DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES (MTH-406)

END SEMESTER EXAMINATION (18/04/2017)

Time: 180 minutes Maximum Marks: 50

Solve all questions.

Problem 1. Answer the following questions "True" or "False".

- (1) The curve $\gamma(t) = (e^t, t^2)$ for $t \in \mathbb{R}$ is a regular curve.
- (2) There is a unique geodesic passing through any two distinct points of a sphere.
- (3) There exist a compact surface, whose all points are hyperelliptic.
- (4) There is a unique geodesic through any given point of a surface in any given tangent direction. (4)

Problem 2.

(1) Compute the curvature of the curve:

$$\gamma(t) = (\cos^3 t, \sin^3 t).$$

(2) Show that the signed curvature of any regular plane curve $\gamma(t)$ is a smooth function of t. (4)

(4)

(1+2+2)

- (3) Let $f: S_1 \to S_2$ be a local diffeomorphism and let γ be a regular curve on S_1 . Show that $f \circ \gamma$ is a regular curve on S_2 . (4)
- (4) Let γ be a unit-speed curve in \mathbb{R}^3 with constant curvature and zero torsion. Then show that, γ is a parametrization of (part of) a circle. (5)
- (5) What is the effect on the first and second fundamental form of a surface of applying an isometry of \mathbb{R}^3 ? Or a dilation (i.e., a map $\mathbb{R}^3 \to \mathbb{R}^3$ of the form $v \to \lambda v$ for some constant $\lambda \neq 0$)? (5)
- (6) Find the geodesics on the unit cylinder. Show that, if p and q are distinct points of the unit cylinder, there are either two or infinitely many geodesics on the cylinder with endpoints p and q (and which do not otherwise pass through p or q). Which pairs p, q have the former property?
- (7) State the following theorem (Write all assumptions and notations clearly).
 - (a) Gauss Theorema Egregium.
 - (b) Gauss-Bonnet for simple closed curves.
 - (c) Gauss-Bonnet for compact surfaces.
- (8) Define minimal surface. Show that the parametrization of the catenoid

$$\sigma(u, v) = (coshu \ cosv, coshu \ sinv, u).$$

is conformally parametrized. Using the above parametrization of the catenoid show that it is a minimal surface. (6)

(9) Show that a map that is both conformal and equiareal is a local isometry. Give an example of an equiareal map that is not a local isometry. (5+2)