SOLUTIONS AND HINTS

1. Solutions/hints

Question 1. Mark each of the following statements with true or false (no justification is required).
(1) The set of all functions $f: \mathbb{N} \rightarrow\{0,1\}$ is countable.
(2) The set $E=\left\{2^{-n}+3^{-m}: n, m \in \mathbb{N}\right\} \cup\{0\}$ is closed.
(3) Let E be a set in \mathbb{R}. If an upper bound α of E belongs to E, the $\sup E=\alpha$.
(4) A sequence $\left\{a_{n}\right\}$ is convergent if and only if it is bounded.
(5) The Cauchy product of two convergent series is convergent.

Answer.

(1) False
(2) False
(3) True
(4) False
(5) False

Question 2. Short answer type questions.
(1) Give example of a bijection (one-one and onto function) between \mathbb{N} and \mathbb{Z}.
(2) Give example of a convergent series $\sum_{n} a_{n}$ such that the series $\sum_{n} a_{n}^{2}$ is divergent.
(3) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!} z^{n}$.
(4) Let $a_{n} \geq 0$ and $b_{n} \geq 0$ be real numbers. If series $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ converge, then show that the series $\sum_{n} \sqrt{a_{n} b_{n}}$ converges.

Answer.

(1) The $f: \mathbb{N} \rightarrow \mathbb{Z}$ defined by

$$
f(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ -\frac{(n-1)}{2} & \text { if } n \text { is odd }\end{cases}
$$

is a one-one and onto.
(2) Take $a_{n}=\frac{(-1)^{n}}{\sqrt{n}}$ and notice that the $\sum_{n=1}^{\infty} a_{n}$ is convergent but $\sum_{n=1}^{\infty} a_{n}^{2}$ diverges.
(3) $R=+\infty$. Use ratio test.
(4) Here $a_{n} \geq 0$ and $b_{n} \geq 0$. Use that $\sqrt{a_{n} b_{n}} \leq \frac{a_{n}+b_{n}}{\sqrt{2}}$ and apply comparison test.

Question 3. Let E be a nonempty set in \mathbb{R} such that it is both open and closed. Show that $E=\mathbb{R}$.
Solution. The proof is by contradiction. Suppose that E is a nonempty subset of \mathbb{R} and assume that $E \neq \mathbb{R}$. Then the complement $E^{c} \neq \emptyset$ and $E^{c} \neq \mathbb{R}$. Also, $\mathbb{R}=E \cup E^{c}$. Take $s_{0} \in E$ and $t_{0} \in E^{c}$ be two points. Clearly, $s_{0} \neq t_{0}$. Consider the midpoint $\frac{s_{0}+t_{0}}{2}$, then this point is either in E or in E^{c}. We call this point s_{1} if it belongs to E otherwise call it t_{1}. Continue this procedure with s_{0}, t_{0} and the new point. This will give us two sequences s_{n} and t_{n} with $s_{n} \in E$ and $t_{n} \in E^{c}$. Also it is easy to verify that both the sequences converge to same point, say s. Since E and E^{c} are both closed sets, we see that $s \in E$ and $s \in E^{c}$, which is a contradiction.
Question 4. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two bounded sequences of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=a$. Show that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+\limsup _{n \rightarrow \infty} b_{n}
$$

Solution. We proved in the class that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n} \tag{1}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} a_{n}=a$, we get that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq a+\limsup _{n \rightarrow \infty} b_{n}
$$

Using the inequality (1) we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left(b_{n}\right) & =\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}-a_{n}\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)+\limsup _{n \rightarrow \infty}\left(-a_{n}\right) \\
& =\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)-a
\end{aligned}
$$

Question 5. Let $a_{1}>\sqrt{2}$ be a real number. Define $a_{2}, a_{3}, a_{4}, \ldots$, by the recursion formula

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right) .
$$

Prove that $\left\{a_{n}\right\}$ is monotonically decreasing and $\lim _{n \rightarrow \infty} a_{n}=\sqrt{2}$.
Solution. Note that

$$
\begin{aligned}
a_{n+1}^{2} & =\frac{1}{4}\left(a_{n}+\frac{2}{a_{n}}\right)^{2} \\
& =\frac{1}{4}\left(a_{n}-\frac{2}{a_{n}}\right)^{2}+\frac{1}{4} 4 a_{n} \frac{2}{a_{n}} \\
& >2 .
\end{aligned}
$$

Therefore, for all $n \geq 1$ we have $a_{n}>\sqrt{2}$. Then we also have

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right)<\frac{1}{2}\left(a_{n}+\frac{a_{n}^{2}}{a_{n}}\right)=a_{n}
$$

Hence $\left\{a_{n}\right\}$ is monotonically decreasing and bounded from below. This implies that $\lim _{n \rightarrow \infty} a_{n}$ exists, call the limit l and note that $l \neq 0$. Notice that l satisfies $l=\frac{1}{2}\left(l+\frac{2}{l}\right)$ and finally conclude that $l=\sqrt{2}$.
Question 6. Let $\left\{a_{n}\right\}$ be a monotonically decreasing sequence of non-negative real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$. If $\sum_{n} a_{n}$ is convergent then show that $\lim _{n \rightarrow \infty} n a_{n}=0$.
Solution. Since $\left\{a_{n}\right\}$ is a monotonically decreasing sequence of non-negative real numbers. Use the fact that $\sum_{n} a_{n}$ converges iff $\sum_{n} 2^{n} a_{2^{n}}$ converges. Hence $2^{n} a_{2^{n}} \rightarrow 0$ as $n \rightarrow \infty$.
Question 7. If $\sum_{n} a_{n}$ is a conditionally convergent series, then prove that the series of its positive terms and the series of its negative terms are both divergent.
Solution. Define $p_{n}=\frac{\left|a_{n}\right|+a_{n}}{2}$ and $q_{n}=\frac{\left|a_{n}\right|-a_{n}}{2}$ and note that p_{n} and q_{n} are non-negative with $p_{n}-q_{n}=a_{n}$ and $p_{n}+q_{n}=\left|a_{n}\right|$.

Also, note that the series of positive terms and the series of negative terms differ from $\sum p_{n}$ and $\sum_{n} q_{n}$ only by zero terms and therefore have similar divergence/convergence properties.

Note that both series $\sum p_{n}$ and $\sum_{n} q_{n}$ converge then $\sum\left|a_{n}\right|$ converges which contradicts the hypothesis that $\sum a_{n}$ is conditionally convergent. Further, if one of the series $\sum p_{n}$ and $\sum_{n} q_{n}$ is divergent then $\sum a_{n}$ can be shown to diverge, which is again a contradiction.

This completes the proof.

