
Week 10
PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

4.3.1 Hund-Mulliken Molecular Orbital (MO) Method

The next simplest molecule is H2.
First let us define the co-ordinates now used:

We can then proceed by combining two molecular orbitals as in Eq. (4.9). As in Eq. (2.72), we
again have spin wavefunctions:
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We need to combine this with spatial wavefunctions as in (4.9) such that the total wavefunction is
anti-symmetric under 1$2

We shall use shorthand the �g (1) = �g (R; r1)
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Two-electron states for H2 (molecular electronic states) Out of the gerade and
ungerade orbitals (4.9), we can form four combinations for two-electron states:

1⌃+
g �A (r1, r2) = �g (1)�g (2) |�00i (4.10)

1⌃+
g �B (r1, r2) = �u (1)�u (2) |�00i (4.11)

1⌃+
u �C (r1, r2) =

1p
2
[�g (1)�u (2) + �g (2)�u (1)] |�00i (4.12)

3⌃+
u �D (r1, r2) =

1p
2
[�g (1)�u (2)� �g (2)�u (1)] |�1m

S

i with ms = 0,±1 (4.13)

• Note: We are considering the lowest molecular electronic states only [(4.9) based on electronic
ground states �1s of each separate atom].

• All states are totally antisymmetric under exchange of positions r1 $ r2 and have fixed
symmetry (g or u) under RA $ RB, which is shown as subscript in the green spectroscopic
label on the left (the rest of the label is defined only in section 4.4).

• Based on the example insection 4.2, the electronic state �A will have lowest energy

• We can again calculate E(R) as in section 4.2 to get BO-surfaces

Let’s look in more detail at �A in (4.13) and insert the details of single electron orbitals from (4.9)
We obtain

�A = �cov
A + �ion

A , (4.14)

where the first part represents covalent bonding

�cov
A =

1

2
[�1S (rA1)�1S (rB2) + �1S (rB1)�1S (rA2)] |�00i. (4.15)

We see that this essentially involves the sharing of electrons. The second part,

�ion
A =

1

2
[�1S (rA1)�1S (rA2) + �1S (rB1)�1S (rB2)] |�00i, (4.16)

is responsible for ionic bonding to do with an unequal division of charge, see sketch below.
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• As in our initial discussion of Helium, the lowest order wave functions discussed here neglect
e� � e� interactions.

They can be improved via variational principle, e.g. using the Ansatz

�trial = �A + ��B ! use variational principle to find best value of � (4.17)

If this calculation is performed, the fraction of ionic binding in H2 turns out as only 0.2
(compared to 0.5 in (4.14)).

• Instead of first assembling molecular orbitals (MOs) (4.9) out of atomic orbitals and then
from MOs create molecular electronic states (4.13), we can also skip (4.9) and directly write
a guess or variational Ansatz for molecular electronic states in terms of the original atomic
orbitals.
,! This is called Heitler - London / Valence Bond Method.

• Some even more sophisticated methods for the calculation of molecular electronic states are
the Hartree-Fock and DFT methods that we already discussed for atoms in section 2.4.4.

4.4 Symmetries in homo-nuclear di-atomic molecules

We are anyway focussing on this type of molecule. Here we list all symmetries and resulting
classifications of electronic states.
Diagram:

• – Earlier around an atomic nucleus we had a spherical symmetry and could classify states
via the operators Ĥ, L̂2, L̂z

– Here, we can only use the cylindrical symmetry around the z axis, indicated by the green
circular arrow above. We thus classify states via Ĥ and L̂z only.

– Thus all electronic states of a di-atomic molecule satisfy L̂z|�s i = ~ML|�s i = ±~⇤|�s i, where we define ⇤ =
|ML| = 0, 1, 2, ...... According to this, molecular states are then given the code letters
shown in green, and a single electron in a molecular orbital the ones in red

Code Letters: ⇤ = 0, 1, 2, 3
⌃ ⇧ � �

(= Greek Capital for S P D F...)
(For single e� in MO � ⇡ � �)

84



• – The system is also symmetric under reflection o↵ x, z plane, shown as green shade above:
This swaps ML ! �ML for fixed ⇤) each quantum number ⇤ is two-fold degenarate.
This is called (⇤-doubling)

– For a molecular state with label ⌃ we thus write ⌃+, (⌃�) for symmetric (antisymmetric)
states under the swap y ! �y.

• Finally the system is also symmetric under reflection through the origin shown as • (point-reflection).
For this symmetry the feature homo-nuclear is crucial. ) The wavefunction will also be sym-
metric or anti-symmetric under this operation) This gives rise to the g(gerade), u(ungerade)
labels, as before in section 4.3.

All this information is summarized in

Molecular State Label:

Examples of these labels were found in (4.13) before. (4.18)

Example for section 4.4: Li2 Molecule:

• Li Z=3 ) We have total of 6 electrons to distribute

For atoms we were following: I Construct atomic states similar to Hydrogen
I Understand Di↵erences to Hydrogen
I Fill from low to high energy, respecting the Pauli principle.

For Molecules: I Construct Molecular states based on atoms (4.13)
I Understand di↵erences compared to atoms (Eg <Eu)
I Fill from low to high energy, respecting the Pauli principle
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:

• We can write an electron configuration of molecules, similar to what we did for atoms

Li2 :
1⌃+

g = (1s�g)
2 (1s�u)

2 (2s�g)
2 (4.19)

4.5 More General overview of chemical bonds

• Mathematically all bonds arise the same manner: We solve Eq. (4.2) (the electronic Schrödinger
equation) as a function of static nuclear nuclear co-ordinates R. If some resulting Born-
Oppenheimer surface Eq(R) has a local minimum, there may be a bond, depending on its
depth.

• However the physical interpretation for the reason of the bond may vary, depending on the
underlying electronic quantum state �q(R; r1, . . . , rn).

Chemical bonds:

Covalent:

left: Nuclei share electrons: ! larger negative charge density
in the spatial area between the nuclei. As in the sketch this is
typically important when R < ra + rb, where R is the inter-
nuclear distance and ra/b would be the size of the individual
unbound atoms. In that case the electron clouds of individual
atoms strongly overlapp.
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Ionic:

left: Nuclei transfer electrons from one to another! this causes
excess positive charge � on one of them, and excess negative
charge  on the other. Overall we obtain the usual Coulomb at-
traction with V ⇠ 1/R. This becomes more important at slightly
larger separations than for covalent bonding, when R � ra+ rb.

Van-der Waals:

left: Essentially individual atoms can polarise each other, the
resulting dipole moments (their fluctuations) then attract, which
gives rise to a potential V ⇠ 1/R6. This will be dominant at
even larger distances R� ra + rb, but an also lead to binding.

Some more peculiar bond types:

• left: Hydrogen bonding [⇡ charge reverse of a covalent
bond], e.g. DNA strands bind like this

•

left: s-p hybrid molecular orbital = |si + |pi. As
first sketched in section 3.6.1, in such a superposition the
electron on one atom is shifted into a specific direction.
Many such orbitals can be nicely formed in Carbon:
(1s)2 (2s)2 (2p)2 ! (1s)2 (2sp)4.

left: Carbon can thus shift its four valence electron into
four specific directions, for example in Methane
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