MTH 516/616

TOPOLOGY II

Assignment-1

Submission Date: 30/01/2019

Problem 1. Let X be a topological space. Let $\left\{X_{\alpha} \mid \alpha \in \mathcal{A}\right\}$ denote the path components of X. Prove that for every i one has

$$
H_{i}(X) \cong \oplus_{\alpha \in \mathcal{A}} H_{i}\left(X_{\alpha}\right)
$$

Problem 2. Solve problem 1, 2, 3 from section 4 of chapter 4 from Bredon Topology and geometry.

Problem 3. Let X be a one point space or contractible space or star shaped space. Prove that $H_{i}(X)=0$ for all positive i.

Problem 4. Prove that short exact sequence of chain complexes gives a long exact sequence of Homoloy.

Problem 5. Let (X, A) be a pair such that A is a retract of X. Then

$$
H_{i}(X) \cong H_{i}(A) \oplus H_{i}(X, A)
$$

Problem 6. Show that if $m \neq n$, then \mathbb{R}^{m} is not homeomorphic to \mathbb{R}^{n}.

Problem 7. Let D^{n} denote closed unit disk in \mathbb{R}^{n}. If $f: D^{n} \rightarrow D^{n}$ is continuous map, then there is some point $x \in D^{n}$ such that $f(x)=x$. Note: Solve it using the fact $H_{n-1}\left(S^{n-1}\right)=\mathbb{Z}$.

Problem 8. Let A be a subspace of X with inclusion $i: A \rightarrow X$. Then for every $n \geq 0$, the map $i_{*}=: \Delta(i): \Delta(A) \rightarrow \Delta(X)$ is an injective map of chian complexes.

Problem 9. Suppose X is path connected space and A is a non emapty subspace. Then show that $H_{0}(X, A)=0$.

Problem 10. Let $f:(X, A) \rightarrow(Y, B)$ be a map of pairs (i.e. $f: X \rightarrow Y$ and $f(A) \subset B)$. So that f induces a map between relative homology of (X, A) and (Y, B).

Definition: Let $f, g:(X, A) \rightarrow(Y, B)$ are maps of pairs, we say $f \cong g \bmod (A)$ if there exist a homotopy map $F:(X \times I, A \times I) \rightarrow(Y, B)$ with $F(x, 0)=f(x), F(x, 1)=g(x)$ and $F(A \times I) \subset B$.

Let $f, g:(X, A) \rightarrow(Y, B)$ are maps of pairs such that $f \cong g \bmod (A)$ then foe all $i \geq 0$,

$$
H_{i}(f)=H_{j}(g): H_{i}(X, A) \rightarrow H_{i}(Y, B)
$$

You need not to submit the following questions.

Problem 11.

(1) Suppose $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is a short exact sequence of abelain groups.

- Prove that the sequence splits if and only if there exists a map $k: B \rightarrow A$ such that $k f=i d_{A}$.
- Give an example of such a short exact sequence where $B \cong A \oplus C$ but such that the sequence does not split.
- Prove that if C is free abelain then the sequence always splits.

