Differential Geometry of Curves and Surfaces (MTH-406)

End SEmester examination (18/04/2017)

Time: 180 minutes Maximum Marks: 50

Solve all questions.

Problem 1. Answer the following questions "True" or "False".
(1) The curve $\gamma(t)=\left(e^{t}, t^{2}\right)$ for $t \in \mathbb{R}$ is a regular curve.
(2) There is a unique geodesic passing through any two distinct points of a sphere.
(3) There exist a compact surface, whose all points are hyperelliptic.
(4) There is a unique geodesic through any given point of a surface in any given tangent direction.

Problem 2.

(1) Compute the curvature of the curve:

$$
\begin{equation*}
\gamma(t)=\left(\cos ^{3} t, \sin ^{3} t\right) \tag{4}
\end{equation*}
$$

(2) Show that the signed curvature of any regular plane curve $\gamma(t)$ is a smooth function of t.
(3) Let $f: S_{1} \rightarrow S_{2}$ be a local diffeomorphism and let γ be a regular curve on S_{1}. Show that $f \circ \gamma$ is a regular curve on S_{2}.
(4) Let γ be a unit-speed curve in \mathbb{R}^{3} with constant curvature and zero torsion. Then show that, γ is a parametrization of (part of) a circle.
(5) What is the effect on the first and second fundamental form of a surface of applying an isometry of \mathbb{R}^{3} ? Or a dilation (i.e., a map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form $v \rightarrow \lambda v$ for some constant $\lambda \neq 0)$?
(6) Find the geodesics on the unit cylinder. Show that, if p and q are distinct points of the unit cylinder, there are either two or infinitely many geodesics on the cylinder with endpoints p and q (and which do not otherwise pass through p or q). Which pairs p, q have the former property?
(7) State the following theorem (Write all assumptions and notations clearly).
(a) Gauss Theorema Egregium.
(b) Gauss-Bonnet for simple closed curves.
(c) Gauss-Bonnet for compact surfaces.
(8) Define minimal surface. Show that the parametrization of the catenoid

$$
\sigma(u, v)=(\cosh u \cos v, \cosh u \sin v, u) .
$$

is conformally parametrized. Using the above parametrization of the catenoid show that it is a minimal surface.
(9) Show that a map that is both conformal and equiareal is a local isometry. Give an example of an equiareal map that is not a local isometry.

