COMMUTATIVE ALGEBRA (MTH-518/618)

Quiz (28/08/2017)

Time: 60 minutes Maximum Marks: 10

Attempt all questions. Use separate page for each answer.

Problem 1.

- (1) Let A be a ring, S a multiplicative subset, and M a A-module. Show that $M = S^{-1}M$ if and only if M is an $S^{-1}A$ -module. (2)
- (2) Suppose I is an ideal of A and p is a finitely generated prime ideal. Show that $\sqrt{I} = p$ if and only if there exists an n > 0 such that $p^n \subseteq I \subseteq p$. (2) Where \sqrt{I} denote radical of I.

Problem 2. Show that
$$\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \cong \mathbb{Z}_{gcd(m,n)}$$
. (3)

Problem 3. Let A be a ring, $m \subset \mathcal{J}(A)$ an ideal, where $\mathcal{J}(A)$ is the Jacobson radical of A. Let $\alpha, \beta : M \to M$ be two maps of finitely generated modules. Assume α is surjective and $\beta(M) \subseteq mM$. Define $\sigma := \alpha + \beta$. Show that σ is an isomorphism.

OR

Let A be a local ring, M and N finitely generated A-modules. Prove that if $M \otimes N = 0$ then M = 0 or N = 0.