Week (0) /(1)

PHY 402 Atomic and Molecular Physics
Instructor: Sebastian Wister, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correct-
ness, please contact me if you spot a mistake.

0 Administrative affairs

(i) Office: ABI - 014
Phone: 1213
Email: sebastian@iiserb.ac.in
Office hours: Tue 3-6 p.m.
webpage: |http://home.iiserb.ac.in/~sebastian/teaching.html

(ii) Literature:

Demtroder, ”Atoms, Molecules and Photons” [DT]

Brandsen and Joachain, ”Physics of Atoms and Molecules” [B&J]
Atkins, Friedman, "Molecular quantum mechanics”

Shankar, ”Principles of quantum mechanics” [Shankar]

Griffiths, ”Introduction to quantum mechanics”

Sakurai, "Modern quantum mechanics”

There is no primary text-book, I collect material from wherever I find it best covered case-
by-case.

(iii) Assessment:

Surprise Quizzes: 10% These are "open notes” quizzes, so please always bring yours.
Times are random. These will be simple questions on material of maybe the last week’s
lecture to motivate attendance and continuously keeping on top of the material.

Assignments: 20% 1 don’t mind you working in groups. However, every student
must hand in one seperate personally handwritten solution. It should be tidy and with
commented steps. TA is authorised to deduct marks for messy presentation and blatant
copying.

Mid-Sem exam: 20%

Final exam: 50% The exam will try to test understanding of the essential physics con-
cepts taught, not maths. For guidance regarding what are the most important concepts
look at the quizzes and assignments of this and last year. All exams will be designed to
give a significant advantage to those students that solved all assignments by themselves.
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1 DMotivation and Review

1.1 Toolkit for building a universe with life

Quantum Physics/
Quantum information

e (Q-Bits in quan-
tum computer

e Bose-Einstein
condensates

e Quantum simula-
tion

Material Science

e Many materials
are primarily
interrogated
via 7y  <>atom
interactions.

Astrophysics

e Spectroscopy of
Stars / Interstel-
lar dust

e Vast majority of nat-
ural science phenom-
ena can be understood
based on e”, n, p,
~ having formed into
atoms and molecules
through their interac-
tions.

Optics
optical
media

response  of

e Resonances
e Laser/Masers

e Slow light

Chemical Physics/
Quantum chemistry

e reactions

e new  molecules
(e.g. Fullerenes)

e pharmacy

e quantum-
classical tran-
sition
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Non-AMO pieces of Universe:
e Cosmology / GR

e Nuclear and particle
physics (creation and
destruction of our basic
ingredients

e Solid-state condensed-
matter: N — oo, many
atoms, crystals

Energy production

Bio-chemistry

e molecular ma-
chines

e bio-molecules
e radiation damage

e bio-compatible
imaging

Nano science

e Molecular
puters

e Nano machines

e Light harvesting
by plants, photo-

synthesis
com- Y

e Dye-sensitized
solar cells




e You will mostly not have to advance fundamental atomic- or molecular physics itself, we are

approaching a complete understanding. Exceptions are very exotic or extreme circumstances,
such as U%T.

e However you are likely to need a solid AMO background in many other physics disciplines,
and if only to understand standard experimental interrogation techniques for materials or
other objects.

e Atoms and basic molecules are fully governed by quantum mechanics: This course will thus
fully use your knowledge of QM-I/II to understand how atoms and molecules are built and
interact with their surroundings.

Course outline

)

2)

Motivation and Review: ~ 1 week
e Why is AMO compulsory course?, brief review of QM-1/QM-II

Atoms: ~ 4-5 weeks
e single e~, Rydberg atoms, fine-/ hyperfine structure, Stark/Zeeman effect, two and more e,
periodic table, brief overview of advanced methods (HT, TF, DFT...).

Interactions of atoms with electromagnetic radiation: ~ 3-4 weeks
e electronic transitions, line shapes and intensities, selection rules, scattering of light, absorption-
spontaneous and stimulated emission of photons, Rabi oscillations.

Molecules: ~ 4-5 weeks
e Born-Oppenheimer approximation, diatomic molecules, rotations and vibrations, polyatomic
molecules, chemical bonds, spectroscopy

Frontiers of modern AMO physicsﬂ ~ 2weeks
e ultra-fast processses, HHG, femtosecond lasers, strong fields, Bose-Einstein condensates, laser
cooling and trapping, atomic clocks, quantum simulation

'time permitting



1.2 Review and Notation

e See QM text-books for much more complete review.

e Please ask whenever anything is unclear here, because these concepts are essential for the rest
of the course.

1.2.1 Basic concepts of quantum-mechanics

Quantum states: Position space representation of free particle state (matter-wave)
or(r) = Aexplitk - r —wt)], reR? ¢ecC. (1.1)

comments:

e Bold face symbols denote vectors, - scalar product.

e Momentum p = hk

de-Broglie wavelength

h
AdB = — (1.2)
p|
e Frequency and energy
hk?
= — E. = hw. 1.3
=3, By (13)

for a free particle of mass m.

A: Normalisation factor, such that

/ e () = 1, (1.4)
%

where the integral runs over some finite quantisation volume V.

Operators and Observables: Quantum mechanical osbervables are represented by Hermitian
operators (O = O7), e.g.
Hamiltonian operator:

2
—V 1.
m (1.5)

Momentum operator:

b= —ihVy, (1.6)



Reminder on Operators:

e linear mapping O: f — g, for f,g functions € H, H Hilbert-space, space of normaliz-
able functions with inner product/ norm.
Example: (—ihV,)[exp (—x2)] — ih2z exp (—2?)

e analogous to matrices, which are linear maps on your common vector spaces, e.g. R3,
M:v—ow, Mv=w

e in this analogy a function can be though of as an oco-dimensional vector

Energy spectra Energy eigenstates ¢y (r) satisfy the time-independent Schrédinger equation
(TISE)

Hy(r) = Epoy(x). (1.7)

comments:
e e.g. ¢i(r) from Eq. |D and H from Eq. 1}

e A general quantum state ¥(r) can be written as superposition of eigenstates of the Hamilto-
nian (or any other Hermitian Operator)

U(r) =Y cugr(r). (1.8)
k

e Probability py to find/measure energy Fj is

2

Pk = '/d3r Pr(r)T(r)| = |erl?. (1.9)

e Expectation value / mean value of E in the state ¥(r):

B = (i) = /d3r W) HU(r) = S (e B (1.10)

k



More on states and operators: We can also use abstract quantum states (bra/ket) to write

H|¢r) = Ei| ¢r) (1.11)

instead of Eq. ([1.7)). This leaves out the specification of a basis (or representation) for the quantum
state. We can recover the usual position space representation

or(r) = (r|dp) (1.12)
and momentum space representation
P(P) = (P ok ). (1.13)

through equally abstract position and momentum space bases |r) and |p).

Importantly, many operators do not commute, for example
[7,p] = #p — pP = ih # 0. (1.14)

In those cases the corresponding observables (here momentum and position) cannot be known
(measured) simultaneously.

1.2.2 Orbital angular momentum and Spin

Orbital angular momentum The operator L for orbital angular momentum is defined
analogous to classical physics

A~

L=1#xp, (1.15)
[[A/i, IA/J} = ihez‘jkﬁk (116)

Eigenstates | [, m ) are defined by the angular momentum quantum number [ and the one for
the z-component m.

L2 1,m) =2+ 1)]1,m), (1.17)
L.|l,m) = hm|l,m). (1.18)

Spin Spin S is an ”abstract” angular momentum. That means it fulfills the angular mo-
mentum commutation relations

[S;, ;] = iheiji Sk, (1.19)

just like Eq. (1.16), but there is no underlying relation Eq. (1.15).
Spin-states | s, ms ) are defined analogously to orbital angular momentum.

82| s,ms ) = h2s(s +1)| s,ms ), (1.20)
S.|s,ms) = hmg| s, ms). (1.21)




comments:

e The concept of spin arises naturally when doing relativistic quantum mechanics for charged

particles.
e Most frequently we will encounter spin s = % (e.g. electron spin), for which we use the
short-hand symbols [1) =|s=1,ms=3) and [|)=|s=1 m,=-1).

e It is frequently helpful to add different quantum mechanical angular momenta L; and Lo,
such as orbital angular momentum and spin of the same electron, or two different spins, or
orbital angular-momenta of two different particles.

e This is called angular momentum coupling. We define a total (or coupled) angular
momentum operator

J=L,+L, (1.22)
(where one of the L may in fact be a spin).
e This two-body problem could be described in a separate / uncoupled basis:

L2 |1y, my;ly,ma) = B2, (I, + 1)| 11, ma; 1o, ma ), (1.23)
ﬁzm‘ ll,ml;lg,m2> = hmn] ll,ml;lg,mg), n e {1,2}. (1.24)

e Sometime is is advantageous to use a combined / coupled angular momentum basis:
j2|jallal27mj>:hzj(j+1)’j7llal27mj>v (125)
jz|j7llal2,mj> :hmj|j,llal27mj>a (126)
where j is the total angular momentum quantum number, and m; the one for its z-component.

e One also finds relations how we can express one basis through the other one:

’j,ll,lQ,m]‘> = Z Cll,lz;ml,m2|ll,ml,l2>m2>- (1.27)

mi,ma 7)1

The coefficients C}, 1,.m,,m, are called Clebsch-Gordan coefficients. You can find out how to cal-
j7mj
culate them in your QM textbook or various online apps, e.g. |https://www.volya.net/index.php?id=ve

e By using the definition Eq. (1.22) and angular momentum algebra, one can find the constraints
on quantum numbers [y +1ly > j > |l; —I3] and mj = mi+mgz. This means all Clebsch-Gordan
coefficients where these relations are not fulfilled will be equal to zero.

1.2.3 The Hydrogen(ic) atom

e Hydrgen-"ic”: Like Hydrogen, but might have larger nuclear charge ¢ = Z|e|. For example
He't, with Z = 2.

e Covered in your QM courses, now also logical starting point for AMO course.

10


https://www.volya.net/index.php?id=vc

e Simplest atom and only analytically solvable one.

e Center of mass-frame: 3D problem, r = electron co-ordinate and m = electron mass in the
following. (reduced mass myeq = meM/(me + M) = m.).

T g
f\( !f ' ,1/
,/ }/,f
% ",f; \D
v i "
—‘%’{"’M?
/e X
//
e Hamiltonian
. K2 Ze? 1
VRV, Vi) = —p (1.29)
e Laplacian in 3D spherical co-ordinates r, 6, ¢ (using r = |r|)
19 o) G o) 1 9?
ViesA=—(rP= ————— | sin(0)= —_ . 1.29
r 2 Or <T 87“) T 25in (0) 90 (Sm( )ae) T 2in (0) 042 (129)
=—L2/(2r2)
e Solve TISE (|1.7)) in 3D, using separation of variables, find
Heuim(r) = Entpin (r) (1.30)
with Ansatz
¢nlm(r) = ¢nlm(7'7 97 90) = Rnl(r) }/lm(97 90) (131)
N—_——
spherical harmonics
e Spherical harmonics fulfill
L2Yi (6, ) = B*1(1 + 1)Yim (6, 0), (1.32)
. ., 0
LY (0,p) = —ih—Y;,,(0, ) = hmYy, (0, ). (1.33)

dp
Thus they are the position space representation of angular momentum states, see Eq. (1.25).

Radial Schrédinger equation: Obtained by inserting Eq. (1.31) into Eq. (1.30)

R [1d (,d R2(1+ 1)
—— e (P ) [ —F . 1.34
2m [r dr (r dr)] + 2mr? V() ( Blr) ni B (1) (1.34)

= eff(r)

11



left: Vog(r) contains the effect of a cen-
Figure 1. 4 trifugal force pushing the electron out-
wards, if [ > 0.

Energy eigenstates of Hydrogen atom

Onim () = Gnim (1,0, 0) = Ry (1) Yo, 3D wavefunction (1.35)
Ry (r) = /\/'nle_p/QplLiljllil(p) radial wavefunction. (1.36)
204+1(—m)! ,

Yim(0,0) = (=1)™4/ 4—; MP[”(COS [0])e"™? angular wavefunction (1.37)

27
p= il scaled radius (1.38)

nagon

2Z\" (n—1-1)!
Nu = \/ <nao> W normalisation factor (1.39)
L2(p) generalised /associate Laguerre polynomials (1.40)
P"(cos [0]) generalised Legendre polynomial (1.41)
dmegh? h
ap = T Bohr radius (o ~ 1/137 fine-structure constant). (1.42)
mee meca

Corresponding energy eigenvalues

472
mee*Z 2R
E,=F,=— =—-7"— 1.43
nl n 86(2)h2n2 n2 9 ( )
4
mee
R= 86§7h27 Rydberg constant (1.44)
0
Integer quantum numbers
e principal quantum number n=20,1,2,...00
¢ angular momentum quantum number I=0,...n—1
e azimuthal quantum number m=—l,...,1
e (electron spin orientation ms = —%, %)

Note, we had earlier allowed quantum numbers nl for the energy, which would be used for

12



a general central potential V' (r). In the case of the Coulomb potential (or any precise 1/r
form), there is an accidental degeneracy due to which energy does not in fact depend on I,

see Eq. (1.43).

To leading (non-relativistic) order listed above, Hydrogen energies and spatial wave functions
to not depend on spin. In chapter 2 we will see some small corrections due to spin. See also
http://falstad.com/qmatom/

P
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1.2.4 Quantum dynamics/ time-dependence

Time-dependent Schréodinger equation TDSE

i) .
i | U(E) = H(E)| (). (1.45)

e We can always write

W) =D calt) dn), (1.46)

n

where | ¢, ) is any orthonormal basis of our choice, and reduce (|1.45) to a set of coupled
10 _
ODEs for ih=—g;= = -~

¢
e If the Hamiltonian is actually time-independent H (t) = H = const, we then have

10(0)) = 3 en0) exp [—Eht] [6n), (1.47)

n

where | ¢, ) are the eigenstates from Eq. (1.7)) and ¢, (0) = (¢, | ¥(0) ) are fixed by the initial
conditions. Self-test: show this in a few lines from FEq. 41.45) and Fq. .

e If the Hamiltonian is fully time-dependent, the solution of Eq. (1.45) is generally difficult.
We can use numerical calculations, e.g. based on ([1.46), or perturbation theory.

13
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1.2.5 Approximation methods

Time-independent perturbation theory (non-degenerate)
Let

H = Hy+ \H', (1.48)

where A is a small parameter and the spectrum (eigenstates and eigenvectors) of Hy is known
Hy| gb,(go) ) = E,io)\ ¢,(€0) ) and non-degenerate.

We write the full eigen-energies and eigen-states of as
By = EY 4 BN + XEP £ ¥EY 4.
) =) + A ) + X167 ) + 0% 67 + - (1.49)

insert these expansions into the TISE (1.7)) and solve order by order in A

First order energy correction (non-degenerate PT)

El(cl) _ (ég)) ’ﬁ/’ ¢;(€0) ). (1.50)

e Beware, hidden danger!!: using this if E,go) is in fact degenerate gives wrong results. (See why

in derivation in your QM course).

Time-independent perturbation theory (degenerate)

Let us assume E}(€0) is a-fold degenerate and label the unperturbed degenerate eigenfunctions | qﬁl(g) )

forr =1, ,a. The perturbation H’ will in general break the degeneracy, yielding new eigenfunc-
tions
1 0
X)) =S crsl o). (1.51)
S

New eigenfunctions and energy shifts are found from

Diagonalisation in degenerate subspace (degenerate PT)

H -c= E,gi)c, the matrix H' has elements H,, = <¢](c(1)3 |H'| ng,(c? ) (1.52)
e The vector ¢ = [cxo, Ck1, -+, Cha)’ (! means "transposed” of the vector) contains the coeffi-

cients that give the new eigenvector in Eq. (1.51).

o H " is the perturbing Hamiltonian in the degenerate subspace.

14



Time-dependent perturbation theory
Now instead of ((1.48) we start from

H(t) = Hy + \H'(1), (1.53)
thus assuming the unperturbed Hamiltonian Hy is still time-independent. We modify ((1.47) to now

include time-dependent weights of each part

EY
W) =D cult) exp !—i - t] | én ), (1.54)

n

again with a perturbation expansion

en(t) = 9 4+ MM () + 2262 (1) + NP (t) + - -

(1.55)
If we assume our system starts in state a, that means c%o) = 0pa, Where § is the Kronecker delta,
then
First order time-dependent perturbation theory coefficients
0 9 (©
V) = &c’() ) =, (1.56)
t
) = g’tcgw = (ih) / dt’' Hj(¢') exp [iwpat']. (1.57)
0
o wpo = (B — EV) /R
0) | £ 0
o Hy, (1) = (¢ |H'(t)] 6)
Periodic perturbation
Lets look at a special case of ([1.53)) that will be important later:
AH'(t) = Aexp [iwt] + AT exp [—iwt]. (1.58)
We are starting in a (since c,S?) = 0nq as before), then the transition probability a — b to first order
PT will be given by
1 1
P = et (1)
1— exp [i( B — B + hw)t/h)
= |Aea © _ (0
By’ — By’ + hw
1—exp[i(E” — B — hw)t/n)\ |2
+ A, =P “fo)b @ Ji/1 (1.59)
Ey’ — Eq’ — hw

Here Ay, = <¢l()0) |A| QSELO) ). Now let us define the detuning hA = |Eéo) - EC(LO)| — hw, then

15



2
e for large detuning Pb(i)(t) < 1, since Ay, small and Py, ~ ‘%

e On resonance (A = 0),

Pb(i)(t) = h%]AbaPF(t, Wpa F w), where the upper sign is in the absorbing case (second term,

Eq. (1.59)), and the lower in the emitting case (first term). F(t,w) = 2smzc£7‘;’t/2}.
f/’\ v

|

r

w=0

1.2.6 Many particles

For each particle we have to add one set of co-ordinates and quantum numbers to the wave-function.
Lets denote with

q={r,ms, -} (1.60)

the collection of all such variables. For N = 2 particles, we then have to write e.g. energy eigenstates
®1(q1, q2), where the subscripts on ¢; now number the particle j.

An exemplary Hamiltonian for two equal mass particles that interact (with interaction potential
U) would be written as
2

. h
H = —%(Vfl +V2) + V(ry) + V(rg) + Ul(ry, r2). (1.61)

e Quantum mechanically we cannot distinguish identical particles, while classically we might
for example via their history, see box 1.

e Thus wave-function must be ”equivalent” under exchange of two particles o1 <> 2 (g1 <> ¢2)

e This requirement leads to ...

Symmetry requirements for wave-functions of two indistinguishable parti-
cles

V(q1,q2) = =V (g2, q1) (1.62)

+ for Bosons (=integer spin)
— for Fermions (=half-integer spin)

e Allocation to the spins is done in relativistic quantum mechanics (spin-statistics theorem).

e These symmetry properties only matter when particles try to share the same space (i.e.
0<ri,rg<L,not 0<ry <L and 3L <ry <4L).

16



e Leads to
Pauli exclusion principle: Two Fermions cannot be in the same quantum state.
(i.e. position ¥(r,r) = 0.
Bose enhancement: Bosons "like to be” in the same quantum state (see chapter 5).
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