SOLUTIONS AND HINTS

1. Solutions of selected problems from quiz 1

Question 1. Mark each of the following statements with true or false (no justification is required).
(1) Let $\mathcal{F}(\mathbb{N})$ denote the collection of all finite subsets of \mathbb{N}, then $\mathcal{F}(\mathbb{N})$ is countable.
(2) The interior of \mathbb{Q} is \mathbb{Z}.

Answer.

(1) True
(2) False

Question 2. Let $A=\left\{\frac{1}{n}-\frac{1}{m}: n, m \in \mathbb{N}\right\}$. Find $\inf A$ and $\sup A$.
Answer. $\inf A=-1$ and $\sup A=1$.
Question 3. Show that the following statements are equivalent
(1) The Archimedian property holds.
(2) Given any $a, b \in \mathbb{R}$ with $a<b$, there exists an $r \in \mathbb{Q}$ such that $a<r<b$.
(3) Given any $a, b \in \mathbb{R}$ with $a<b$, there exist $p \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $a<\frac{p}{2^{n}}<b$.

Solution. (1) $\Leftrightarrow(2)$ was done in the class. $(3) \Rightarrow(2)$ is easy as $\frac{p}{2^{n}}$ is a rational number. We prove that $(1) \Rightarrow(3)$. Suppose (1) holds and there exist $a, b \in \mathbb{R}$ with $a<b$ such that for all $p \in \mathbb{Z}$ and $n \in \mathbb{N}$ either $\frac{p}{2^{n}}<a$ or $b<\frac{p}{2^{n}}$. For each fixed $n \in \mathbb{N}$, let p_{n} denote the largest integer p such that $\frac{p}{2^{n}}<a$. From this, we get that

$$
\begin{equation*}
\frac{p_{n}}{2^{n}} \leq a<b \leq \frac{p_{n}+1}{2^{n}}, n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

It is easy to verify the above inequality. For, by definition of p_{n}, we have $\frac{p_{n}}{2^{n}} \leq a$. Since $p_{n}+1>p_{n}$, it satisfies $\frac{p_{n}+1}{2^{n}}>a$. Now by our assumption we should have that $\frac{p_{n}+1}{2^{n}}>b$. Recall (1) and see that for each $n \in \mathbb{N}$, we have

$$
0<b-a \leq \frac{p_{n}+1}{2^{n}}-\frac{p_{n}}{2^{n}}=\frac{1}{2^{n}} .
$$

Therefore, we see that the Archimedian property fails and hence by contrapositive, we conclude that $(1) \Rightarrow(3)$.
Question 4 Prove that the set E of rational numbers in the interval $(0,1)$ cannot be expressed as the intersection of a countable collection of open sets.
Solution. Our proof is by contradiction. Suppose that

$$
E=\cap_{n} O_{n},
$$

where each O_{n} is an open set.
We can write $E=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$.
Since $x_{1} \in O_{1}$ there exist an open interval I_{1} and a closed interval J_{1} such that

$$
x_{1} \in I_{1} \subseteq O_{1}, \quad J_{1} \subseteq I_{1}, \quad \text { and } x_{1} \notin J_{1}
$$

Note that J_{1}, being an interval, contains infinitely many rationals. Take a rational number and call it x_{2} such that $x_{2} \neq x_{1}$ and $x_{2} \in J_{1}$. Since $x_{2} \in O_{2}$, by a similar argument as above, we see that there exist an open interval I_{2} and a closed interval J_{2} such that

$$
x_{2} \in I_{2} \subseteq O_{2}, \quad J_{2} \subseteq I_{2} \subseteq J_{1}, \text { and } x_{2} \notin J_{2}
$$

Continuing this process inductively we get a nested sequence $\left\{J_{n}\right\}$ of nonempty closed and bounded intervals such that $x_{n} \notin J_{n}, \forall n$. Use nested interval theorem to get a contradiction.

