Topology II (MTH 516/616), Assignment-2

Submission Date: 13/02/2019

Problem 1. Find example a compact connected subset of \mathbb{R}^{2} that is not a polynedron.
Problem 2. For each vertex $v \in \operatorname{Vert}(K)$, prove that $s t(v)$ is an open subset of $|K|$ and that the family of all such stars is an open cover of $|K|$.

Problem 3. Let $v_{0}, v_{1} \cdots v_{q} \in \operatorname{Vert}(K)$. Prove that $\left\{v_{0}, v_{1} \cdots v_{q}\right\}$ spans a simplex of K if and only if $\cap_{i=0}^{q} s t\left(v_{i}\right) \neq \emptyset$.

Problem 4. If $\phi: K \rightarrow L$ is a simplicial approximation to $f:|K| \rightarrow|L|$, then $|\phi|$ is homotopic to f.

Problem 5. Let $K^{(q)}$ is the set of all simplexes $s \in K$ with $\operatorname{dim}(s) \leq q$, show that $K^{(q)}$ is subcomplex of K. If $\phi: K \rightarrow L$ is a simplicial map. then $\phi\left(K^{(q)}\right) \subset L^{(q)}$ for every q. Conclude that Image $(\phi) \subset L^{(\operatorname{dim}(K))}$

Problem 6. Compute the oriented simplicial homology of $S^{n}, T^{2}, P^{2}, K^{2}$.
Problem 7. Show that for simplicial complex K and L. Set of homotopically equivalent map from $|K| \rightarrow|L|$ is countable.

Problem 8. If nonempty open sets $U \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{n}$ are homeomorphic, then show that $m=n$.

Problem 9. Let K be a simplicial complex satisfying the following conditions: (i) K has no simplexes of dimension greater than n; (ii) Every $(n-1)$-simplex of K is a face of exactly two n-simplexes; (iii) For any two n-simplexes σ and τ of K, there exists a finite sequence of n-simplexes, beginning with σ and ending with τ, in which each adjacent pair of simplexes have a common $(n-1)$-dimensional face. Show that $H_{n}(K)$ is either \mathbb{Z} or the trivial group, and that in the former case it is generated by a cycle which is the sum of all the n-simplexes of K, with suitable orientations.

Problem 10. Let X be a polyhedron. Show that $X \times S^{n}$ is also polyhedron. What about product of two polyhedron?

Problem 11. Let K and L be simplicial complexes in \mathbb{R}^{n}. Show that $K \cap L$ is a sub complex of K and L, but it is not true in general that $K \cup L$ is a simplicial complex.

If $|K \cap L|=|K| \cap|L|$ then show that $K \cup L$ is also simplicial complex.
Problem 12. If σ is a simplex and L is a line containing an interior point of σ, then $\sigma \cap L$ is a closed interval and $L \cap b d(\sigma)$ consists of the two end points.

