TOPOLOGY II (MTH 516/616)

MID-SEMESTER EXAMINATION (22/02/2019)

Time: 10 AM - 12 PM

Total Marks: 30

Problem A. Attempt three questions. Each question carries 4 marks.

- (1) Let X be a path connected space and $f: X \to X$ be a map. Show that $H_0(f): H_0(X) \to H_0(X)$ is the identity map.
- (2) Let m < n be positive integers. Show that every continuous map $f: S^m \to S^n$ is null-homotopic.
- (3) Let $f: S^n \to S^n$ be an antipodal map. Show that $deg(f) = (-1)^{n+1}$
- (4) Let $f : |K_1| \to |K_2|$ is a map and $\phi : K_1 \to K_2$ be a simplicial map. Let ϕ is a simplicial approximation to f. Show that if $f(\alpha) \in \sigma$ then $|\phi|(\alpha) \in \sigma$, where σ is a simplex in K.

Problem B. Attempt **two** questions. Each question carries 6 marks.

- (1) Let K be the Simplicial complex in \mathbb{R} with vertices 0, 1/2 and 1 and edges [0, 1/2]and [1/2, 1], so that the underlying space |K| is the closed unit interval [0, 1]. Let $f: [0, 1] \to [0, 1]$ be the map $f(x) = x^2$. Prove that $f: |K| \to |K|$ does not have a simplicial approximation $\phi: K \to K$. Using Simplicial approximation theorem we know that there exist a $\phi: sd^n(K) \to K$ which is simplicial approximation to f. For above f find out ϕ and n which gives Simplicial approximation to f.
- (2) Let K be a simplicial complex. Suppose that there exists a vertex w of K with the property that, If vertices v_0, v_1, \dots, v_q span a simplex of K then so do $w, v_0, v_1, \dots v_q$. Show that $H_0(K) = Z$, and $H_q(K)$ is the zero group for all q > 0. Hint: Define map $C_q(K) \to C_{q+1}(K), (v_0, v_1, \dots, v_q) \mapsto (w, v_0, v_1, \dots v_q)$.
- (3) Let $m, n \ge 0$ be non-negative integers. Choose base points $x_0 \in S^m$ and $y_0 \in S^n$ and let $S^m \wedge S^n$ be the one-point union formed with respect to these base points. Compute $H_i(S^m \wedge S^n; S^n)$ for all $i \ge 0$.

Problem C. Attempt one question. Each question carries 6 marks.

- (1) Show that the Euler characteristics of a compact, path-connected, triangulable topological group is zero.
- (2) Let U and V are two subsets of S^n and $f: U \to V$ is a homeomorphism. If U is open then show that V is open.

Note: S^n denote *n*-sphere. You can use any homology theory definition as per your need.