
⌫K

R
HKm

K

(✓,'). (4.23)

We know due to spherical symmetry that
the angular part is given by spherical
harmonics:

HKm
K

(✓,') =

Spherical harmonicsz }| {
YKm

K

(✓,').

Now we insert ((4.23)) into ((4.22)) and use the 3D Laplacian, following all the same steps as for
Hydrogen. We obtain again a Radial Schrödinger equation:
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✓
d2

dR2
� K(K + 1)
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| {z }
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+
�
Es(R)� Es,⌫,K| {z }

=E earlier

��
Fs
⌫K(R) = 0. (4.24)
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• The electronic energies Es(R) take the role of the “potential energy” for the nuclei.

• If K > 0, the molecule is rotating about the center-point . ⇤ represents the centrifugal
force due to this.

• The detailed shape of Es(R) is calculated as discussed in section 4.3.

Let us consider the rough potential energy shape found in section 4.3:

The binding BO-surfaces usually have one well-
defined local minimum.

We can Taylor expand Es(R) around this

minimum R(s)
0 , the expansion gives the red

dashed line.

Es(R) = Es(R
(s)
0 ) +

1

2
ks(R�R(s)

0 )2

where,

ks =
d2Es(R)

dR2

���
R=R

(s)
0

.

(From now, write R(s)
0 = R0.)

• Since usually it turns out that also |Fs
⌫k(R)|2 is non-zero only close to this minimum, we can

write + ~2
2µ

K(kK+1)
R2 ! ~2

2µ
K(K+1)

R2
0

in Eq. (4.24).

We call this quantity the

Rotational energy

Erot =
~2

2µR2
0

K(K + 1) =
~2
2I

K(K + 1), (4.25)

where I = µR2
0 is the moment of inertia.

We can now rewrite Eq. (4.24) as harmonic oscillator TISE


� ~2

2µ

d2

dR2
+

1

2
ks(R�R0)

2 � E⌫

�
Fs
⌫ (R) = 0, (4.26)

where, we used the definitions
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Total energy The total energy of the molecular state Es,⌫,k can be decomposed into several
contribution:

Es,⌫,K =

electronic energyz }| {
Es(R0) +

vibrational energyz}|{
E⌫ +

rotational energyz }| {
Erot,K . (4.27)

Here s : electronic state label

⌫ : vibrational quantum number

K : rotational quantum number

R0 : equilibrium position.

Vibrational energy as usual

E⌫ = ~!0

✓
⌫ +

1

2

◆
⌫ = 0, 1, 2, ... (4.28)

where, !0 =
p
ks/µ.

• There can be deviations from Eq. (4.28) due to an anharmonicity of Es(R) at larger vibrational
quantum numbers ⌫, see sketch above.

• Fs

⌫

(R)
R HKm

K

(✓,') is called a ro-vibronic state.

• Di-atomic molecules can also rotate around the inter nuclear axis : This is represented
within the electronic wavefunction �(R, r1, r2, ...) as non-zero ⇤ (see section 4.4).

• Rotations usually weakly couple to vibrations: Fast rotation increases centrifugal potential
⇠ K(K+1)/R2 and can thus cause vibrations. This e↵ect drops out if we can replace R ! R0

in Eq. (4.24). If we include it, we have to keep the centrifugal term in Eq. (4.26) and thus
also the vibrational part of the wave functions continues to depend on the rotational quantum
number K: Fs

⌫ (R) ! Fs
⌫K(R).
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Example for section 4.6: Energy-levels of diatomic molecules:

Now we know all the quantum numbers that should be allocated for molecular states (mainly
focussing on di-atomic molecules for simplicity). Just as with atoms, it is frequently convenient to
group all quantum numbers into one collective index label a = {s, ⌫,K,mK}. This thus includes
the electronic state label s (see section 4.3), the vibrational quantum number ⌫, the rotational
quantum number K and the z-component of rotational angular momentum (in the lab frame) mK .
Written as a wave function, the label a represents

Complete molecular state: e.g.,  a = �s(R, r1, r2, ..., rN )
Fs
⌫ (R)

R
HKm

K

(✓,')
| {z }

=F
s

(R)

.

4.7 Molecular spectra

• Now we can describe all molecular states, we again ask how transitions between such states can
occur through interactions with electromagnetic radiation, and thus which shape molecular
spectra will take.

• For the same arguments as used in section 3 for the case of atoms, transitions between di↵erent
molecular states (a = {s, ⌫,K,mK}) are governed by the
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Molecular dipole-moment operator:

D̂ = e
⇣X

i

ZiRi �
X

j

rj
⌘

(4.29)

where, Ri : positions of nuclei

ri : positions of electrons.

Unlike the case for atoms, where always h�n|(�er)|�ni = 0, molecules can have a

permanent electric dipole-moment

Daa = h a|D̂| ai 6= 0. (4.30)

Example: Water molecule, H2O:

Dipole-moment of water:

|D| = 1.85D (D = Debye)
1 Debye ⇡ 0.2eÅ

It will also be useful to consider the dipole-moment in electronic state s for a specific fixed nuclear
configuration5 R:

D̂s(R) = h�s|D̂|�si =
Z

d3Nri �
⇤
s(R, r1, r2, ...)D̂�s(R, r1, r2, ...)

| {z }
still depends on R

. (4.31)

For the same reasons as in atoms, transitions between molecular states due to absorption or
emission of elm-radiation (which give rise to spectra) are governed by transition matrix elements:

Dba(R) = h b|D̂| ai. (4.32)

However, a major di↵erence to atoms, is that for molecules we can di↵erentiate a large number of
di↵erent types of internal transitions.

5
In contrast, Eq. (4.30) contains an average over all possible nuclear configurations.
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4.7.1 Rotational transitions

Consider a transition without change of electronic or vibrational state, i.e. from a state with label
a = {s, ⌫,K,mK} to a state with label b = {s, ⌫,K 0

,m
0
K}. Assume ⌫ = 0, i.e., vibrational ground

state.

For simplicity assume di-atomic molecule, but not necessarily a homonuclear one, e.g. CO
(this has a permanent dipole moment of 0.122D). Also move to a ket notation for the total state

 (R, r1, r2, ..., rN ) = �s(R, r1, r2, ..., rN )
Fs
⌫ (R)

R
HKm

K

(✓,')

#

| ai = |s⌫KmKi = | s i|{z}
electrons

⌦ |⌫KmKi| {z }
nuclei

.

We now see

Dba = h b|D̂| ai = h⌫K 0
m

0
K | h s |D̂| s i| {z }

= Ds(R)

using Eq. (4.31)

|⌫KmKi

=

Z
d⌦H ⇤

K0m
0
K

(✓,')

✓Z 1

0
dR |Fs

⌫=0(R)|2Ds(R)

◆

| {z }
⇡ Ds(R0) dipole moment

at equilibrium configuration

HKm
K

(✓,'). (4.33)

The approximation in the last line is actually exact if the vibrational wave-packet |Fs
⌫=0(R)|2 =

�(R�R0). If, instead, the vibrational wave-packet is just a very narrow Gaussian, it still is a very
good approximation.

Now we directly see the

Rule for purely rotational transitions: ) only molecules with permanent dipole mo-
ment at R0 can have purely rotational transition.

The remaining integration in Eq. (4.33) over d⌦ gives (as for Hydrogen atom)

Rotational selection rules:

(for ⇤ = 0 states) �K = K 0 �K = ±1 �mK = m0
K �mK = 0,±1. (4.34)

• Photo absorption implies angular momentum change by ±1 through angular momentum
conservation.
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From Eq. (4.25), we find that photon energies matching a rotational transition are

�E = Erot(K + 1)� Erot(K) =
~2
µR2

0

(K + 1)

| {z }
di-atomic case

=
~2
2I

(K + 1)
| {z }

more generally valid

. (4.35)

Example: Microwave-Oven:

These operate typically at a frequency ⇠ ⌫M = 2.4GHz ! � = 12cm

Consider a water-molecule: As seen in the preceding example, it has |Daa| 6= 0 and can thus
undergo purely rotational transitions.

I ⇡ 2⇥ 10�47kg m2 and �E =
~2
2I|{z}
E0

(K + 1)
!
= h⌫. This

gives ⌫ = E0
~ = 420GHz or � = ~c

E0
= 0.7 mm.

Since rotations are the lowest energy excitations, the micro-wave frequency ⌫M is closest to
some rotational resonances and the oven hence excites rotations.
Q: Why is the oven not designed to operate precisely on the rotation resonance?

4.7.2 Ro-vibrational transitions

Next consider the slightly more general transition

a = {s, ⌫,K,mK} ! b = {s, ⌫ 0
,K

0
,m

0
K}, ⌫ 6= ⌫

0
, (4.36)

where in addition to the rotational state also the vibrational state is allowed to change.

As before we can write

Dba = h b|D| ai = h⌫ 0
K

0
m

0
K |Ds(R)|⌫KmKi.

Let us expand the dipole-moment around the equilibrium position

Ds(R) ⇡ Ds(R0) +rDs(R0) · (R�R0) + ..., (4.37)

where rDs(R) denotes the Jacobian matrix of the vector field Ds(R), defined via [rDs(R0)]ij =

@Ds,i/@Rj |R=R0 .

Insertion into Eq. (4.33) (however with allowing ⌫
0 6= ⌫ in the ket) gives

Dba =

Z
d⌦H ⇤

K0m
0
K

(✓,')

✓Z 1

0
dRFs⇤

⌫0
(R)


Ds(R0)| {z }

= �⌫0⌫ since

F⌫0 ,F⌫ are orthonormal

(= 0 here), since we want ⌫ 6= ⌫ 0

+ rDs(R0) · (R�R0)
| {z }

If Ds constant,

(independent of R) this

and all h.o.t. vanish.

�
Fs
⌫ (R)

◆
HKm

K

(✓,').

(4.38)
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From the two statements below (4.38) we can infer the

Rule for rotational-vibrational transitions: ) only molecules where the dipole-moment
changes as a function of R (= as “a function of vibrations”) can have purely ro-vibrational
transitions (without electronic state change, which means: s = s

0
).

If @
@RDs(R) is non-zero, integration over R and angles gives

Ro-vibrational selection rules (valid for harmonic vibrations only)

(For ⇤ = 0 states) �⌫ = ⌫ 0 � ⌫ = ±1 �K = ±1 �mK = 0,±1. (4.39)

• To see the rule �⌫ = ±1, use oscillator states for F⌫(R) and the recursion relation

2xH⌫(x) = 2⌫H⌫�1(x) +H⌫+1(x) for Hermite polynomials H⌫(x). (4.40)

• We still need a change of rotational state �K = ±1 for angular momentum conservation
(vibration does not directly a↵ect angular momentum).

• Deviations from the rules (4.39) happen due to

– higher than linear terms of (R�R0) in Eq. (4.38).

– anharmonicity (deviations from an oscillator potential) of Es(R), see comment below
Eq. (4.28).

These deviations then weakly allow �⌫ = ±2, �⌫ = 3, etc.

All up, photon energies matching ro-vibrational transitions are:

�E = ~!0|{z}
see Eq. (4.28)

+

(
+~2

2I (K + 1) �K = +1 R-branch

�~2
2IK �K = �1 P-branch
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Example: Greenhouse e↵ect:

Earth likes to shed excess energy through IR radiation around � ' 4� 100µm.

Atmosphere is mostly O2, N2. For N2: � = c/⌫0 = 6µm, O2: � = c/⌫0 = 3µm. (dangerously
close)

These would scatter IR radiation and thus retain heat, but cannot, since Dss(R) = 0 for a
homonuclear molecule due to symmetry, regardless of nuclear separation R.

However: CO2 or CH4 can have rDs(R0) 6= 0 (even though also for them Ds(R0) = 0).

=) these are green house gases that scatter IR radiation.

(No net dipole in equilibrium, but becomes non-zero under vibration.)
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