Quiz (28/08/2017)
Time: 60 minutes
Maximum Marks: 10

## Attempt all questions. Use separate page for each answer.

## Problem 1.

(1) Let $A$ be a ring, $S$ a multiplicative subset, and $M$ a $A$-module. Show that $M=$ $S^{-1} M$ if and only if $M$ is an $S^{-1} A$-module.
(2) Suppose $I$ is an ideal of $A$ and $p$ is a finitely generated prime ideal. Show that $\sqrt{ } I=p$ if and only if there exists an $n>0$ such that $p^{n} \subseteq I \subseteq p$.
Where $\sqrt{ } I$ denote radical of $I$.
Problem 2. Show that $\mathbb{Z}_{m} \otimes_{\mathbb{Z}} \mathbb{Z}_{n} \cong \mathbb{Z}_{g c d(m, n)}$.
Problem 3. Let $A$ be a ring, $m \subset \mathcal{J}(A)$ an ideal, where $\mathcal{J}(A)$ is the Jacobson radical of $A$. Let $\alpha, \beta: M \rightarrow M$ be two maps of finitely generated modules. Assume $\alpha$ is surjective and $\beta(M) \subseteq m M$. Define $\sigma:=\alpha+\beta$. Show that $\sigma$ is an isomorphism.
$O R$
Let $A$ be a local ring, $M$ and $N$ finitely generated $A$-modules. Prove that if $M \otimes N=0$ then $M=0$ or $N=0$.

