
SOLUTIONS AND HINTS

1. Solutions/hints

Question 1. Mark each of the following statements with true or false (no justification is required).

(1) The set of all functions f : N→ {0, 1} is countable.
(2) The set E = {2−n + 3−m : n,m ∈ N} ∪ {0} is closed.
(3) Let E be a set in R. If an upper bound α of E belongs to E, the supE = α.
(4) A sequence {an} is convergent if and only if it is bounded.
(5) The Cauchy product of two convergent series is convergent.

Answer.

(1) False
(2) False
(3) True
(4) False
(5) False

Question 2. Short answer type questions.

(1) Give example of a bijection (one-one and onto function) between N and Z.
(2) Give example of a convergent series

∑
n an such that the series

∑
n a

2
n is divergent.

(3) Find the radius of convergence of the power series
∞∑

n=1

2n

n! z
n.

(4) Let an ≥ 0 and bn ≥ 0 be real numbers. If series
∑

n an and
∑

n bn converge, then show that the

series
∑

n

√
anbn converges.

Answer.

(1) The f : N→ Z defined by

f(n) =

{ n
2 if n is even

− (n−1)
2 if n is odd

is a one-one and onto.

(2) Take an = (−1)n√
n

and notice that the
∞∑

n=1
an is convergent but

∞∑
n=1

a2n diverges.

(3) R = +∞. Use ratio test.
(4) Here an ≥ 0 and bn ≥ 0. Use that

√
anbn ≤ an+bn√

2
and apply comparison test.

Question 3. Let E be a nonempty set in R such that it is both open and closed. Show that E = R.
Solution. The proof is by contradiction. Suppose that E is a nonempty subset of R and assume that
E 6= R. Then the complement Ec 6= ∅ and Ec 6= R. Also, R = E ∪ Ec. Take s0 ∈ E and t0 ∈ Ec be two
points. Clearly, s0 6= t0. Consider the midpoint s0+t0

2 , then this point is either in E or in Ec. We call
this point s1 if it belongs to E otherwise call it t1. Continue this procedure with s0, t0 and the new point.
This will give us two sequences sn and tn with sn ∈ E and tn ∈ Ec. Also it is easy to verify that both
the sequences converge to same point, say s. Since E and Ec are both closed sets, we see that s ∈ E and
s ∈ Ec, which is a contradiction.
Question 4. Let {an} and {bn} be two bounded sequences of real numbers such that lim

n→∞
an = a. Show

that

lim sup
n→∞

(an + bn) = a+ lim sup
n→∞

bn.

Solution. We proved in the class that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn(1)
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Since lim
n→∞

an = a, we get that

lim sup
n→∞

(an + bn) ≤ a+ lim sup
n→∞

bn

Using the inequality (1) we have

lim sup
n→∞

(bn) = lim sup
n→∞

(an + bn − an)

≤ lim sup
n→∞

(an + bn) + lim sup
n→∞

(−an)

= lim sup
n→∞

(an + bn)− a

Question 5. Let a1 >
√

2 be a real number. Define a2, a3, a4, . . . , by the recursion formula

an+1 =
1

2

(
an +

2

an

)
.

Prove that {an} is monotonically decreasing and lim
n→∞

an =
√

2.

Solution. Note that

a2n+1 =
1

4
(an +

2

an
)2

=
1

4
(an −

2

an
)2 +

1

4
4an

2

an
> 2.

Therefore, for all n ≥ 1 we have an >
√

2. Then we also have

an+1 =
1

2
(an +

2

an
) <

1

2
(an +

a2n
an

) = an

Hence {an} is monotonically decreasing and bounded from below. This implies that lim
n→∞

an exists, call

the limit l and note that l 6= 0. Notice that l satisfies l = 1
2 (l + 2

l ) and finally conclude that l =
√

2.
Question 6. Let {an} be a monotonically decreasing sequence of non-negative real numbers such that
lim
n→∞

an = 0. If
∑

n an is convergent then show that lim
n→∞

nan = 0.

Solution. Since {an} is a monotonically decreasing sequence of non-negative real numbers. Use the fact
that

∑
n an converges iff

∑
n 2na2n converges. Hence 2na2n → 0 as n→∞.

Question 7. If
∑

n an is a conditionally convergent series, then prove that the series of its positive terms
and the series of its negative terms are both divergent.

Solution. Define pn = |an|+an

2 and qn = |an|−an

2 and note that pn and qn are non-negative with
pn − qn = an and pn + qn = |an|.

Also, note that the series of positive terms and the series of negative terms differ from
∑
pn and

∑
n qn

only by zero terms and therefore have similar divergence/convergence properties.
Note that both series

∑
pn and

∑
n qn converge then

∑
|an| converges which contradicts the hypothesis

that
∑
an is conditionally convergent. Further, if one of the series

∑
pn and

∑
n qn is divergent then∑

an can be shown to diverge, which is again a contradiction.
This completes the proof.
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