Indian Institute of Science Education and Research, (IISER) Bhopal
 Department of Mathematics
 An introduction to Riemannian Geometry
 (MTH 613)

End Semester Exam, Date: Nov 22, 2023

Attempt all questions. Write each step. If you use any fact done in class, write it explicitly. For each question, use a new page.

1. Solve all questions.
(a) Write down the statement of the Hopf Rinow Theorem.
(b) State the Gauss Theorem. Use it to prove the famous Theorem Egregium of Gauss.
(c) Compute the sectional curvature of $S^{n} \subset \mathbb{R}^{n+1}$
(d) Let $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ be an isometry between two Riemannian manifolds. Show that

$$
d f\left(\nabla_{X}^{1} Y\right)=\nabla_{d f(X)}^{2} d f(Y), \forall X, Y \in \mathcal{X}(M)
$$

where ∇^{1}, ∇^{2} are Riemann connections of M_{1}, M_{2} respectively.
2. Solve all questions.
(a) Let (M, g) be a Riemannian manifold. For a tensor T let ∇T denote its covariant derivative. T is called a parallel tensor if we have $\nabla T=0$. Assume that $T_{1}, T_{2}: X \times X \rightarrow C^{\infty} M$ are parallel tensors. Show that then the tensor

$$
T: X \times X \times X \times X \rightarrow C^{\infty}(M)
$$

defined as

$$
\begin{equation*}
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=T_{1}\left(X_{1}, X_{2}\right) T_{2}\left(X_{3}, X_{4}\right), \tag{4}
\end{equation*}
$$

is also parallel.
(b) Let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere, c an arbitrary parallel of latitude of S^{2} and V_{0} a tangent vector to S^{2} at a point of c. Describe geometrically the parallel transport of V_{0} along c.
(c) Let M be a Riemannian manifold with non-positive sectional curvature. Define a conjugate point and conjugate locus. Prove that, for all p, the conjugate locus $C(p)$ is empty.
3. Solve all questions.
(a) Show that $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ given by

$$
\phi(\theta, \psi)=\frac{1}{\sqrt{2}}(\cos \theta, \sin \theta, \cos \psi, \sin \psi), \quad(\theta, \psi) \in \mathbb{R}^{2}
$$

is an immersion of \mathbb{R}^{2} into the unit sphere $S^{3} \subset \mathbb{R}^{4}$, whose image $\phi\left(\mathbb{R}^{2}\right)$ is a torus T^{2} with sectional curvature zero in the induced metric.
(b) Let (M, g) be a Riemannian manifold with the following property: given any two points $p, q \in M$, the parallel transport from p to q does not depends on the curve that joins p to q. Prove that the curvature of M is identically zero, that is for all $X, Y, Z \in \mathcal{X}(M)$,

$$
\begin{equation*}
R(X, Y) Z=0 \tag{6}
\end{equation*}
$$

(c)) For $r>0$, let $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=r^{2}\right\}$ and

$$
X:[-\pi / 2, \pi / 2] \rightarrow T S
$$

be vector field along

$$
c:[-\pi / 2, \pi / 2] \rightarrow S \quad \text { with } \quad c(t)=(r \cos t, 0, r \sin t)
$$

defined by

$$
X(t)=(0, \cos t, 0) .
$$

Let $\frac{D}{d t}$ denote the covariant derivative on S along c.

- Calculate $\frac{D}{d t} X(t)$ and $\frac{D^{2}}{d t^{2}} X(t)$.
- Show that X satisfies the Jacobi equation.

Best wishes

