Commutative Algebra (MTH-518/618)

MID SEMESTER EXAMINATION (16/09/2017)

Time: 120 minutes

Maximum Marks: 30

Attempt all questions. Use separate page for each answer.

Problem 1: Solve any three. Each question carries 3 marks.

- (1) Let A be an ring and I be an ideal of A. Show that if I is free as an A-module then I is principal.
- (2) Let A be a Noetherian ring and $I \subset A$ a radical ideal. Then, there exist prime ideals p_1, \dots, p_m with

$$I = \cap_i p_i.$$

- (3) If A[X] is Noetherian, is A necessarily Noetherian?
- (4) Let A be an ring and I be an ideal. Define Ass(I) and show that in a Noetherian ring Ass(I) is a finite set. (9)

Problem 2: Solve any three. Each question carries 5 marks.

- (1) Calculate all prime and maximal ideals in $(\mathbb{R}[X])$.
- (2) Show that in an Artinian ring, every prime ideal is maximal.
- (3) Calculate all radical ideals in \mathbb{Z} . Also compute Ass(I), where I is an ideal in \mathbb{Z} .
- (4) Let $f: A \to B$ be a homomorphism of rings and let S be a multiplicatively closed subset of A. Let T = f(S). Show that $S^{-1}B$ and $T^{-1}B$ are isomorphic as $S^{-1}A$ modules. (15)

Problem 3: Solve any two. Each question carries 6 marks.

- (1) Define a ring $A := \mathcal{C}^0([0,1])$ set of continuous functions on the interval $[0,1] \subset \mathbb{R}$. Show that zero ideal is not primary ideal. Compute Ass(<0>).
- (2) Let M be a finitely generated A-module and $f: M \to A^n$ a surjective homomorphism where n is positive integer. Show that ker(f) is finitely generated. (6)