SOLUTIONS AND HINTS

1. Solutions/Hints

Question 1. Mark each of the following statements with true or false (no justification is required).

- (1) The set of all functions $f : \mathbb{N} \to \{0, 1\}$ is countable.
- (2) The set $E = \{2^{-n} + 3^{-m} : n, m \in \mathbb{N}\} \cup \{0\}$ is closed.
- (3) Let E be a set in \mathbb{R} . If an upper bound α of E belongs to E, the sup $E = \alpha$.
- (4) A sequence $\{a_n\}$ is convergent if and only if it is bounded.
- (5) The Cauchy product of two convergent series is convergent.

Answer.

- (1) False
- (2) False
- (3) True
- (4) False
- (5) False

Question 2. Short answer type questions.

- (1) Give example of a bijection (one-one and onto function) between \mathbb{N} and \mathbb{Z} .
- (2) Give example of a convergent series $\sum_{n} a_n$ such that the series $\sum_{n} a_n^2$ is divergent.
- (3) Find the radius of convergence of the power series ∑_{n=1}[∞] 2ⁿ/n! zⁿ.
 (4) Let a_n ≥ 0 and b_n ≥ 0 be real numbers. If series ∑_n a_n and ∑_n b_n converge, then show that the series $\sum_{n} \sqrt{a_n b_n}$ converges.

Answer.

(1) The $f: \mathbb{N} \to \mathbb{Z}$ defined by

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{(n-1)}{2} & \text{if } n \text{ is odd} \end{cases}$$

- is a one-one and onto. (2) Take $a_n = \frac{(-1)^n}{\sqrt{n}}$ and notice that the $\sum_{n=1}^{\infty} a_n$ is convergent but $\sum_{n=1}^{\infty} a_n^2$ diverges.
- (3) $R = +\infty$. Use ratio test.
- (4) Here $a_n \ge 0$ and $b_n \ge 0$. Use that $\sqrt{a_n b_n} \le \frac{a_n + b_n}{\sqrt{2}}$ and apply comparison test.

Question 3. Let E be a nonempty set in \mathbb{R} such that it is both open and closed. Show that $E = \mathbb{R}$. **Solution.** The proof is by contradiction. Suppose that E is a nonempty subset of \mathbb{R} and assume that $E \neq \mathbb{R}$. Then the complement $E^c \neq \emptyset$ and $E^c \neq \mathbb{R}$. Also, $\mathbb{R} = E \cup E^c$. Take $s_0 \in E$ and $t_0 \in E^c$ be two points. Clearly, $s_0 \neq t_0$. Consider the midpoint $\frac{s_0+t_0}{2}$, then this point is either in E or in E^c . We call this point s_1 if it belongs to E otherwise call it t_1 . Continue this procedure with s_0, t_0 and the new point. This will give us two sequences s_n and t_n with $s_n \in E$ and $t_n \in E^c$. Also it is easy to verify that both the sequences converge to same point, say s. Since E and E^c are both closed sets, we see that $s \in E$ and $s \in E^c$, which is a contradiction.

Question 4. Let $\{a_n\}$ and $\{b_n\}$ be two bounded sequences of real numbers such that $\lim_{n\to\infty} a_n = a$. Show that

$$\limsup_{n \to \infty} (a_n + b_n) = a + \limsup_{n \to \infty} b_n.$$

Solution. We proved in the class that

(1)
$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

Date: October 7, 2014.

Since $\lim_{n \to \infty} a_n = a$, we get that

$$\limsup_{n \to \infty} (a_n + b_n) \le a + \limsup_{n \to \infty} b_n$$

Using the inequality (1) we have

$$\begin{split} \limsup_{n \to \infty} (b_n) &= \limsup_{n \to \infty} (a_n + b_n - a_n) \\ &\leq \limsup_{n \to \infty} (a_n + b_n) + \limsup_{n \to \infty} (-a_n) \\ &= \limsup_{n \to \infty} (a_n + b_n) - a \end{split}$$

Question 5. Let $a_1 > \sqrt{2}$ be a real number. Define a_2, a_3, a_4, \ldots , by the recursion formula

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$$

Prove that $\{a_n\}$ is monotonically decreasing and $\lim_{n\to\infty} a_n = \sqrt{2}$. Solution. Note that

$$a_{n+1}^2 = \frac{1}{4}(a_n + \frac{2}{a_n})^2$$

= $\frac{1}{4}(a_n - \frac{2}{a_n})^2 + \frac{1}{4}4a_n\frac{2}{a_n}$
> 2.

Therefore, for all $n \ge 1$ we have $a_n > \sqrt{2}$. Then we also have

$$a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n}) < \frac{1}{2}(a_n + \frac{a_n^2}{a_n}) = a_n$$

Hence $\{a_n\}$ is monotonically decreasing and bounded from below. This implies that $\lim_{n\to\infty} a_n$ exists, call the limit l and note that $l \neq 0$. Notice that l satisfies $l = \frac{1}{2}(l + \frac{2}{l})$ and finally conclude that $l = \sqrt{2}$.

Question 6. Let $\{a_n\}$ be a monotonically decreasing sequence of non-negative real numbers such that $\lim_{n \to \infty} a_n = 0$. If $\sum_n a_n$ is convergent then show that $\lim_{n \to \infty} na_n = 0$.

Solution. Since $\{a_n\}$ is a monotonically decreasing sequence of non-negative real numbers. Use the fact that $\sum_n a_n$ converges iff $\sum_n 2^n a_{2^n}$ converges. Hence $2^n a_{2^n} \to 0$ as $n \to \infty$.

Question 7. If $\sum_{n} a_n$ is a conditionally convergent series, then prove that the series of its positive terms and the series of its negative terms are both divergent.

Solution. Define $p_n = \frac{|a_n|+a_n}{2}$ and $q_n = \frac{|a_n|-a_n}{2}$ and note that p_n and q_n are non-negative with $p_n - q_n = a_n$ and $p_n + q_n = |a_n|$.

Also, note that the series of positive terms and the series of negative terms differ from $\sum p_n$ and $\sum_n q_n$ only by zero terms and therefore have similar divergence/convergence properties.

Note that both series $\sum p_n$ and $\sum_n q_n$ converge then $\sum |a_n|$ converges which contradicts the hypothesis that $\sum a_n$ is conditionally convergent. Further, if one of the series $\sum p_n$ and $\sum_n q_n$ is divergent then $\sum a_n$ can be shown to diverge, which is again a contradiction.

This completes the proof.