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1. Introduction

In this expository article we will study the Lp−inequalities for Littlewood-Paley oper-
ators. These operators consist of basic tools in analysis which allow us to decompose a
function into pieces that have almost disjoint frequency supports.

2. Preliminaries and Notation

We will use the following standard notation :

• C∞(Rn)− space of infinitely differentiable functions on Rn.
• C∞c (Rn)− space of compactly supported C∞(Rn)−functions.
• S(Rn)− space of Schwartz class functions on Rn

• S ′(Rn)− space of all tempered distributions on Rn.
• Lp(Rn)− space of p−integrable functions on Rn for 0 < p <∞.
• L∞(Rn)− Banach space of essentially bounded measurable functions on Rn.

Next, we define some basic operations on function spaces which will be used frequently.

Definition 2.1. Let f, g be Lebesgue measurable functions on Rn. Define,

(1) Translation: τyf(x) := f(x− y), x, y ∈ Rn.
(2) Dilation : Dλf(x) := f(λx), λ > 0, x ∈ Rn.
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(3) Modulation: Mξf(x) := e2πix.ξf(x), ξ, y ∈ Rn.
(4) Convolution: f ∗ g(x) :=

∫
Rn f(y)g(x− y)dy, x ∈ Rn, and f, g ∈ L1(Rn).

Definition 2.2 (Fourier transform). Let f ∈ L1(Rn) then the Fourier transform of f is
defined as the function

f̂(ξ) :=

∫
Rn
f(x)e−2πix.ξdx, ξ ∈ Rn.

The Fourier transform satisfies the following relations with respect to operations of
translation, dilation, modulation, and convolution.

Proposition 2.3. Let f, g ∈ L1(Rn). Then we have

(1) τ̂yf(ξ) = e−2πiξ.yf̂(ξ) = M−yf̂(ξ), ξ, y ∈ Rn.

(2) D̂λf(ξ) = 1
λn
f̂( ξ

λ
) = 1

λn
D 1

λ
f̂(ξ), λ > 0, ξ ∈ Rn.

(3) M̂ηf(ξ) = f̂(ξ − η) = τηf̂(ξ), ξ, η ∈ Rn.

(4) f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ), ξ ∈ Rn.

Proof. The proof of Proposition 2.3 easily follows by doing a change of variables in the
definition of Fourier transform. This may be left as an exercise. �

Theorem 2.4. The Fourier transform satisfies the following Lp−estimates :

(1) ‖f̂‖L∞(Rn) ≤ ‖f‖L1(Rn), ∀f ∈ L1(Rn).

(2) ‖f̂‖L2(Rn) = ‖f‖L2(Rn), ∀f ∈ L1(Rn) ∩ L2(Rn) (Plancherel Theorem).

(3) ‖f̂‖Lp′ (Rn) ≤ ‖f‖Lp(Rn), ∀f ∈ L1(Rn) ∩ Lp(Rn), 1 < p < 2 (Hausdorff-Young

inequality), where p′ denotes the conjugate index of p and is given by 1
p

+ 1
p′

= 1.

We shall use the notation A . B if and only if A ≤ CB for some constant C > 0 and
A ' B if and only if A . B and B . A. In the later case we say that the two quantities
are equivalent.

2.1. Maximal functions.

Definition 2.5 (Hardy-Littlewood maximal function). For a locally integrable functions
f on Rn, the classical Hardy-Littlewood maximal function M(f)(x) is defined by

M(f)(x) := sup
x∈Q

1

|Q|

∫
Q

|f(y)|dy,(1)

where the supremum is taken over all n−dimensional cubes Q containing x with sides
parallel to coordinate axes and |Q| is the measure of the cube Q.

Clearly, M is a sub-linear operator and it maps L∞(Rn) into itself, i.e.,

‖Mf‖L∞(Rn) ≤ ‖f‖L∞(Rn).

The Lp−boundedness properties of the Hardy-Littlewood maximal operatorM are given
in the following theorem :

Theorem 2.6. For all functions f ∈ S(Rn), there exists a constant C > 0 such that we
have

(1) Strong type (p, p) inequality : ‖Mf‖Lp(Rn) . ‖f‖Lp(Rn), 1 < p ≤ ∞
(2) Weak type (1, 1) inequality : |{x ∈ Rn :Mf(x) > λ}| . ‖f‖L1(Rn)

λ
, ∀λ > 0
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For 0 < q <∞, define

Mq(f)(x) := (M(|f |q)(x))
1
q .(2)

Exercise 2.7. Using the result of Theorem 2.6, find values of p for which the operator
Mq maps Lp(Rn) into itself.

Definition 2.8 (Sharp maximal function). For a locally integrable functions f on Rn,
the sharp maximal function M](f)(x) is defined by

M](f)(x) := sup
x∈Q

1

|Q|

∫
Q

|f(y)− fQ|dy,(3)

where fQ stands for the average of f over Q, i.e., fQ = 1
|Q|

∫
Q
f(y)dy.

In fact, we have the following equivalence :

M](f)(x) ' sup
x∈Q

inf
a∈R

1

|Q|

∫
Q

|f(y)− a|dy.(4)

It is clear that the right hand side of (4) is ≤ M](f)(x). For the opposite inequality
observe that :

1

|Q|

∫
Q

|f(y)− fQ|dy ≤
1

|Q|

∫
Q

|f(y)− a|+ |fQ − a|dy

≤ 2

|Q|

∫
Q

|f(y)− a|dy.

This proves the opposite inequality.
Further, note that from the definition of sharp maximal function, we haveM](f)(x) ≤

2M(f)(x). Hence, the sharp maximal operator shares the same Lp boundedness properties
as the classical Hardy-Littlewood maximal operator.

2.2. Fourier multipliers.

Theorem 2.9. Let T be a bounded linear operator on L2(Rn), and let K be a function
on Rn × Rn \ {(x, x) : x ∈ Rn} such that if f ∈ L2(Rn) has compact support then

T (f)(x) =

∫
Rn
K(x, y)f(y)dy, x /∈ supp(f).

Further, suppose that K also satisfies∫
|x−y|>2|y−z|

|K(x, y)−K(x, z)|dx . 1,(5) ∫
|x−y|>2|x−z|

|K(x, y)−K(z, y)|dy . 1.(6)

Then T is of weak type (1, 1) and strong type (p, p) for all p, 1 < p <∞.

The kernel K which satisfies conditions of the above theorem, is said to be a Calderón-
Zygmund kernel and the associated operator T is called a Calderón-Zygmund operator.
If K(x, y) is the form K1(x − y), for some K1, the operator T becomes a convolution
operator f 7→ K1 ∗ f and in this case the Calderón-Zygmund theorem can be restated as
follows :
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Theorem 2.10. Let K be a tempered distribution in Rn, which coincides with a locally
integrable function on Rn \ {0} and satisfies

|K̂(ξ)| . 1,(7) ∫
|x|>2|y|

|K(x− y)−K(x)|dx . 1, y ∈ Rn.(8)

Then the operator T f = K ∗ f is of weak type (1, 1) and is bounded on Lp(Rn) for all
p, 1 < p <∞.

The condition (8) is referred to as Hörmander condition.

Exercise 2.11. Show that the Hörmander condition (8) holds if for every x 6= 0, we have

|∇K(x)| . 1

|x|n+1
.(9)

In order to avoid notational difficulties we work in one dimensional setting.

3. Littlewood-Paley square functions on R

Recall the classical Hilbert transform : For f ∈ S(R), the Hilbert transform is the
singular integral operator given by :

H(f)(x) = p.v.

∫
R
f(x− y)

dy

y
.(10)

Or equivalently, in terms of Fourier transform

Ĥ(f)(ξ) = −isgn(ξ)f̂ (ξ),(11)

where

sgn(ξ) =

 1, ξ > 0
0, ξ = 0
−1, ξ < 0.

The Hilbert transform is the prototype of Calderón-Zygmund operators. We know that
H is of weak type (1, 1) and strong type (p, p) for all p, 1 < p <∞.

Let I = [a, b] be an interval in R. Consider the linear operator given by

ŜIf(ξ) = χI(ξ)f̂(ξ), f ∈ S(R).

It is easy to show that the operator SI has the following relation with the Hilbert trans-
form :

SI =
i

2
(MaHM−a −MbHM−b).

Again, it is easy to prove that Lp boundedness properties of the Hilbert transform is
equivalent to the ones of the operator SI . Moreover, the operator norm ‖SI‖Lp→Lp is
independent of the interval I. Verify!

Recall the Plancherel theorem : For all f ∈ L2(R), we have

‖f‖2 = ‖f̂‖2.(12)

Thus for f ∈ L2, we can completely recover the quantitative information about function
f from its Fourier transform. But, this is not the case for functions in Lp, p 6= 2. Verify !
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Let {In}n∈Z be a given sequence of disjoint intervals in R such that it forms a partition
for R. Then, using Plancherel theorem, we can rewrite equation (12) as follows :

‖f‖2 =

∥∥∥∥∥∥
(∑
n∈Z

|SIn(f)|2
) 1

2

∥∥∥∥∥∥
2

.(13)

The square function on RHS in the above equation is referred as Littlewood-Paley square
function. This formulation in terms of Littlewood-Paley square functions provides a
partial substitute in Lp, p 6= 2, for results obtained from the Plancherel theorem. To be
more precise we define Littlewood-Paley square functions as follows :

Definition 3.1. Let {In}n∈Z be a sequence of disjoint intervals in R. For f ∈ S(R), the
Littlewood-Paley square function associated with the sequence {In}n∈Z is defined as

Sf(x) :=

(∑
n∈Z

|SIn(f)|2
) 1

2

.(14)

We will prove Lp boundedness properties of Littlewood-Paley square functions associ-
ated with sequence of disjoint intervals, but before proceeding further we present some
important results about vector valued extension for bounded linear operators.

3.1. Vector valued extension for bounded linear operators. We first present a
theorem due to Marcinkiewicz and Zygmund which asserts l2− extension of bounded
linear operators. This result will play an important role in the proof of our Littlewood-
Paley results. Moreover, it is interesting in its own right.

Theorem 3.2. Let T be a bounded linear operator from Lp(R) into itself. Then T admits
an l2−valued extension with norm bounded by a constant multiple of ‖T‖Lp→Lp , i.e., we
have ∥∥∥∥∥∥

(∑
n∈Z

|Tfn|2
) 1

2

∥∥∥∥∥∥
p

. ‖T‖

∥∥∥∥∥∥
(∑
n∈Z

|fn|2
) 1

2

∥∥∥∥∥∥
p

.

Proof. The proof of this theorem is an easy application of Khintchine’s inequality (see
Appendix for details).

I leave it as an exercise. Use Khintchine’s inequality for the sequence {T (fn)(x)},
to linearize the square term. Then use linearity and boundedness of the operator T to
complete the proof. �

Corollary 3.3. Let {In}n∈Z be an arbitrary sequence of intervals in R. Then for all
p, 1 < p <∞, we have∥∥∥∥∥∥

(∑
n∈Z

|SInfn|2
) 1

2

∥∥∥∥∥∥
p

. ‖T‖

∥∥∥∥∥∥
(∑
n∈Z

|fn|2
) 1

2

∥∥∥∥∥∥
p

.(15)

Proof. Let In be of the form [An, Bn]. Then we know that

SIn =
i

2
(MAnHM−An −MBnHM−Bn).

Use this relation together with the result of previous theorem to complete the proof. �

Remark 3.4. Theorem 3.2 is also valid for bounded linear operators from Lp into Lq.
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Remark 3.5. The result of Corollary 3.3 is also valid for lr−valued extension for r 6= 2,
i.e., for all p and r, 1 < p, r <∞, we have∥∥∥∥∥∥

(∑
n∈Z

|SInfn|r
) 1

r

∥∥∥∥∥∥
p

. ‖T‖

∥∥∥∥∥∥
(∑
n∈Z

|fn|r
) 1

r

∥∥∥∥∥∥
p

,(16)

where SIn is same as in Corollary 3.3. The proof of this is a consequence of vector valued
Calderón-Zygmund theorem.

4. Dyadic Littlewood-Paley theorem

Theorem 4.1. Let 1 < p <∞ and ∆n = (−2n+1,−2n] ∪ [2n, 2n+1), n ∈ Z. Then for all
f ∈ S(R), we have ∥∥∥∥∥∥

(∑
n∈Z

|S∆n(f)|2
) 1

2

∥∥∥∥∥∥
Lp(R)

' ‖f‖Lp(R).(17)

Proof. We first observe that in (17), the left hand side inequality can be deduced using
the right hand side inequality. Assume for a moment that we have proved the right hand
side inequality in (17). For nice functions f, g consider,

〈f, g〉 =

∫
R
f(x)g(x)dx

=

∫
R
f̂(ξ)ĝ(ξ)dξ

=
∑
n∈Z

∫
In

f̂(ξ)ĝ(ξ)dξ

=
∑
n∈Z

∫
R
S∆nf(x)S∆ng(x)dx.

Hence,

| 〈f, g〉 | ≤
∫
R

(∑
n∈Z

|S∆nf(x)|2
) 1

2
(∑
n∈Z

|S∆ng(x)|2
) 1

2

dx

≤

∥∥∥∥∥∥
(∑
n∈Z

|S∆nf |2
) 1

2

∥∥∥∥∥∥
Lp(R)

∥∥∥∥∥∥
(∑
n∈Z

|S∆ng|2
) 1

2

∥∥∥∥∥∥
Lp′ (R)

.

∥∥∥∥∥∥
(∑
n∈Z

|S∆nf |2
) 1

2

∥∥∥∥∥∥
Lp(R)

‖g‖Lp′ (R).

This proves the left hand side inequality in (17).
Now we proceed to prove the right hand side inequality in (17). The proof is in two steps.
Step I : In this step, we consider an appropriate smooth square function and then prove
its Lp boundedness.

Let ψ ∈ S(R) ne a non-negative function such that supp ψ ⊆ [−4,−1
2
] ∪ [1

2
, 4] and

ψ ≡ 1 on [−2,−1] ∪ [1, 2]. For n ∈ Z, define ψn(ξ) = ψ(2−nξ). Let Tn be the multiplier

operator associated with symbol ψn, i.e., T̂n(f) = ψnf̂ .
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We claim that that for all p, 1 < p <∞ we have∥∥∥∥∥∥
(∑
n∈Z

|Tn(f)|2
) 1

2

∥∥∥∥∥∥
Lp(R)

. ‖f‖Lp(R).(18)

When p = 2, inequality (18) is an easy consequence of Plancherel Theorem. For∥∥∥∥∥∥
(∑
n∈Z

|Tn(f)|2
) 1

2

∥∥∥∥∥∥
2

L2(R)

=
∑
n∈Z

∫
R
|Tn(f)(x)|2dx

=
∑
n∈Z

∫
R
|T̂n(f)(ξ)|2dξ

=
∑
n∈Z

∫
R
|ψn(ξ)f̂(ξ)|2dξ

. ‖f‖2
2.

Here in the last inequality we have used that for each fixed ξ ∈ R, at most 3 of the ψn
are non-zero and hence

∑
n∈Z
|ψn(ξ)|2 ≤ C.

We think of the inequality (18) as an l2−valued inequality for the operator T : f →
{Tn(f)} from Lp(R) into Lp(l2). We claim that this operator T is an l2−valued Calderón-
Zygmund operator. So we need to show the following

(1) T is bounded from L2 into L2(l2), which we have already seen.
(2) The kernel of T, which is given by {ψ̌n}, satisfies the Hörmander condition in l2

sense.

Set Ψn = ψ̌n, n ∈ Z. From our previous discussion we know that in order to prove the
Hörmander condition, it suffices to prove the following :

‖{Ψ′n(x)}‖l2 = (
∑
n∈Z

|Ψ′n(x)|2)
1
2 ≤ C|x|−2.(19)

Since Ψ ∈ S(R), we have |Ψ′(x)| ≤ Cmin{1, |x|−3}. Let x ∈ R be fixed. Choose i ∈ Z so
that 2−i ≤ |x| < 2−i+1. Then we have(∑

n∈Z

|Ψ′n(x)|2
) 1

2

≤
∑
n∈Z

|Ψ′n(x)|

=
∑
n∈Z

22n|Ψ′(2nx)|

≤
∑
n≤i−1

22n|Ψ′(2nx)|+
∑
n≥i

22n|Ψ′(2nx)|.

Note that 2n−i ≤ |2nx| < 2n−i+1 as 2−i ≤ |x| < 2−i+1.Hence for n ≤ i−1, min{1, |2nx|−3} =
1 and for n ≥ i, min{1, |2nx|−3} = |2nx|−3. Thus we have(∑

n∈Z

|Ψ′n(x)|2
) 1

2

≤ C

[ ∑
n≤i−1

22n + |x|−3
∑
n≥i

2−n

]
≤ C|x|−2.
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This shows that T is an l2−valued Calderón-Zygmund operator. Hence applying l2−valued
Calderón-Zygmund theorem we conclude that for all p, 1 < p <∞ the operator T maps
Lp(R) into Lp(l2). This completes the proof of estimate (18).

Step II : Observe that S∆nTnf = SInf as ψ ≡ 1 on ∆n. Now, invoke l2− valued
extension result from Theorem 3.2 together with the estimate (18) to conclude that :∥∥∥∥∥∥

(∑
n∈Z

|S∆n(f)|2
) 1

2

∥∥∥∥∥∥
Lp(R)

=

∥∥∥∥∥∥
(∑
n∈Z

|S∆nTn(f)|2
) 1

2

∥∥∥∥∥∥
Lp(R)

≤ C

∥∥∥∥∥∥
(∑
n∈Z

|Tn(f)|2
) 1

2

∥∥∥∥∥∥
Lp(R)

. ‖f‖Lp(R).

This finishes the proof of Theorem 4.1. �

Exercise 4.2. Let {εn}n∈Z be a random sequence of ±1. Consider m(ξ) =
∑
n∈Z

εnψn, where

ψn is the same as in the proof of previous theorem. Set K = m̌. Prove that

(1) supξ∈R |m(ξ)| . 1,

(2) |K(x)| . 1
|x| ,

(3) |K ′(x)| . 1
|x|2 .

Exercise 4.3. Let {λn}n∈Z be a lacunary sequence of positive real numbers, i.e., there

exists a number δ > 1 such that λn+1

λn
≥ δ for all n ∈ Z. Consider ∆n = [−λn+1,−λn] ∪

[λn, λn+1]. Imitating the proof of Theorem 4.1, prove the analogue of Theorem 4.1 for this
sequence of intervals.

Exercise 4.4. Let {εn} be a random sequence of ±1. Consider m(ξ) =
∑
n∈Z

εnχ∆n , where

∆n is a lacunary sequence of intervals as defined earlier. Prove that m is an Lp−multiplier
for all p, 1 < p <∞.

Exercise 4.5. Let D denote the collection of dyadic rectangles in R2, i.e., D = {I × I ′ :

I and I ′ are dyadic intervals}. Consider Ŝinf(ξ1, ξ2) = χ[2n,2n+1](ξi)f̂(ξ1, ξ2), i = 1, 2, n ∈
Z. Prove that for all p, 1 < p <∞, we have∥∥∥∥∥∥

( ∑
n,m∈Z

|S1
nS

2
m(f)|2

) 1
2

∥∥∥∥∥∥
Lp(R2)

' ‖f‖Lp(R2).

5. Carleson’s Littlewood-Paley theorem

In 1967, Carleson considered the Littlewood-Paley square function associated with the
sequence In = [n, n+ 1], n ∈ Z, and proved that :

Theorem 5.1. Let 2 ≤ p <∞. Then for all f ∈ S(R), we have∥∥∥∥∥∥
(∑
n∈Z

|S[n,n+1](f)|2
) 1

2

∥∥∥∥∥∥
Lp(R)

. ‖f‖Lp(R).(20)
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Proof. When p = 2, this is an easy consequence of Plancherel theorem.
Our strategy is essentially the same as earlier. We will find an appropriate smooth

square function and then prove its boundedness.
Let φ ∈ S(R) be such that supp φ ⊆ [−1

4
, 5

4
] and φ ≡ 1 on [0, 1]. For n ∈ Z, define

φn(ξ) = φ(ξ − n). Note that supp φn ⊆ [n− 1
4
, n+ 5

4
] and φn ≡ 1 on [n, n+ 1]. Let Tn be

the multiplier operator associated with φn, i.e., T̂n(f) = φnf̂ . Consider the smooth square
function :

T (f)(x) =

(∑
n∈Z

|Tn(f)|2
) 1

2

.

Since S[n,n+1](f) = S[n,n+1]Tn(f), square function T (f) is an appropriate one, i.e., in order
to prove inequality (5.1), it suffices to prove that for p > 2, we have

‖T (f)‖Lp(R) . ‖f‖Lp(R).(21)

In order to prove inequality (21), it is enough to prove that for almost every x ∈
R, T (f)(x) satisfies the following pointwise estimate :

T (f)(x) ≤ C
(
M(|f |2)(x)

) 1
2 = CM2(f)(x)(22)

whereM is the Hardy- Littlewood maximal operator and C is a constant independent of
f. This estimate would give us the desired result using boundedness of the operatorM2.

Let a = {an}n∈Z ∈ l2(Z) be such that ‖a‖l2 = 1. It suffices to prove that for a.e. x ∈ R,
we have the following : ∣∣∣∣∣∑

n

anTn(f)(x)

∣∣∣∣∣ . M2(f)(x),

where C is independent of a. Consider∑
n

anTn(f)(x) =
∑
n

an

∫
R
f(x− y)φ̌n(y)dy

=

∫
R
f(x− y)φ̌(y)

∑
n

ane
2πinydy

=

∫
R
f(x− y)φ̌(y)h(y)dy,

where h is a 1−periodic function given by its Fourier series h(y) =
∑
n

ane
2πiny. Moreover,

for any c ∈ R, we have
∫ c+1

c
|h(y)|2dy = 1. Hence

∑
n

anTn(f)(x) =

∫
R
f(x− y)φ̌(y)h(y)dy

=

(∫
I

+
∞∑
n=1

∫
2nI\2n−1I

)
f(x− y)φ̌(y)h(y)dy
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Since φ ∈ S(R), there exists a constant CN such that |φ̌(y)| ≤ CN
(1+|y|)N for all N ∈ N.

Using this decay property of φ and Hölder’s inequality, we obtain∣∣∑
n

anTn(f)(x)
∣∣ ≤ CN

∞∑
n=0

2−nN
∫

2nI

|f(x− y)h(y)h(y)|dy

.
∞∑
n=0

2−nN2n/2
(∫

2nI

|f(x− y)|2dy
)1/2

=
∞∑
n=0

2−n(N−1)

(
2−n

∫
2nI

|f(x− y)|2dy
)1/2

.
∞∑
n=0

2−n(N−1)
(
M(|f |2)(x)

) 1
2

. M2(f)(x)

This completes the proof of Theorem 5.1. �

Proposition 5.2. p ≥ 2 is a necessary condition in Theorem 5.1.

Proof. For N ∈ N consider f̂N = χ[0,N ]. Observe that for all n, 0 ≤ n ≤ N − 1, we have

S[n,n+1](fN)(x) =

∫
R
χ[0,N ]χ[n,n+1](ξ)e

2πiξxdξ

=

∫
R
χ[n,n+1](ξ)e

2πiξxdξ

= e2πinx

∫
R
χ[0,1](ξ)e

2πiξxdξ.

Hence,
|S[n,n+1](fN)(x)| = |F (x)|, 0 ≤ n ≤ N − 1,

where F (x) =
∫
R χ[0,1](ξ)e

2πiξxdξ, is a fixed function (independent of n and N). Moreover,
F ∈ Lp(R), p > 1. Then, for almost every x ∈ R, we have(∑

n∈Z

|S[n,n+1](fN)|2
) 1

2

≥

(
N−1∑
n=0

|S[n,n+1](fN)|2
) 1

2

=

(
N−1∑
n=0

|F (x)|2
) 1

2

= N1/2F (x).

Applying inequality (20) to function fN , we get that

N1/2 .

∥∥∥∥∥∥
(∑
n∈Z

|S[n,n+1](fN)(x)|2
)1/2

∥∥∥∥∥∥
Lp(R)

. ‖fN‖Lp(R)

. N1/p′ ,

where the implicit constant does not depend on N . Choosing N large enough we conclude
that p ≥ 2. �
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Exercise 5.3. We have used the Hardy-Littlewood maximal function to prove Theo-
rem 5.1. Try to prove it without using the maximal function.

Exercise 5.4. Let {In}n∈Z be a sequence of intervals in R such that In ⊆ [n, n + 1] for
every n ∈ Z. Prove that for all p, 2 ≤ p <∞, we have∥∥∥∥∥∥

(∑
n∈Z

|SIn(f)|2
) 1

2

∥∥∥∥∥∥
Lp(R)

. ‖f‖Lp(R), ∀f ∈ S(R).

Exercise 5.5. Formulate the higher dimensional analogue of Theorem 5.1 and prove it.

6. Rubio de Francia’s Littlewood-Paley theorem for arbitrary intervals

In both the previous Littlewood-Paley results, sequence of intervals have very specific
properties. In the first case, intervals are dilates of each other by a factor of 2, whereas
in the second case they are integer translates of each other. Now we consider arbitrary
sequences of disjoint intervals and prove boundedness of the associated Littlewood-Paley
square function. This was proved in 1985 by Rubio de Francia [3].

Theorem 6.1. Let {In}n∈Z be an arbitrary sequence of disjoint intervals in R. Then for
all p, 2 ≤ p <∞, we have∥∥∥∥∥∥

(∑
n∈Z

|SIn(f)|2
) 1

2

∥∥∥∥∥∥
Lp(R)

. ‖f‖Lp(R) ∀f ∈ S(R).(23)

The proof of this theorem is quite involved. However, the mail idea of the is essentially
the same as in previous Theorems 4.1 and 5.1, i.e., to say, we will first find a suitable
smooth square function and then prove its boundedness. But, finding an appropriate
smooth square function is not as straight forward as earlier. Also, it is hard to prove
estimates for smooth square function in this general setting. We will be following the
original paper of Rubio de Francia [3].

Proof. Proof of Theorem 6.1 : The proof is done in several steps.

6.1. Step I- Reduction to the case of well-distributed collection. We first regu-
larize the given collection of intervals. This step is very crucial and allows us to define an
appropriate smooth square function.
Well-distributed collection of intervals : A collection of intervals {I}I∈I is said to
be well-distributed if there exists a constant C > 0 such that∑

I∈I

χ2I(x) ≤ C, ∀x ∈ R,

where 2I stands for the dilated interval having the same center as I and |2I| = 2|I|.
Consider the interval I = (0, 1) and define the Whitney decomposition of I as follows :

W (I) :=

{[
2−(k+1)

3
,
2−k

3

]
,

[
1

3
,
2

3

]
,

[
1− 2−k

3
, 1− 2−(k+1)

3

]
: k ∈ N ∪ {0}

}
.

It is clear that intervals in W (I) are disjoint and form a covering of I. Moreover, the
collection W (I) has the following properties :

(1) 2J ⊆ I for every J ∈ W (I) and
(2)

∑
J∈W (I)

χ2J(x) ≤ 5, ∀x ∈ R.
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Proof of (1) : Let J ∈ W (I). Then J is either [1
3
, 2

3
] or is of the form [2−(k+1)

3
, 2−k

3
] or

[1− 2−k

3
, 1− 2−(k+1)

3
] for some k ∈ N ∪ {0}. If J = [1

3
, 2

3
], then it is obvious that 2J ⊆ I.

Assume that J = [2−(k+1)

3
, 2−k

3
] for some k ∈ N ∪ {0}. Then length of J, |J | = 2−(k+1)

3
and

the center of J, C(J) = 2−(k+2). Hence

2J = [C(J)− |J |, C(J) + |J |]

=

[
2−(k+2) − 2−(k+1)

3
, 2−(k+2) +

2−(k+1)

3

]
=

[
2−(k+1)

6
,
2−(k+1)5

6

]
⊆ [0, 1], ∀k ∈ N ∪ {0}.

The proof is similar when J = [1− 2−k

3
, 1− 2−(k+1)

3
] for some k ∈ N ∪ {0}.

Proof of (2) : Note that if J1, J2 ∈ W (I) are such that 2J1 ∩ 2J2 6= φ, then both the
intervals necessarily sit either to right or to left of [1

3
, 2

3
].

Assume that J1 = [2−(k+1)

3
, 2−k

3
] and J2 = [2−(l+1)

3
, 2−l

3
] for some k, l ∈ N∪{0} and 2J1∩2J2 6=

φ. We know that 2J1 =
[

2−(k+1)

6
, 2−(k+1)5

6

]
and 2J2 =

[
2−(l+1)

6
, 2−(l+1)5

6

]
. Without loss of

generality we may assume that J1 sits to the left of J2. Then, we should have k > l. Since

2J1 ∩ 2J2 6= φ, we must have that 2−(l+1)

6
< 2−(k+1)5

6
, which in turn implies that 2k−l < 10.

Note that for each fixed l, we have only four choices of k > l, namely k = l, l+1, l+2, l+3,
such that 2k−l < 10.

This proves that for any J ∈ W (I), 2J can have non-empty intersection with at most
four intervals in {2H : H ∈ W (I)}. This completes the proof of (2).

Observe that the definition of Whitney decomposition is invariant under translation and
dilation. Hence, for an arbitrary interval I, we can define its Whitney decomposition W (I)
as previously. Moreover, the collection W (I) will have previously mentioned properties
(1) and (2).

Given an interval I, consider the operator :

SIf(x) :=

 ∑
J∈W (I)

|SJ(f)|2
 1

2

, f ∈ S(R).(24)

We would like to remark that SIf is a a variant of dyadic Littlewood-Paley square func-
tion. We have the following lemma :

Lemma 6.2. Let {In}n∈Z be a sequence of disjoint intervals in R. Then for all p, 1 <
p <∞, we have ∥∥∥∥∥∥

(∑
n∈Z

|SIn(f)|2
) 1

2

∥∥∥∥∥∥
p

'

∥∥∥∥∥∥
(∑
n∈Z

|SIn(f)|2
) 1

2

∥∥∥∥∥∥
p

(25)

Proof. Since the operators SIn are uniformly bounded on L2(ω) for all weights ω ∈ A2.
Then for all p, 1 < p <∞, we have the following vector valuued extension :∥∥∥∥∥∥

(∑
n∈Z

|SIn(fn)|2
) 1

2

∥∥∥∥∥∥
p

.

∥∥∥∥∥∥
(∑
n∈Z

|fn|2
) 1

2

∥∥∥∥∥∥
p

.(26)
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Set fn = SIn(f). Then by definition of SInf (see (24))

SInfn =

 ∑
J∈W (I)

|SJ(fn)|2
 1

2

=

 ∑
J∈W (I)

|SJf |2
 1

2

= SInf.

Applying vector valued estimate (26) to this choice of functions, we get∥∥∥∥∥∥
(∑
n∈Z

|SIn(f)|2
) 1

2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
(∑
n∈Z

|SIn(SInf)|2
) 1

2

∥∥∥∥∥∥
p

.

∥∥∥∥∥∥
(∑
n∈Z

|SIn(f)|2
) 1

2

∥∥∥∥∥∥
p

This proves . inequality in (25). We use duality arguments to prove the opposite side
inequality in (25). Consider,∫

R

∑
n∈Z

SIn(f)(x)hn(x)dx =

∫
R

∑
n∈Z

SIn(f)(x)hn(x)dx

=

∫
R

∑
n∈Z

∑
J∈W (In)

SJSIn(f)(x)SJ(hn)(x)dx

=

∫
R

∑
n∈Z

∑
J∈W (In)

SJ(f)(x)SJhn(x)dx.

Applying Hólder’s inequality twice and using estimate (26), we get∣∣∣∣∣
∫
R

∑
n∈Z

SIn(f)(x)hn(x)dx

∣∣∣∣∣ ≤
∫
R

∑
n∈Z

∑
J∈W (In)

|SJ(f)(x)|2
 1

2
∑
n∈Z

∑
J∈W (In)

|SJ(hn)(x)|2
 1

2

dx

=

∫
R

(∑
n∈Z

|SIn(f)(x)|2
) 1

2
(∑
n∈Z

|SIn(hn)(x)|2
) 1

2

dx

≤

∥∥∥∥∥∥
(∑
n∈Z

|SIn(f)|2
) 1

2

∥∥∥∥∥∥
p

∥∥∥∥∥∥
(∑
n∈Z

|SIn(hn)|2
) 1

2

∥∥∥∥∥∥
p′

.

∥∥∥∥∥∥
(∑
n∈Z

|SIn(f)|2
) 1

2

∥∥∥∥∥∥
p

∥∥∥∥∥∥
(∑
n∈Z

|hn|2
) 1

2

∥∥∥∥∥∥
p′

.

This estimate allows us to deduce & inequality in (25) using duality. �

We have proved that Lp norm of the square function associated with an arbitrary
sequence of disjoint intervals {In}n∈Z is equivalent to Lp norm of the square function as-
sociated with the collection of intervalsW = {J : J ∈ W (In) for some n ∈ Z}. Moreover,
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we have proved that the collection W is a well-distributed collection of intervals. Thus it
suffices to prove Theorem 6.1 with an additional assumption of well-distributiveness on
the collection of intervals.

Now onwards we shall always assume that the collection of intervals under consideration
is a well-distributed collection.

6.2. Step II- Reduction to boundedness of smooth square function. In this sec-
tion we will find a suitable smooth square function. Then we will show that in order
to prove Theorem 6.1, it suffices to prove analogous Lp estimates for this smooth square
function.

We start with W− well-distributed collection of intervals. We further regularize this
collection in the following sense : Divide each interval I ∈ W into seven consecutive
intervals of equal lengths, i.e., I = ∪7

i=1I
i with |I i| = |I|/7 for all i = 1, 2, 3, ..., 7.

For each i = 1, 2, 3, ..., 7, we consider the collection Wi = {I i : I ∈ W}. We will
prove Theorem 6.1 for each collection Wi. Since all the seven collections Wi have same
properties, it is enough to prove the result for one such collection. Let us fix one such
collection of intervals and denote it by I. Observe that we have∑

I∈I

χ
8I

(x) ≤ 5, ∀x ∈ R.(27)

We label the intervals in I according to their sizes. For each integer k ∈ Z, let Ik
denote the collection {Ijk}j = {I ∈ I : 2k ≤ |I| < 2k+1}. With this new notation, we
need to prove that for all p, 2 ≤ p <∞, we have∥∥∥∥∥∥

(∑
k,j

|SIjk(f)(x)|2
) 1

2

∥∥∥∥∥∥
p

. ‖f‖p.(28)

For every k and j, choose njk to be the first integer such that njk2
k ∈ Ijk. This is possible

because of the definition of Ijk.

Let ψ ∈ S(R) be such that χ
[−2,2]
≤ ψ̂ ≤ χ

[−3,3]
. Define

ψjk(x) = 2kψ(2kx)e2πinjk2kx.

Then the Fourier transform of ψjk is given by

ψ̂jk(ξ) = ψ̂(2−kξ − njk).

Usie the size condition 2k ≤ |Ijk| < 2k+1 together with the choice of njk, to show that

Ijk ⊆ [2k(njk − 2), 2k(njk + 2)]. Also, show that supp ψ̂jk ⊆ 8Ijk and ψ̂jk ≡ 1 on Ijk.

We now consider the smooth square function associated with the sequence ψ̂jk defined as
follows :

T (f)(x) :=

(∑
k,j

|T jk (f)(x)|2
) 1

2

,(29)

where T jk is the convolution operator given by T jk (f) = ψjk ∗ f. Observe that T (f) is

the appropriate smooth square function as SIjk
(f) = SIjk

T jk (f). Hence using vector valued

arguments as earlier, we know that in order to prove inequality (28), it suffices to prove
that for all p, 2 ≤ p <∞, we have

‖T (f)‖p . ‖f‖p.(30)
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Next two sections are devoted to prove estimate (30) for the smooth square function.

6.3. Step III- A key vector valued lemma. This section is devoted to establsih a
general result for vector valued operators and in the next section, we will show that the
smooth square function under consideration falls into the setting of this result.

We consider the following setting : Let E be a Hilbert space and let K(x, y) be an
E−valued function defined on R2 such that ‖K(x, .)‖E is locally integrable for each fixed
x ∈ R. We consider the following E−valued operator :

T (f)(x) :=

∫
R
f(y)K(x, y)dy.(31)

It is easy to check that T is well defined for functions f ∈ C∞c (R).
Given x, z ∈ R and m ∈ Z, denote

Im(x, z) = {y ∈ R : 2m|x− z| < |y − z| ≤ 2m+1|x− z|.

Observe that |Im(x, z)| = 2m|x− z|.
Then, we have the following important result for the operator T :

Lemma 6.3. Let T be the operator given by (31). Suppose that T is bounded from L2(R)
into L2(R, E). Further, assume that for some positive constants A > 0 and α > 1, the
kernel K(x, y) satisfies∫

Im(x,z)

|〈K(x, y)−K(z, y), λ〉E|2dy ≤ A2 2−αm‖λ‖2
E

|x− z|
,(32)

for every x, z ∈ R, λ ∈ E, and m ≥ 1.
Then, the E−valued operator G(f)(x) := ‖T (f)(x)‖E satisfies the following :

M](G(f))(x) ≤ C(A,α)M2(f)(x).(33)

Proof. Given an x ∈ R and an interval I centered at x, define the vector hI ∈ E as

hI =

∫
y/∈2I

f(y)K(x, y)dy.

Consider,

T (f)(z)− hI =

∫
R
f(y)K(z, y)dy −

∫
y/∈2I

f(y)K(x, y)dy

=

∫
y∈2I

f(y)K(z, y)dy +

∫
y/∈2I

f(y)(K(z, y)−K(x, y))dy.

= T (f1)(z) +

∫
y/∈2I

f(y)(K(z, y)−K(x, y))dy,

where f1 = fχ2I . This implies that

1

|I|

∫
I

‖T (f)(z)− hI‖Edz ≤
1

|I|

∫
I

‖T (f1)(z)‖Edz

+
1

|I|

∫
I

‖
∫
y/∈2I

f(y)(K(z, y)−K(x, y))dy‖Edz

= I1 + I2,

where I1 and I2 are first and second terms in RHS of the above expression.
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We will estimate both these terms separately and show that each of them is dominated
by M2(f), which in turn would give us the desired result. Then,

I1 =
1

|I|

∫
I

‖T (f1)(z)‖Edz

≤
(

1

|I|

∫
I

‖T (f1)(z)‖2
Edz

) 1
2

.

(
1

|I|

∫
R
|f1(z)|2dz

) 1
2

=

(
1

|I|

∫
2I

|f(z)|2dz
) 1

2

. M2(f)(x).

Now we proceed to estimate I2. Let g(z) denote E−valued function with ‖g(z)‖E ≤ 1 for
all z ∈ I. Then using duality we know that

I2 = sup
g

1

|I|

∫
I

∣∣∣∣〈g(z),

∫
y/∈2I

f(y)(K(z, y)−K(x, y))dy〉E
∣∣∣∣ dz,

where supremum is taken over all functions g defined as above. Let g be a fixed function

described as above. Note that for all x, z ∈ I and y /∈ 2I, we have |x−z|
2

< |y − x|. Then

1

|I|

∫
I

∣∣∣∣〈g(z),

∫
y/∈2I

f(y)(K(z, y)−K(x, y))dy〉E
∣∣∣∣ dz

≤ 1

|I|

∫
I

∫
y/∈2I

|f(y)|〈g(z), K(z, y)−K(x, y)〉E|dydz

≤ 1

|I|

∫
I

∞∑
m=1

∫
y∈Im(z,x)

|f(y)||〈g(z), K(z, y)−K(x, y)〉E|dydz

≤ 1

|I|

∫
I

∞∑
m=1

(

∫
Im(z,x)

|f(y)|2dy)
1
2 (

∫
Im(z,x)

| 〈g(z), K(z, y)−K(x, y)〉E |
2dy)

1
2dz

≤ 1

|I|

∫
I

∞∑
m=1

(

∫
Im(z,x)

|f(y)|2dy)
1
2‖g(z)‖E

A2−αm/2

|x− z|1/2
dz

=
1

|I|

∫
I

∞∑
m=1

A2−αm/2
(

2m

2m|x− z|

∫
Im(z,x)

|f(y)|2dy
) 1

2

dz

≤ C
1

|I|

∫
I

∞∑
m=1

A2−αm/22m/2
(

1

|Im(z, x)|

∫
Im(z,x)

|f(y)|2dy
) 1

2

dz

≤ CM2(f)(x)

Here we have used that α > 1 and hence the sum in the above is finite. This establishes
inequality (33) and hence the proof of Lemma 6.3 is complete. �

6.4. Step IV- Boundedness of the smooth square function. The choice of ψjk is
such that for some constant C > 0, we have∑

k,j

|ψ̂jk(ξ)|
2 ≤ C.
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Hence by Plancherel theorem we get,

‖T (f)‖2 ≤ C‖f‖2.(34)

Our objective is to prove inequality (30) for all p, 2 < p < ∞. In order to do this, we
shall show that for almost every x ∈ R, we have

M](T (f))(x) .M2(f)(x),(35)

where M](T (f)) is the sharp maximal function of T (f).
Once we have the above estimate, the desired result for square function may be obtained

as follows :

‖T (f)‖p . ‖M](T (f))‖p
. ‖M2(f)‖p
. ‖f‖p, 2 < p ≤ ∞.

Thus we only need to establish the inequality (35). In order to prove this we will prove
a general result for singular integral operators in vector valued setting. Now we need to
prove that the square function under consideration falls into the setting of Lemma 6.3.
Recall that square function is given as :

T (f)(x) =

(∑
k,j

|T jk (f)(x)|2
) 1

2

=

(∑
k,j

|ψjk ∗ f(x)|2
) 1

2

=

(∑
k,j

∣∣∣∣∫
R

2kψ(2k(x− y))e−2πinjk2kyf(y)dy

∣∣∣∣2
) 1

2

.

We view the operator T as an l2−valued operator and observe that its kernel is given by

K(x, y) = {2kψ(2k(x− y))e−2πinjk2ky}k,j.(36)

We already know that T is bounded from L2(R) into L2(R, l2). So, in order to apply the
result of Lemma 6.3, we only need to establish estimate (32) for the kernel K(x, y). Let
λ = {λk,j} ∈ l2 be such that ‖λ‖2 = 1. Then, we have

〈K(x, y), λ〉 =
∑
k,j

2kψ(2k(x− y))λk,je
−2πinjk2ky

=
∑
k

2kψ(2k(x− y))hk(2
ky),(37)

where for each k, hk is a 1−periodic function given by its Fourier series : hk(x) =∑
j

λk,je
−2πinjkx.

Note that the choice of integers njk tells us that njk 6= nj
′

k if j 6= j′. This implies that∫ a+1

a

|hk(x)|2dx ≤ 1, ∀a ∈ R, k ∈ Z.(38)
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We would like to remark that we only need the above property of function hk, in the
proof. Recall that we are interested in proving the following :∫

Im(x,z)

|〈K(x, y)−K(z, y), λ〉|2dy ≤ A22−αm

|x− z|
,(39)

for some A > 0 and α > 1.
It suffices to prove the above estimate assuming z = 0 because this only amounts to

translating hk by a factor of 2kz and we know that inequality (38) is invariant under
translation. Thus our job is reduced to prove that∫

Im(x,0)

|〈K(x, y)−K(0, y), λ〉|2dy ≤ A22−αm

|x|
(40)

Further, observe that the above inequality does not change, if we replace x by 2x, and
thus, we can assume that 1 ≤ |x| < 2. Using estimate (37), we have

(∫
Im(x,0)

|〈K(x, y)−K(0, y), λ〉|2dy
) 1

2

≤

∫
Im(x,0)

∣∣∣∣∣∑
k

2kψ(2k(x− y))− ψ(−2ky))hk(2
ky)

∣∣∣∣∣
2

dy

 1
2

≤
∑
k

2k
(∫

Im(x,0)

∣∣ψ(2k(x− y))− ψ(−2ky))hk(2
ky)
∣∣2 dy) 1

2

=
∑
k

2k/2

(∫
Im+k(x,0)

∣∣ψ(2kx− y)− ψ(−y))hk(y)
∣∣2 dy) 1

2

≤
∑
k

2k/2

(
sup

y∈Im+k(x,0)

|ψ(2kx− y)− ψ(−y)|

)(∫
Im+k(x,0)

|hk(y)|2dy

) 1
2

≤ C
∑
k

2k/22(k+m)/2

(
sup

y∈Im+k(x,0)

|ψ(2kx− y)− ψ(−y)|

)

= C

(
−n−1∑
k=−∞

+
∞∑

k=−n

)[
2k/22(k+m)/2

(
sup

y∈Im+k(x,0)

|ψ(2kx− y)− ψ(−y)|

)]
,

where n = [2m
3

].
We estimate both the terms separately. For the first sum, we see that k+m < m−n ≤

m/3, as −∞ < k ≤ −n − 1. Now we estimate using mean value theorem to get the
following majorization :

sup
y∈Im+k(x,0)

|ψ(2kx− y)− ψ(−y)| ≤ C(ψ)2k|x|

≤ C(ψ)2k+1.
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In the above, we have used that 1 ≤ |x| < 2. Hence we get

−n−1∑
k=−∞

2k+m
2

(
sup

y∈Im+k(x,0)

|ψ(2kx− y)− ψ(−y)|

)
.

n∑
k=−∞

2k/22(k+m)/22k+1

.
−n−1∑
k=−∞

23k/22m/6

. 2−
3
2
. 2m

3 2
m
6

= C2−
5m
6 .

Now we need to estimate the second sum. Note that for y ∈ Im+k(x, 0), we have 2k+mx ≤
y < 2k+m+1x. This implies that |2kx − y| ' 2k+mxfor all y ∈ Im+k(x, 0) with a constant
independent of y,m, and k. Also, we have that ψ(y) ≤ C|y|−2. Using these observation
we get the following estimate for the second term :

sup
y∈Im+k(x,0)

|ψ(2kx− y)− ψ(−y)| . sup
y∈Im+k(x,0)

(
1

22(k+m)x
+

1

y2

)
. 2−2(k+m).

Hence,

∞∑
k=−n

2k/22(k+m)/2

(
sup

y∈Im+k(x,0)

|ψ(2kx− y)− ψ(−y)|

)
.

∞∑
k=−n

2k/22(k+m)/22−2(k+m)

= C
∞∑

k=−n

2−k2−3m/2

. 22m/32−3m/2

= C2−
5m
6

Substituting the estimates for both the terms we get,∫
Im(x,0)

|〈K(x, y)−K(0, y), λ〉|2dy ≤ C2−5m/6.(41)

This proves the required estimate (32) for the kernel K(x, y) with α = 5
3
> 1. Thus we

complete the proof of Theorem 6.1. �

7. Appendix

The Radamacher functions are defined as follows :

r0(t) =

{
−1, 0 ≤ t < 1/2
1, 1/2 ≤ t ≤ 1,

and for n ≥ 1, rn(t) = r0(2nt). The Rademacher functions form a orthonormal system in
L2([0, 1]).

Lemma 7.1 (Khintchine’s inequality). Let 1 ≤ p < ∞. Given a sequence a = {an},
consider the function

F (t) =
∑
n

anrn(t).
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Then, we have

‖F‖Lp([0.1]) .

(∑
n

|an|2
) 1

2

,(42)

and (∑
n

|an|2
) 1

2

. ‖F‖Lp([0.1]),(43)

where rn is the Radamacher function. More importantly, the implicit constant depends
only on the parameter p.

Proof. First, observe that using orthogonality property of Rademacher functions, we have

‖F‖L2([0.1]) =

(∑
n

|an|2
) 1

2

.(44)

Using the above estimate together with the fact that ‖.‖Lp([0.1]) increases with p, we can
easily see that inequalities (42) and (43) hold for 1 ≤ p ≤ 2 and 2 ≤ p <∞ respectively.
Further, we see that inequality (43) for 1 ≤ p < 2 can be deduced if we have inequality (42)
for 2 < p <∞. For p, 1 ≤ p < 2, choose θ ∈ (0, 1) such that 1

2
= 1−θ

p
+ θ

4
. Then,

‖F‖L2([0.1]) ≤ ‖F‖1−θ
Lp([0.1])‖F‖

θ
L4([0.1])

. ‖F‖1−θ
Lp([0.1])‖F‖

θ
L2([0.1]).

This proves inequality (43) for 1 ≤ p < 2. Thus, we only need to prove inequality (42)
for all 2 < p < ∞. We proceed as follows : Without loss of generality we may assume
that ‖F‖L2([0.1]) = 1. Further, we observe that it is enough to prove inequality (42) for all
integers bigger that 2.

We know that |x|p ≤ p!e|x| ≤ p!(ex + e−x), x ∈ R. Therefore,

‖F‖pLp([0.1]) =

∫ 1

0

|
∑
n

anrn(t)|pdt

≤ p!

∫ 1

0

(
e

∑
n
anrn(t)

+ e
−

∑
n
anrn(t)

)
dt

= p!

(∫ 1

0

∏
n

eanrn(t)dt+

∫ 1

0

∏
n

e−anrn(t)dt

)

= 2p!
∏
n

∫ 1

0

eanrn(t)dt

= 2p!
∏
n

ean + e−an

2

= 2p!
∏
n

ea
2
n

= 2p!e.

Here we have used that Rademacher functions are independent variables and the inequality
ex+e−x

2
≤ ex

2
. �
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