Topology II (MTH 516/616), Assignment-3

Submission Date: 06/03/2019

Problem 1. Given a short exact sequence of R modules,

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

we get a long exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}(C, G) \rightarrow \operatorname{Hom}(B, G) \rightarrow \operatorname{Hom}(A, G) \rightarrow \operatorname{Ext}^{1}(C, G) \rightarrow \operatorname{Ext}^{1}(B, G) \rightarrow \\
\operatorname{Ext}^{1}(A, G) \rightarrow \operatorname{Ext}^{2}(C, G) \rightarrow \operatorname{Ext}^{2}(B, G) \rightarrow \operatorname{Ext}^{2}(A, G) \rightarrow \cdots \cdots
\end{gathered}
$$

Show that we get only 6 terms in long exact sequence if R is PID then.
Problem 2. Let A and B be modules and let $i: \operatorname{Torsion}(A) \subset A$ and $j: \operatorname{Torsion}(B) \subset$ B. Then $i * j: \operatorname{Torsion}(A) * \operatorname{Torsion}(B) \cong A * B$. Also show that $A * b \cong B * A$.

Problem 3. If A, B, C are R-module. Prove that

$$
A \otimes(B * C) \oplus A *(B \otimes C)
$$

is symmetric in A, B, C.
Problem 4. Define the tensor product of two chain complex.
Problem 5. Show that,

- Let A be a free abelain group. Then $A * G=0$.
- $\mathbb{Z}_{n} * G \cong\{g \in G: n g=0\} \subset G$.
- If G is torsion free, then $\mathbb{Z}_{n} * G=0$.
- $\mathbb{Z}_{n} * \mathbb{Z}_{m}=\mathbb{Z}_{g c d(m, n)}$.
- $\left(A_{1} \oplus A_{2}\right) * B \cong\left(A_{1} * B\right) \oplus\left(A_{2} * B\right)$.

Problem 6. Show that,

- Let A be a free abelain group. Then $\operatorname{Ext}^{1}(A, B)=0$.
- $\mathbb{Z}_{n} * G \cong\{g \in G: n g=0\} \subset G$.
- If G is torsion free, then $\mathbb{Z}_{n} * G=0$.
- $\mathbb{Z}_{n} * \mathbb{Z}_{m}=\mathbb{Z}_{g c d(m, n)}$.
- $\left(A_{1} \oplus A_{2}\right) * B \cong\left(A_{1} * B\right) \oplus\left(A_{2} * B\right)$.

Problem 7. Let X be an topological space. Show that,

$$
\chi(X)=\sum_{i}(-1)^{i} \operatorname{dim}\left(H^{i}(X, \mathbb{Q})\right.
$$

Problem 8. Show that the singular cohomology module of a space is the direct product of the singular cohomology modules of its path-connected components..

Problem 9. Any two free resolutions of a given module are canonically chain equivalent chain complexes.

Problem 10. Let $\tau: C \rightarrow D$ be a chain map between two torsion free chain complexes C and D over R. Suppose $H_{i}(\tau): H_{i}(C) \rightarrow H_{i}(D)$ is an isomorphism for all i. Then show that for any R-module G,

$$
H_{i}\left(\tau \times 1_{G}\right): H_{i}(C \otimes G) \rightarrow H_{i}(D \otimes G)
$$

is an isomorphism for all i.
Problem 11. Let $\tau: C \rightarrow D$ be a chain map between chain complexes of free abelian groups. Suppose that for each field k the map $\tau \otimes 1_{k}$ induces isomorphisms of homology groups. Then τ is a chain equivalence.

