

 Timing: 10.00 AM to 12.00 PM
 2023-24, Semester-I
 Max Mark: 30

Attempt all questions. Write each step. If you use any fact done in class, write it explicitly. For each question, use a new page.

- 1. Solve all questions.
 - (a) Let M be a Riemannian manifold. Show that any geodesic in M has a constant speed. (2)
 - (b) Let M be a Riemannian manifold and $p \in M$. Assume that every maximal geodesic starting at p has \mathbb{R} as its domain. Show that exp_p is defined on all $T_p(M)$. (2)
 - (c) Let (M, g) be a Riemannian manifold and R its curvature tensor. Prove that

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0,$$

for X, Y, Z vector fields on M.

- (d) Write down a Riemannian metric on S^1 . Compute the connection and exp map for S^1 (Circle). (4)
- (e) Let (M_1, g_1) and (M_2, g_2) be Riemannian manifolds. Consider the product Riemannian manifold $(M1 \times M2, \pi^*g_1 + \pi^*g_2)$, where

$$\pi_i: M_1 \times M_2 \to M_i$$

be the canonical projections. For any $(p,q) \in M_1 \times M_2$, we let

$$i_1^q: M_1 \to M_1 \times M_2, \qquad p \mapsto (p,q)$$

be the embedding of M_1 into $M_1 \times M_2$ as $M_1 \times \{q\}$. Similarly one defines $i_2^p : M_2 \to M_1 \times M_2$. Denote by ∇^i and R_{m_i} the Levi-Civita connection and Riemann curvature tensor on M_i .

(3)

Prove that The Levi-Civita connection ∇ on $M_1 \times M_2$ is given by

$$\nabla_X Y(p,q) = di_1^q (\nabla^1_{d\pi_1(X)} d\pi_1(Y)) + di_2^p (\nabla^2_{d\pi_2(X)} d\pi_2(Y))$$

and the Riemann curvature tensor of $M_1 \times M_2$ is

$$R_m = \pi_1^* R_{m_1} + \pi_2^* R_{m_2},$$

where X, Y are vector fields on $M_1 \times M_2$ and $(p, q) \in M_1 \times M_2$. (4)

2. Let $\mathbb{H} = \{(x, y) \in \mathbb{R}^2 : y \ge 0\}$ be the upper half plane. Define

$$\langle X, Y \rangle_{\mathbb{H}} (x, y) = \frac{\langle X, Y \rangle_E}{y^2} = g_{\mathbb{H}}(X, Y)(x, y),$$

where X, Y are vector fields on \mathbb{H} and \langle , \rangle_E denote the standard Euclidean Metric on \mathbb{R}^2 .

- Show that $(\mathbb{H}, <, >_{\mathbb{H}})$ is a Riemannian manifold.
- Compute the Levi-Civita Connection on H.
- Compute the Curvature of H.
- Compute the geodesic on \mathbb{H} . (1+3+2+3)
- 3. Solve all questions. (Take Home) Submission time 12 PM Tuesday 19 Sept 2023.
 - (a) Let (M, g) be a connected Riemannian manifold of dimension $n \geq 3$ with the following property: There is a function $f: M \to \mathbb{R}$ such that, for every $p \in M$, the sectional curvature of all 2-planes $\sigma \subset T_pM$ satisfies

$$K(\Sigma) = f(p)$$

(3)

Show that f is a constant function.

(b) Let $M = \mathbb{R}^n$ with its standard manifold structure. Give an example of a complete Riemannian metric on M and an example of one non-complete Riemannian metric on M. (3)

Best wishes

Page 2